SCIENCE AND CIVILISATION IN CHINA

BY

JOSEPH NEEDHAM, C.H., F.R.S., F.B.A.

SOMETIME MASTER OF CONVILLE AND CAIUS COLLEGE, CAMBRIDGE,
DIRECTOR EMERITUS OF THE NEEDHAM RESEARCH INSTITUTE,
CAMBRIDGE, HONORARY PROFESSOR OF ACADEMIA SINICA

and

ROBIN D. S. YATES

PROFESSOR OF HISTORY AND OF EAST ASIAN LANGUAGES AND LITERATURES
DIRECTOR, CENTRE FOR EAST ASIAN STUDIES
MCGIll UNIVERSITY, QUEBEC, CANADA

with the

KRZYSZTOF GAWLIKOWSKI

PROFESSOR, DIPARTIMENTO DI STUDI ASIATICI,
ISTITUTO UNIVERSITARIO ORIENTALE, NAPLES

EDWARD McEWEN

BOWYER AND MOUNTED ARCHER OF THE CITY OF LONDON
MEMBER OF THE SOCIETY OF ARCHER-ANTIQUARIES

WANG LING

EMERITUS PROFESSORIAL FELLOW, DEPARTMENT OF FAR EASTERN
HISTORY, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA

VOLUME 5
CHEMISTRY AND CHEMICAL TECHNOLOGY

PART VI
MILITARY TECHNOLOGY: MISSILES AND SIEGES

CAMBRIDGE UNIVERSITY PRESS
Science and civilisation in China. Vol. 5, Pt 6, Military technology; missiles and sieges / with the collaboration of Krzysztof Gawlikowski ... [et al.]

ISBN 0 521 32727 X hardback
To the memory of the late

CHOU ÉN-LAI

(1898 to 1976)

leader of the uprising at Nanchang (1927)
later Premier of the Chinese People's Republic (1949–1979)
constant encourager of this project
this volume is dedicated
CONTENTS

List of illustrations ... page xii
List of tables .. xxiv
List of abbreviations ... xxv
Author's note .. xxvii

30 MILITARY TECHNOLOGY page 1

(a) Introduction, p. 1

(b) Chinese literature on the art of war (with Krzysztof Gawlikowski), p. 10
 (1) The military theoreticians, p. 10
 (2) The military encyclopaedists, p. 24
 (3) Basic concepts of the classical Chinese theory of war; general principles of action, p. 31
 (4) Combat and competition, p. 37
 (5) Other components of the classical Chinese theory of war, p. 46
 (i) Territory, p. 46
 (ii) Signs given by enemy activities, p. 48
 (iii) The commander, p. 49
 (iv) Secret agents, p. 53
 (6) The main controversies within Chinese military thought, p. 54
 (i) Man and Nature, p. 54
 (ii) Time, p. 55
 (iii) The Heavens, p. 55
 (iv) Winds and clouds, p. 56
 (v) Divisions of space, p. 57
 (vi) Battle formations, p. 58
 (vii) Virtues and spiritual factors versus natural obstacles and other objective, material features, p. 61

(c) Distinctive features of Chinese military thought, p. 67
 (1) Reasons for its perennial vitality, p. 67
 (2) A syncretistic tradition; the non-military approach to war and the duties of soldiers, p. 70
 (3) The great popularity of military thought among the people, p. 80
 (i) Epics and operas, p. 80
 (ii) The promotions of the Martial Genii, p. 81
 (iii) The deification of Kuan Yu and Yo Fei, p. 82
 (iv) Knights-errant and combat-arts, p. 86
 (4) Military thought in civil life, p. 88
 (5) The place of the military element (wu) in the Chinese world order, p. 92
(d) Projectile weapons: I. Archery (with Edward McEwen), p. 101
 (1) The bow, p. 101
 (2) The crossbow, p. 120
 (i) The trigger-mechanism, p. 126
 (ii) Origin and development of the crossbow, p. 135
 (iii) Arming, sighting and testing, p. 146
 (iv) Increasing fire-power; the multiple-bolt crossbow and the magazine
 crossbow, p. 155
 (v) The crossbow in East and West, p. 170
 (3) The social role of the bow and crossbow, p. 178

Projectile weapons: II. Ballistic machinery (with Wang Ling), p. 184
 (4) Spring, sinew, sling and swape; definitions and distribution, p. 184
 (5) Forms of the arcuballista, p. 187
 (i) The rotary ballista, p. 200
 (6) Trebuchets, manned and counterweighted, p. 203
 (7) Distribution and diffusion, p. 231

(e) Early poliorcetics: The Mohists to the Sung (by Robin D. S. Yates), p. 241
 (1) Early cities, p. 241
 (i) General instructions for defence, p. 256
 (ii) Initial preparations for defence, p. 260
 (iii) Weapons and other equipment, p. 275
 (iv) Walls, roads and moats, p. 290
 (v) Gates, p. 343
 (a) The portcullis gate (hsuăn mên), p. 347
 (b) The shape of gates, p. 351
 (vi) Bridges and sally-ports, p. 364
 (vii) Towers, p. 373
 (viii) Devices on city walls, p. 398
 (2) The twelve types of attack, p. 413
 (i) Hooks, p. 414
 (ii) Khung-tung, p. 419
 (iii) High-sided carts, p. 419
 (iv) Tanks, p. 422
 (v) Battering-rams, p. 429
 (vi) Overlook carts, p. 437
 (vii) Ramps, p. 441
 (viii) Ladders, p. 446
 (ix) Flooding, p. 455
 (x) Surprise attack, p. 461
 (xi) Mines, p. 463
 (xii) The mass infantry assault, p. 480
CONTENTS

BIBLIOGRAPHIES .. 486
Abbreviations, p. 487
A Chinese and Japanese books before +1800, p. 490
B Chinese and Japanese books and journal articles since +1800, p. 503
C Books and journal articles in Western languages, p. 528

GENERAL INDEX .. 555
Table of Chinese dynasties 592
Romanisation conversion table 593
<table>
<thead>
<tr>
<th></th>
<th>LIST OF ILLUSTRATIONS</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse-archers depicted on a Han relief, from Chavannes (11)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>An example of astrogeomancy from the Hu Chhien Ching</td>
<td>60</td>
</tr>
<tr>
<td>3-6</td>
<td>Chhing dynasty battle formations as portrayed in the Théng Phai Chén Thu, a hand-painted album held in the Lenin Library, Moscow</td>
<td>61</td>
</tr>
<tr>
<td>7-8</td>
<td>Battle formations used by the Thaiphing Revolutionaries</td>
<td>62</td>
</tr>
<tr>
<td>9-11</td>
<td>Chhing dynasty battle formations as portrayed by the Russian diplomat D. V. Putyata</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>A ‘New Year Picture’, from an early 20th-century collection; Kuan Yü, God of War and Peace</td>
<td>83</td>
</tr>
<tr>
<td>13</td>
<td>‘New Year Picture’ illustrating Chu-ko Liang’s famous ‘stratagem of the empty stronghold’</td>
<td>83</td>
</tr>
<tr>
<td>14</td>
<td>The Chinese bow</td>
<td>103</td>
</tr>
<tr>
<td>15</td>
<td>Cross-sections showing the structural components of the Chinese bow</td>
<td>104</td>
</tr>
<tr>
<td>16</td>
<td>Bow, arrows and quiver of the Eastern Han dynasty (+2nd century), unearthed in 1959 at Niya, Niya county, Sinkiang</td>
<td>106</td>
</tr>
<tr>
<td>17</td>
<td>Detail from painting on silk showing the improved features of the Ming bow held by the emperor Ming Shih-Tsung (+1522 to +1566)</td>
<td>107</td>
</tr>
<tr>
<td>18</td>
<td>The hsiao shao kung or short-eared short bow</td>
<td>108</td>
</tr>
<tr>
<td>19</td>
<td>The ta shao kung or long-eared long bow</td>
<td>108</td>
</tr>
<tr>
<td>20</td>
<td>The structure of the compound bow</td>
<td>109</td>
</tr>
<tr>
<td>21</td>
<td>Graph illustrating the ‘force-draw’ of typical bows, after Kloepsteg (1)</td>
<td>114</td>
</tr>
<tr>
<td>22</td>
<td>Testing the pull of a bow with a steelyard. From the Thien Kung Khai Wu (+1637) of Sung Ying-Hsing; ch. 15, p. 9b</td>
<td>115</td>
</tr>
<tr>
<td>23</td>
<td>Archer's thumb-rings, jade, from an Eastern Chou tomb (Anon (20))</td>
<td>119</td>
</tr>
<tr>
<td>24</td>
<td>Archer's thumb-rings, bone, from an Eastern Chou tomb (Anon (20))</td>
<td>119</td>
</tr>
<tr>
<td>25</td>
<td>The 'Mongolian release', after E. S. Morse (1)</td>
<td>119</td>
</tr>
<tr>
<td>26</td>
<td>Crossbow-stocks from the tomb of Wang Kuang, Lolang, Korea</td>
<td>127</td>
</tr>
<tr>
<td>27</td>
<td>The stringing of a crossbow. From TSCII/7CT 284/hui kha0 2, 11b</td>
<td>127</td>
</tr>
<tr>
<td>28</td>
<td>Reconstruction of the possible manner of mounting a crossbow on a chariot</td>
<td>128</td>
</tr>
<tr>
<td>29</td>
<td>The trigger mechanism of a crossbow (assembled), from the Wu Pei Chih</td>
<td>129</td>
</tr>
<tr>
<td>30</td>
<td>The trigger mechanism of a crossbow (showing component parts), from the IWPC</td>
<td>129</td>
</tr>
<tr>
<td>31</td>
<td>(a to d) Four views of +1st-century bronze crossbow trigger mechanism in the possession of Dr Needham</td>
<td>130</td>
</tr>
<tr>
<td>32</td>
<td>Engineering drawing of Han-type crossbow mechanism (Horwitz (13))</td>
<td>131</td>
</tr>
<tr>
<td>33</td>
<td>Crossbow trigger mechanism illustrated in Mao Yüan-I's IWPC</td>
<td>134</td>
</tr>
<tr>
<td>34</td>
<td>A Li-su guard demonstrates a 'trivet' crossbow (Rock (1))</td>
<td>136</td>
</tr>
<tr>
<td>Illustration Description</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Relief of crossbowman, Pei-Chai Tshun, Eastern Han period (1st and 2nd century)</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Arming a European crossbow without stirrup, Payne-Gallwey (1), Fig. 24</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Arming a European crossbow with stirrup, Payne-Gallwey (1), Fig. 25</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Two Chinese crossbows with stirrups, pictured in the WPC</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Stirrup-arming the Chinese crossbow. From TSCC/JCT 284/hui khao 2, 15a</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Knee-arming the Chinese crossbow. From TSCC/JCT 284/hui khao 2, 16a</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>‘Belt-claw’ arming of the Chinese crossbow. From TSCC/JCT 284/hui khao 2, 27a</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>The ‘belt-claw’ is clearly to be seen in this TSCC representation of a crossbowman firing</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Graduated sighting scale on the back of the lug of the nut of a crossbow trigger-mechanism, from Tuan Fang (1)</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>A multiple-arrow crossbow from WPC, ch. 103, p. 13b</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Multiple-arrow crossbow from TSCC/JCT 282/hui khao 1, 13a</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>‘Crossbow ambush’, WPC, ch. 94, p. 26a</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Pedal-armed multiple-bolt arbalests, from WPC, ch. 103, p. 18a</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Arbalest-ambush from the Ch'ueh Chang Hsin Fa</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Small Chinese repeating crossbow, arming position. (Cambridge University Museum of Archaeology and Anthropology,)</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Small Chinese repeating crossbow, after shooting</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Repeating crossbow as depicted in WPC, ch. 103, p. 12a</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Repeating crossbow, showing component parts, from WPC, ch. 103, p. 12b</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Magazine crossbow as depicted in the TKKW</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Magazine crossbow being used by a Fowler. (TKKW, Chhing edition, ch. 15, p. 10b.)</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Korean crossbows from Boots (1).</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Reconstruction by E. McEwen of the ‘arrow-tube’ (thung chien), Korean Pyun chun (Phien chien)</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>Reconstruction of half-bamboo channel for guiding short arrows</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>Tumbling nut of 15th-century European crossbow trigger-mechanism (Payne-Gallwey (1))</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Side view of the trigger-mechanism of the later mediaeval European crossbow (Payne-Gallwey (1))</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>The lock of a large 16th-century sporting crossbow (Payne-Gallwey (1))</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Reconstructions of early forms of arcuballistae</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Multiple-arrow crossbow-catapult, from WPC, ch. 103, p. 14a</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Triple-bow crossbow-catapult, from WCTY, ch. 13, p. 6a, equivalent to WPC ch. 103, p. 9a</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Illustration No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>64</td>
<td>Reconstruction of the stringing of the double-spring unit</td>
<td>195</td>
</tr>
<tr>
<td>65</td>
<td>Relief of complex wheeled arcuballista, Ankor Thom (Carpeaux (1))</td>
<td>196</td>
</tr>
<tr>
<td>66a</td>
<td>Relief of complex wheeled arcuballista, Ankor Thom (Carpeaux (1))</td>
<td>196</td>
</tr>
<tr>
<td>66b</td>
<td>Reconstruction (after Groslier (1)) of mounting of the Ankor Thom wheeled arcuballista</td>
<td>196</td>
</tr>
<tr>
<td>67</td>
<td>Elephant-mounted, winch-operated arcuballista (Carpeaux (1))</td>
<td>196</td>
</tr>
<tr>
<td>68</td>
<td>Hand-operated, two-bow arcuballista (shou shēn), from WCTY, ch. 13, p. 11b</td>
<td>197</td>
</tr>
<tr>
<td>69</td>
<td>Reconstruction of Ma Chin's 'centrifugal flywheel ballista'</td>
<td>200</td>
</tr>
<tr>
<td>70</td>
<td>'Windmill fire-thrower' from the MS De Nobilitatibus of Walter de Milamete (M. R. James (2))</td>
<td>202</td>
</tr>
<tr>
<td>71</td>
<td>(a and b) Tentative reconstruction of the Mohist trebuchet (Yates (3))</td>
<td>203</td>
</tr>
<tr>
<td>72</td>
<td>'Whirlwind (Hsiian-Fêng) trebuchet', WCTY</td>
<td>CC, ch. 12, p. 50a</td>
</tr>
<tr>
<td>73</td>
<td>Battery of five whirlwind trebuchets, WCTY</td>
<td>CC, ch. 12, p. 48b (Ming ed.)</td>
</tr>
<tr>
<td>74</td>
<td>Trebuchet mounted on four-wheeled carriage (phao chhê), WCTY</td>
<td>CC, ch. 12, 39a</td>
</tr>
<tr>
<td>75</td>
<td>'Four-footed', 'seven-component' trebuchet, WCTY</td>
<td>CC, ch. 12, p. 48a</td>
</tr>
<tr>
<td>76</td>
<td>Counterweighted trebuchet tower as depicted in the TSCC</td>
<td>JCT, ch. 293, 11b</td>
</tr>
<tr>
<td>77</td>
<td>Counterweighted trebuchet tower, WPC, ch. 108, p. 13b</td>
<td>224</td>
</tr>
<tr>
<td>78</td>
<td>Four-decker warship armed with counterweighted trebuchets, TSCC</td>
<td>JCT, ch. 97, p. 5b</td>
</tr>
<tr>
<td>79</td>
<td>WCTY illustration of counterweighted trebuchet mounted on multi-deck warship</td>
<td>228</td>
</tr>
<tr>
<td>80</td>
<td>Manned trebuchet illustrated in MS of Peter of Ebulo, from Erben (1)</td>
<td>234</td>
</tr>
<tr>
<td>81</td>
<td>(a and b) Arab-type manned and counterweighted trebuchets from illuminated MS by Hasan al Rammah (Reinard & Favé (1), pl. 2)</td>
<td>235</td>
</tr>
<tr>
<td>82</td>
<td>Mahmud of Ghzannah besieging Arak (Blochet (1), pl. 57)</td>
<td>236</td>
</tr>
<tr>
<td>83</td>
<td>Single-pole trebuchet illustrated in the Bellifortis of Konrad Kyeser von Eichstädt (Schneider (1))</td>
<td>236</td>
</tr>
<tr>
<td>84</td>
<td>The defensive ditch, Yang-Shao village, Pan-Pho, near Sian. (Photograph Shènsí Shèng Huan-Tèng Chih-Phien-Chhāng,)</td>
<td>242</td>
</tr>
<tr>
<td>85</td>
<td>The city of Hsin-Chêng, Honan, capital first of the state of Chêng, then of the state of Han. (After drawing from Chen Shen (1), based on Honan Shèng Po-Wu Kuan Hsin-Chêng Kung-Tso Chan, Hsin-Chêng Hsien Wèn-Hua Kuan (1), p. 57, fig. 1.)</td>
<td>245</td>
</tr>
<tr>
<td>86</td>
<td>The city of Hsia-Tu, capital of the state of Yen, near 1 Hsien, Hopei. (After K. C. Chang (1), fig. 154.)</td>
<td>246</td>
</tr>
<tr>
<td>87</td>
<td>Yen Hsia-Tu, western wall of the outer city. (From Chinese Academy of Architecture (1).)</td>
<td>246</td>
</tr>
<tr>
<td>88</td>
<td>The city of Lin-Tzu, capital of the state of Chhi, near Lin-Tzu, Shantung. (After K. C. Chang (1), fig. 157.)</td>
<td>247</td>
</tr>
<tr>
<td>No.</td>
<td>Illustration Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>The ancient cities that comprised Hsin-Thien, capital of the state of Chin. (After Shansi Sheng Khao-Ku Yen-Chiu So Hou-Ma Kung-Tso Chan (I), fig. 1.)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>The city of Han-Tan, capital of the state of Chao, Hopei. (From K. C. Chang (1), p. 153, after Sekino and Komai (I).)</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>The Eastern Chou city of Lo-Yang with the smaller Han city inside it. (From Pei-Ching Ta-Hsüeh Li-Shih Hsi Khao-Ku Chiao-Yen-Shih Shang Chou Tsu (I), fig. 198.)</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Capital of the state of Chung-Shan. (From Tokyo Kokuritsu Hakubutsukan et al. (I), p. 9.)</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>The city of An-I, state of Wei, near Hsia Hsien, Shansi. (From K. C. Chang (I), fig. 151. Based on WW, 1962, 4-5, p. 61.)</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Yen-Chhêng, Hunan. (From Liu Yung-Ta (I).)</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Chiao-Khang Chen, probable site of Chiang, from Shansi Sheng Wen-Wu Kuan-Li Wei-Yüan Hui Hou-Ma Kung-Tso Chan (I).</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Shang-Tshai, capital of the state of Tshai. (From Shang Ching-Hsi (I), fig. 1.)</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Comparison of round with triangular bastion, after G. Busca (c. +1540 to +1600), Della architettura militare (Milan, 1601), cited in de la Croix (2).</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Construction of bastions for a hexagon, after B. Lorini, Della fortificazione libri V (Venice, 1597), cited in de la Croix (2).</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Palmanova, as built, plan by Cacogliati, c. 1695, from de la Croix (2).</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Palmanova, an aerial view, from de la Croix (2).</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Lucca, an aerial view from the north-east, from de la Croix (2).</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Triangular blockhouse in the Han military map (Chu-Chün Thu) found at Ma-Wang-Tui, from Wang Tzu-Chin and Ma Chên-Chih (I), fig. 4, p. 24.</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>(a) Iron caltrops discovered at Ting-Chün Shan, Mien Hsien, Shênsi, from Chu-Ko Liang yü Wu-Hou Tzhu Pien-Hsieh Tsu (I).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Caltrop unearthed at the site of the Han city of Chhâng-An, Sian, from Wang Zhongshu (Wang Chung-Shu) (I), fig. 156.</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Ground-plan of the Han fort at Chia-Chü, from WW, 1978, I, fig. 14.</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Excavating at Chhien-Shui Hou, viewed from the north-east to the south-west, from WW, 1978, I, fig. 10.</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ground-plan of Chin-Kuan, Chien-Shui, Han dynasty, from WW', 1978, I, figs. 12, 13.</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Ground-plans of four Roman military hospitals, from Anne Johnson (I), fig. 117.</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Model of the legionary hospital at Vetera, Lower Germany, from Anne Johnson (I), fig. 118.</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Chhâi Kan prong, from IVCTYCC, ch. 12, p. 36b.</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Shield from the state of Chhû (lacquer, from tomb 406), approximately ⅓.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

111 Shield from the state of Chhu (lacquer, from tomb 406), approximately \(\frac{3}{2}\) size, from Chung-Kuo Kho-Hsüeh Yuán Khao-Ku Yen-Chiu So (1), plate 3

112 Siege and naval warfare depicted on a Warring States period vessel from Shan-Piao-Chén, Chi Hsien, Honan, from K. C. Chang (1), fig. 131; Kuo Pao-Chün (3) fig. 11

113 Han representations of the use of halberds, from Hayashi (6), figs. 10-22, 10-23, 10-24, p. 199

114 Long axes from various Han sites, from Hayashi (6), figs. 6-63, 6-64, 6-65, 6-66, 6-67, 6-68, p. 123

115 Linked flail, from WCTY/CC, ch. 13, p. 14a

116 Long hammer, from the Wu Liang offering shrines, from Hayashi (6), fig. 10-44, p. 202

117 Sickle from various Han sites, from Hayashi (6), figs. 6-35 to 6-41, p. 119

118 Curved hoes, from Hayashi (6), figs. 6-25 to 6-27, p. 117

119 Spades and blades, from Hayashi (6), figs. 6-7 to 6-10, p. 114

120 Iron stove and tray from a Han tomb in Lo-Yang, from Wang Zhongshu (Wang Chung-Shu) (1), fig. 127

121 Movable stove, from WCTY/CC, ch. 12, p. 62b

122 Thunder stick, from WCTY/CC, ch. 12, p. 21a

123 'Wooden flying ladder that avoids thunder sticks', from WCTY/CC, ch. 10, p. 28b

124 Clay thunder stick, from WCTY/CC, ch. 12, p. 21b

125 Tile thunder stick, from WCTY/CC, ch. 12, p. 21b

126 Cart leg thunder stick, from WCTY/CC, ch. 12, p. 21b

127 Reconstruction of a windlass found at Thung-Lü-Shan, drawing, from Hsia Nai and Yin Wei-Chang (1), fig. 8

128 Reconstruction of a windlass found at Thung-Lü-Shan, model, from Hsia Nai and Yin Wei-Chang (1), fig. 8

129 Night prong thunder stick, from WCTY/CC, ch. 12, p. 21a

130 'Iron water chestnut' (below) and 'hoof-graspers' (above), from WCTY/CC, ch. 12, p. 17b

131 'Deerhorn wood' (left), 'earth stopper' (upper right), iron caltrops (lower right), from WCTY/CC, ch. 12, p. 17a

132 Pole hook, from WCTY/CC, ch. 12, p. 36b

133 Axe for chopping hands, from WCTY/CC, ch. 12, p. 36b

134 'Bladed lance with pommel' (left), 'scratch lance' (centre), 'projecting lance with pommel' (right), from WCTY/CC, ch. 12, p. 36b

135 'Scratch lance', from WCTY/CC, ch. 10, p. 22a

136 Reconstruction of the wall at Chhêng-Tzu-Yai, from Fu Ssu-Nien, Li
LIST OF ILLUSTRATIONS

137 Ground-plan of the city walls at Wang-Chhêng-Kang, from WW, 1983, 3, p. 14, fig. 13
138 Ground-plan of the neolithic city of Phing-Liang-Thai (left); ground-plan of the south gate and its flanking guard rooms (right), from WW, 1983, 3, pp. 27-8, figs. 16, 18
139 Ground-plan of the city walls of the early Shang city at Chêng-Chou, from K. C. Chang (1), fig. 289, after An Chin-Huai (5)
140 Ground-plan of the Hsia or Shang city at Yen-Shih, Honan, from Chung-Kuo She-Hui Kho-Hsueh Yuan Khao-Ku Yen-Chiu So Lo-Yang Han Wei Ku-Chhêng Kung-Tso Tui (1), fig. 2
141 Plan of the capital of the state of Lu, Chhü-Fu, Shantung, from Shantung Shêng Wên-Wu Khao-Ku Yen-Chiu So (1), fig. 3
142 Excavation areas of the capital of the state of Lu, Chhü-Fu, Shantung, from Shantung Shêng Wên-Wu Khao-Ku Yen-Chiu So (1), fig. 3
143 Cross-section of the east wall, Chhü-Fu, site of the capital of the state of Lu, at excavation site T505, from Shantung Shêng Wên-Wu Khao-Ku Yen-Chiu So (1), fig. 18a
144 1. South-west gate of the city of Lu; 2. South-east gate of the city of Lu. From Shantung Shêng Wên-Wu Khao-Ku Yen-Chiu So (1)
145 Ground-plan of Tso-Ching-Chhêng, Huang-Phi Hsien, from Huang-Phi Hsien Wên-Hua Kuan (1)
146 Ground-plan of Chi-Nan city, site of the capital of the state of Chhu, from Hupei Shêng Po-Wu Kuan (1), fig. 2
147 Vertical and horizontal cross-sections of the passage of the Hsin-Chhiao river through the southern wall of Chi-Nan city, site of the capital of the state of Chhu, from Hupei Shêng Po-Wu Kuan (1), fig. 11
148 Vertical and horizontal cross-sections of the water-gate in the southern wall, Chi-Nan city, from Hupei Shêng Po-Wu Kuan (1), fig. 12
149 Ground-plan of the site of Yung, first capital of the state of Chhin, from Shênsi Shêng Yung-Chhêng Khao-Ku Tui (1), fig. 1
150 Cross-sections of segments of the city walls of Yung, capital of the state of Chhin, from Shênsi Shêng Yung-Chhêng Khao-Ku Tui (1), fig. 2
151 Ground-plan of the second Chhin capital of Yüeh-Yang, from Chung-Kuo She-Hui Kho-Hsueh Yuan Khao-Ku Yen-Chiu So Yüeh-Yang Fa-Chüeh Tui (1), fig. 2
152 Plan of the south gate of the Chhin capital of Yüeh-Yang, from Chung-Kuo She-Hui Kho-Hsueh Yuan Khao-Ku Yen-Chiu So Yüeh-Yang Fa-Chüeh Tui (1), fig. 5
153 'Revolving window (chuan yu)', Kansu Provincial Museum, Lanchow. (Photograph Robin D. S. Yates.)
154 Shutters in the windows of s'Gravensteen. (Photo Editorial Escudo de Oro.)
LIST OF ILLUSTRATIONS

155 Carcassonne; reconstruction, after Viollet-le-Duc, of Visigothic tower, c. +450, from de la Croix (2), fig. 37 314
156 Drainage system under the ancient city of Lin-Tzu, capital of the state of Chhi, from Lin-Tzu Chhū Chhi-Kuo Ku-Chhèng I-Chih Po-Wu Kuan (1), fig. 1, p. 785 315
157 Brick drain-hole buried under the Si-an-Mên gate, Chhang-An, from Wang Zhongshu (Wang Chung-Shu) (1), fig. 9 316
158 Ceramic water-main pipes buried under the city wall of Han Chhang-An, from Wang Zhongshu (Wang Chung-Shu) (1), fig. 10 316
159 Ground-plan of the fortress on the island of Askt, from Badawy (1), fig. 102 318
160 Artist's impression of the fortress at Askt, seen from the south, from Badawy (1), fig. 103 319
161 Selinus, defences of the north front, from de la Croix (2), fig. 18 320
162 Selinus, c. -390, reconstructed plan, from de la Croix (2), fig. 19 321
163 Montagnana, interior walls and pomoerium, from de la Croix (2), fig. 45 322
164 The honeycomb of defences in a Han city as depicted in a tomb-mural at An-Phing, Hopei, from Chinese Academy of Architecture (1) 323
165 Aerial view of Les Aigues-Mortes, from Sournia (1) 324
166 Ground-plan of Les Aigues-Mortes, from Sournia (1) 325
167 Ground-plan of Thang Chhang-An, from Hiraoka Takeo (1) 326-7
168 Rubbing depicting a Han-period market scene, excavated at Kuang-Han, from Liu Chih-Yüan (1), fig. 1 328
169 Rubbing depicting a Han-period market scene excavated at Phêng Hsien, from Liu Chih-Yüan (1), fig. 2 328
170 Rubbing depicting a Han-period market scene, excavated at Hsin-Fan, from Liu Chih-Yüan (1), fig. 3 328
171 Aerial view of the fort at Whitley Castle, Northumberland, showing the multiple ditches, from Anne Johnson (1), fig. 28 331
172 Profile sections of fossa fastigata and fossa punica ditches, from Anne Johnson (1), fig. 26 331
173 Branches of thorn-trees placed as obstacles in defensive ditches. (After Anne Johnson (1), fig. 33.) 331
174 Lilia, holes intended as defensive traps, found in 1904 in front of the northern defences of the Antonine wall-fort at Rough Castle, from Anne Johnson (1), fig. 34 332
175 Palisaded ditch with rampart, Paestum, restored. (After Adam (1), fig. 55) 333
176 Chevaux-de-frise, from WCTT/GC, ch. 10, p. 34b 335
177 Outer palisade of fort at Hotta no Saku, Semboku County, Akita province, Japan, from Motoo Hinago (1), fig. 20 335
178 Sheep-horse wall and barbican protecting the gates of a Sung city, from
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>179</td>
<td>Walls of the inner city of Thang Kao-Chhang, Sinkiang. (Photograph, Robin D. S. Yates.)</td>
<td>338</td>
</tr>
<tr>
<td>180</td>
<td>Walls of the outer city of Thang Kao-Chhang, Sinkiang. (Photograph, Robin D. S. Yates.)</td>
<td>340</td>
</tr>
<tr>
<td>181</td>
<td>Cliff-face acting as a wall protecting the city of Chiao-Ho, Sinkiang. (Photograph, Robin D. S. Yates.)</td>
<td>341</td>
</tr>
<tr>
<td>182</td>
<td>'Enemy balconies' and small exposed rooms on 'horse-face tower' and walls, from WCTY/CC, ch. 12, pp. 8a and b</td>
<td>342</td>
</tr>
<tr>
<td>183</td>
<td>Han dynasty granaries from Pheng Hsien (above) and Chi-Nan (below), from Hayashi (6), p. 61, figs. 4-10, 4-11</td>
<td>345</td>
</tr>
<tr>
<td>184</td>
<td>Detail from the southern Sung painter Hsiao Chao's Chung Hsing Ch’ing Ting Thu, from Hsieh Chih-Liu (2), plate 66</td>
<td>346</td>
</tr>
<tr>
<td>185</td>
<td>Detail from the southern Sung painter Hsiao Chao's Chung Hsing Ch’ing Yung Thu, from Hsieh-Chih-Liu (2), plate 65</td>
<td>347</td>
</tr>
<tr>
<td>186</td>
<td>Himeji-jo castle: the Great Tenshu during restoration work carried out between 1934 and 1958, from Motoo Hinago (1), fig. 63</td>
<td>348</td>
</tr>
<tr>
<td>187</td>
<td>Stucco fireproofing on the wall and eaves of the Nu no Mon (Tenth Gate) of Himeji-jo, from Motoo Hinago (1), fig. 64</td>
<td>348</td>
</tr>
<tr>
<td>188</td>
<td>Stucco walls, window, loophole shutters and iron grilles of the Nu no Mon (Tenth Gate), Himeji-jo, from Motoo Hinago (1), fig. 65</td>
<td>349</td>
</tr>
<tr>
<td>189</td>
<td>The iron-studded doors, Ishikawa Mon of Kanazawa-jo, from Motoo Hinago (1), fig. 78</td>
<td>349</td>
</tr>
<tr>
<td>190</td>
<td>Hidden gate with drilled leaves, from WCTY/CC, ch. 12, p. 13b</td>
<td>350</td>
</tr>
<tr>
<td>191</td>
<td>The northern gateway of the Hsüan Phing-Mên gate of Han Chhang-An, from Wang Zhongshu (Wang Chung-Shu) (1), fig. 22</td>
<td>350</td>
</tr>
<tr>
<td>192</td>
<td>'Shieldboard' or portcullis, from WCTY/CC, ch. 12, p. 13a</td>
<td>351</td>
</tr>
<tr>
<td>193</td>
<td>Turn in the wall protecting the gate of the Han fortress of Chi Lu Sai, from Hou Jen-Chih (3), fig. 18</td>
<td>354</td>
</tr>
<tr>
<td>194</td>
<td>Plan of Ulan-durbeljin (Chien-Shui hou-kuan); 2. Plan of Baghdurbeljin (Tho-Tho hou-kuan); 3. Plan of Mu-durbeljin (Chia-Chü hou-kuan), from Chang Chun-shu (1), p. 21</td>
<td>355</td>
</tr>
<tr>
<td>195</td>
<td>South-eastern section of the walls of Miletus, showing the broken line of the walls and the postern gates protected by square towers, from Adam (1), fig. 32</td>
<td>356</td>
</tr>
<tr>
<td>196</td>
<td>Section of the walls west of the south gate, Miletus, from Adam (1), fig. 31</td>
<td>356</td>
</tr>
<tr>
<td>197</td>
<td>Gate of Arcadia, with its circular courtyard protected by two square towers, Messina, from Adam (1), fig. 58</td>
<td>356</td>
</tr>
<tr>
<td>198</td>
<td>Gate of Arcadia, Messina, from Adam (1), fig. 115</td>
<td>357</td>
</tr>
<tr>
<td>199</td>
<td>Gate à tenaille, the Euryalus Fort, Syracuse, from Adam (1), fig. 50</td>
<td>357</td>
</tr>
<tr>
<td>200</td>
<td>Gate à tenaille, Mantinea, from Adam (1), fig. 78</td>
<td>358</td>
</tr>
<tr>
<td>201</td>
<td>The Sacred Gate in north-west Athens in the Kerameikos District, from WCTY/CC, ch. 12, p. 3a</td>
<td>358</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Adam (1), fig. 52 .. 358

The North Gates of the Athenian Long Walls, Peiraius section, from Adam (1), fig. 53 .. 358

Plans of late Roman ‘Andernach’ gates of square or rectangular section (scale 1:800), from Stephen Johnson (2), p. 48, fig. 21 .. 359

Plans of gates in the Aurelian Wall, Rome (scale 1:800), from Stephen Johnson (2), p. 45, fig. 18 .. 359

Plans of late Roman gates in Spanish city walls (scale 1:800), from Stephen Johnson (2), p. 46, fig. 19 .. 360

Plans of late Roman gates protected by projecting towers of polygonal shape (scale 1:800), from Stephen Johnson (2), p. 49, fig. 22 .. 361

Plans of late Roman gates protected by curved or U-shaped towers (scale 1:800), from Stephen Johnson (2), p. 47, fig. 20 .. 362

Han fired pottery model, probably of a city gate, from Yuan Tè-Hsing (1), vol. 1, p. 304 .. 363

Han relief showing city gate, from Yuan Tè-Hsing (1), vol. 1, p. 309 .. 363

Rubbing of a Han relief of a city gate, from Chhang Jén-Hsia (1), fig. 52 .. 364

Han-period gate-tower, Hsien-Ku (Han-Ku) pass, from Hayashi (6), p. 68, fig. 4:36 .. 365

Decorative brickwork on wall of Roman fort at Le Mans, the Tour Magdeleine, from Stephen Johnson (2), fig. 1 .. 366

Detail view, showing patterning in wall-fence of the Tour du Vivier, Le Mans, from Stephen Johnson (2), fig. 2 .. 366

Types of city gates from Western Wei (+535 to +556) to the Five Dynasties (+907 to +960) period, from Fu Hsi-Nien (1), fig. 4 .. 367

Sung- and Yuan-period city gates, based on contemporary paintings, from Fu Hsi-Nien (1), fig. 5 .. 368

Reconstruction of the Chhung-Hsiian Gate, Ta-Ming Kung, Thang dynasty, viewed from the northern (outer) side, from Fu Hsi-Nien (1), fig. 16 .. 368

Reconstruction (side view) of the Hsuan-Wu Gate, Ta-Ming Kung, from Fu Hsi-Nien (1), fig. 17 .. 369

Reconstruction (aerial view) of the Hsuan-Wu and Chhung-Hsiian Gates, Ta-Ming Kung, from Fu Hsi-Nien (1), fig. 19 .. 369

‘Releasable’ or ‘revolving’ bridge, from WCTY/CC, ch. 12, p. 15a and b .. 371

Drawbridge or ‘fishing bridge’, from WCTY/CC, ch. 12, p. 10a .. 372

Tentative reconstruction of the Sung drawbridge or ‘fishing bridge’ .. 372

‘Knife cart for blocking up gates’, from WCTY/CC, ch. 12, p. 19a .. 373

Wooden parapet, from WCTY/CC, ch. 12, p. 19b .. 373

Leather matting used for filling up holes in the parapet, from WCTY/CC, ch. 12, p. 33a .. 373

Chinese bartizan depicted on a Warring States period bronze lien vessel,
<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubbing from a Han tomb-tile depicting a watchtower, from Yuan Te-Hsing (f), vol. 1, p. 309</td>
<td>376</td>
</tr>
<tr>
<td>Green-glazed pottery tower-model with wide upper balcony, later Han dynasty, from Lo-Yang, Honan, from Yuan Te-Hsing (f), vol. 1, p. 310</td>
<td>377</td>
</tr>
<tr>
<td>Model of a Han watchtower, with windows, but no balconies, from Yuan Te-Hsing (f), vol. 1, p. 311</td>
<td>378</td>
</tr>
<tr>
<td>Model of a Han watchtower found in a tomb in Shan Hsien, Honan, designated Type I by the excavators, from KKHP, 1965, f, p. 137, fig. 26</td>
<td>379</td>
</tr>
<tr>
<td>Model of a Han watchtower found in a tomb in Shan Hsien, Honan, designated Type II by the excavators, from KKHP, 1965, f, p. 138, fig. 27</td>
<td>380</td>
</tr>
<tr>
<td>Heavily armoured crossbowman firing his weapon from the Han type II watchtower, Shan Hsien, Honan, from KKHP, 1965, f, p. 139, fig. 28</td>
<td>381</td>
</tr>
<tr>
<td>Rubbing of a stone relief depicting three-story Han watchtowers with a cavalryman riding between them, from Chhang, Jen-Hsia (f), fig. 53</td>
<td>382</td>
</tr>
<tr>
<td>Crossbow-platform (?) protecting the entrance to Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)</td>
<td>383</td>
</tr>
<tr>
<td>Crossbow-platform (?) protecting the entrance to Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)</td>
<td>384</td>
</tr>
<tr>
<td>Entrance gate to Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)</td>
<td>385</td>
</tr>
<tr>
<td>Walls of Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)</td>
<td>386</td>
</tr>
<tr>
<td>Walls of Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)</td>
<td>387</td>
</tr>
<tr>
<td>Crossbow-platform, from WCTT/CC, ch. 12, p. 6a and b</td>
<td>388</td>
</tr>
<tr>
<td>Rope ladder, from WCTT/CC, ch. 12, p. 28b</td>
<td>389</td>
</tr>
<tr>
<td>'Hanging bell boards', from WCTT/CC, ch. 12, p. 11a</td>
<td>390</td>
</tr>
<tr>
<td>Ground-plan of Ta-Ma Ku-Chhêng, Shansi province, from Thao Chêng-Kang (f), fig. 2, p. 246</td>
<td>391</td>
</tr>
<tr>
<td>Thang dynasty fresco from the Thousand Buddha Caves, Tun-Huang, from SCC, Vol. 43</td>
<td>392</td>
</tr>
<tr>
<td>Defensive walls with horse-face towers in an illustration of the Lotus Sutra, south wall, cave 217, Tun-Huang (Thang dynasty), from Yuan Te-Hsing (f)</td>
<td>393</td>
</tr>
<tr>
<td>Ground-plan of Thung-Wan Chhêng, Shênsi, from Shênsi Shêng Wên-Wâ Kuan Hui (f), p. 226, fig. 2</td>
<td>394</td>
</tr>
<tr>
<td>Square hole used as a storage facility in the horse-face tower, Thung-Wan Chhêng, Shênsi, vertical and side views, from Shênsi Shêng Wên-Wâ Kuan Hui (f), p. 228, fig. 3</td>
<td>395</td>
</tr>
<tr>
<td>Fan-Yang county, from Nei-Mêng-Ku Tzu-Chih Chhû Po-Wu Kuan & Nei-Mêng-Ku Tzu-Chih Chhû Wên-Wu Kung-Tso Tui (f) p. 130</td>
<td>396</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>Ning-Chhêng county, from Nei-Mêng-Ku Tzu-Chih Chhui Po-Wu Kuan & Nei-Mêng-Ku Tzu-Chih Chhui Wên-Wu Kung-Tso Tui (I), fig. 34</td>
</tr>
<tr>
<td>248</td>
<td>Armoury in Ning-Chhêng county, Nei-Mêng-Ku Tzu-Chih Chhui Po-Wu Kuan & from Nei-Mêng-Ku Tzu-Chih Chhui Wên-Wu Kung-Tso Tui (I), fig. 35</td>
</tr>
<tr>
<td>249</td>
<td>Li-Shih Chhêng Fu Shê (Headquarters), from Nei-Mêng-Ku Tzu-Chih Chhui Po-Wu Kuan & Nei-Mêng-Ku Tzu-Chih Chhui Wên-Wu Kung-Tso Tui (I), fig. 34</td>
</tr>
<tr>
<td>250</td>
<td>Model of a fortified manor, Eastern Han, Yûn-Mêng County, Hupei, from Yûn-Mêng Hsien Po-Wu Kuan (I), fig. 1</td>
</tr>
<tr>
<td>251</td>
<td>Model of a fortified manor, Eastern Han, Yûn-Mêng County, Hupei, from Yûn-Mêng Hsien Po-Wu Kuan (I), fig. 2</td>
</tr>
<tr>
<td>252</td>
<td>Elevations and ground plans of the model of the fortified manor from Yûn-Mêng county, Hupei, Yûn-Mêng Hsien Po-Wu Kuan (I)</td>
</tr>
<tr>
<td>253</td>
<td>Elevations, ground-plan and details of the model of the fortified manor from Yûn-Mêng county, Hupei</td>
</tr>
<tr>
<td>254</td>
<td>Ground-plan and details of the fortified manor from Yûn-Mêng county, Hupei</td>
</tr>
<tr>
<td>255</td>
<td>Model of a later Han fortified manor with a watchtower, Kansu, from Kan Po-Wên (I)</td>
</tr>
<tr>
<td>256</td>
<td>Drawing of a fortified manor, Kansu, from Wang Tzu-Chin & Ma Chên-Chih (I), fig. 2</td>
</tr>
<tr>
<td>257</td>
<td>Rubbing of a carving, showing the structure of a further type of fortified manor, from Chhang Jên-Hsia (I), pl. 66</td>
</tr>
<tr>
<td>258</td>
<td>Cross-sections and vertical view of a model of a fortified manor, Eastern Han, from Kuang-Chhou. From Kuang-Chhou Shih Wên-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chhou Shih Po-Wu Kuan (I), fig. 263</td>
</tr>
<tr>
<td>259</td>
<td>Cross-sections and vertical view of a model of a fortified manor, Eastern Han, from Kuang-Chhou. From Kuang-Chhou Shih Wên-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chhou Shih Po-Wu Kuan (I), fig. 264</td>
</tr>
<tr>
<td>260</td>
<td>Cross-sections and vertical view of a model of a fortified manor, Eastern Han, from Kuang-Chhou. From Kuang-Chhou Shih Wên-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chhou Shih Po-Wu Kuan (I), fig. 265</td>
</tr>
<tr>
<td>261</td>
<td>Pottery model of a fortified manor, Eastern Han, from Kuang-Chhou Shih Wên-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chhou Shih Po-Wu Kuan (I), pl. 151</td>
</tr>
<tr>
<td>262</td>
<td>Pottery model of a fortified manor, Eastern Han, from Kuang-Chhou Shih Wên-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chhou Shih Po-Wu Kuan (I), pl. 153</td>
</tr>
<tr>
<td>263</td>
<td>Pottery model of a fortified manor, Eastern Han, from Kuang-Chhou Shih Wên-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chhou Shih Po-Wu Kuan (I), pl. 155</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

264 Pottery model of two fortified manors, Eastern Han, front and rear views, from Kuang-Chou Shih Wen-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chou Shih Po-Wu Kuan (1), pl. 148

265 Pottery model of two fortified manors, Eastern Han, front and rear views, from Kuang-Chou Shih Wen-Wu Kuan-Li Wei-Yüan Hui and Kuang-Chou Shih Po-Wu Kuan (1), pl. 107

266 Hemp-cloth curtain, from WCTY/CC, ch. 12, p. 32a

267 Well-sweep used for lowering 'swallow-tail torches', from WCTY/CC, ch. 12, p. 60a

268 Reconstruction of the chhi shield, from Yates (3)

269 Reconstruction of the vertically hung firescreen, from Yates (3)

270 Reconstruction of the horizontally hung firescreen, from Yates (3)

271 Representations of targets on Warring-States pictorial bronzes, from Weber (5), fig. 77

272 Iron plated ram, from WCTY/CC, ch. 12, p. 25a

273 'Flying hook' (left); 'wolf's tooth striking board' (right), from WCTY/CC, ch. 12, p. 23a

274 Fork cart, from WCTY/CC, ch. 10, p. 32b

275 Hungry falcon cart, from WCTY/CC, ch. 10, p. 33a

276 Double hook cart, from WCTY/CC, ch. 10, p. 32a

277 Movable sky cart, from WCTY/CC, ch. 10, p. 28a

278 Rake cart, from WCTY/CC, ch. 10, p. 28b

279 High sided cart, from Hayashi (8)

280 High sided cart, from Hayashi (8)

281 Nest cart, from WCTY/CC, ch. 10, p. 31a

282 Watchtower cart, from WCTY/CC, ch. 10, p. 20b

283 Tank, from WCTY/CC, ch. 10, p. 18a

284 'Sharp-topped wooden donkey', from WCTY/CC, ch. 12, p. 60a

285 Swallow-tail torch, from WCTY/CC, ch. 12, p. 28a

286 Iron-tipped wooden ram (left), from WCTY/CC, ch. 12, p. 28a

287 Windlass cart (right), from WCTY/CC, ch. 12, p. 25b

288 Wooden screen, from WCTY/CC, ch. 10, p. 19a

289 'Waggon for filling in the moat', from WCTY/CC, ch. 10, p. 30a

290 'Leather cart for filling in the moat', from WCTY/CC, ch. 10, p. 30b

291 Battering-ram from the Beni-hasan wall-paintings, from Newberry (1), vol. 2, plate XV

292 Early Chinese elevator, the 'Windlass cart for descending walls', from WCTY/CC, ch. 12, p. 28b

293 Iron rings for catching rams, from WCTY/CC, ch. 12, p. 28a

294 Duke Lu's overlook and assault cart, from WPC

295 A highly imaginative drawing of a ramp, from WCTY/CC, ch. 10, p. 5a

296 Reconstruction of the counterweighted ladder, from SCC, Vol. 4, pt 1

297 Scaling ladder, from WCTY/CC, ch. 10, p. 15b
LIST OF ILLUSTRATIONS

298 Flying ladders, from WCTY/CC, ch. 10, p. 17b
299 The Ti-fang, from Hayashi (6), figs 10-18, 10-19
300 A cheval-de-frise, from WCTY
301 Geophones, from WCTY/CC, ch. 12, p. 30a
302 Another type of geophone, from WCTY/CC, ch. 12, p. 70a
303 Reconstruction of a Mohist mine, from Yates (3)
304 Mining complex at Thung-Lü-Shan, from Thung-Lü-Shan Khao-Ku Fa-Chüeh Tui (1), fig. 5
305 Pipes for introducing smoke into Mohist mines
306 Flying gadfly arrow, from Hayashi (5), fig. 391
307 The wandering fire cauldron, from WCTY/CC, ch. 12, p. 62a
308 'The Wooden ox', from WCTY/CC, ch. 10, p. 7b
309 Completed 'plaited gallery', from WCTY/CC, ch. 10, p. 7b (left); ch. 10, p. 9a (right)
310 Screens for the 'plaited gallery', from WCTY/CC, ch. 10, p. 8a
311 Uncovered frame for the 'plaited gallery', from WCTY/CC, ch. 10, p. 8a
312 Uncovered frame for the 'plaited gallery', from WCTY/CC, ch. 10, p. 6a
313 Screens for the 'plaited gallery', from WCTY/CC, ch. 10, p. 6b
314 Hemp mop for applying liquid mud, from WCTY/CC, ch. 12, p. 27a
315 Sheepskin water-jug, from WCTY/CC, ch. 10, p. 11a
316 'Head cart', from WCTY/CC, ch. 10, p. 9b
317 Earth-coloured felt screen for use in hiding subterranean tunnels, from WCTY/CC, ch. 12, p. 38a
318 Fan for propelling smoke and missiles down mineshafts, from WCTY/CC, ch. 12, p. 31a
319 Leather screen for excluding noxious substances and gases from mineshafts and galleries, from WCTY/CC, ch. 2, p. 25b
320 Instruments for use in pouring noxious substances into enemy mines, from WCTY/CC, ch. 10, p. 25a
321 Mining implements, from WCTY/CC, ch. 10, p. 24a
322 Pang maces, from WCTY/CC, ch. 13, p. 13a
323 Shu spiked mace from the tomb of Tseng Hou-I, from Sui-Hsien Lei-Ku-Tun I-Hao-Mu Khao-Ku Fa-Chüeh Tui (1), plate 9.2

LIST OF TABLES

1 Books on military subjects, Chou to Chhing
2 The Eight Formations (according to the Thai Po Yin Ching)
3 Comparative information on different types of bows and crossbows
4 Complement and ranges of mediaeval artillery (from the WCTY etc.)
5 Artillery systems in different ages in East and West
LIST OF ABBREVIATIONS

The following abbreviations are used in the text. For abbreviations used for journals and similar publications in the bibliographies, see pp. 487 ff.

B Bretschneider, E. (1), Botanicon Sinicum (successive volumes indicated as B I, B II, B III).

CKCTCCS Chung-Kuo Chin Tai Chan Chêng Shih.

CKT Unknown writer, Chan Kuo Tshê.

CI CI Sun I-Jang (ed.), Chou Li Chêng I, 1899.

CSHK Yen Kho-Chien (ed.), Chhuan Shang-Ku San-Tai Chhin Han San-Kuo Liu Chhao Wên (Complete Collection of prose literature (including fragments) from remote antiquity through the Chhin and Han Dynasties, the Three Kingdoms, and the Six Dynasties), 1896.

HCC Hsü Tung, Hu Chhien Ching (Tiger Seal Manual, a Military Encyclopaedia), Sung, begun +962, finished +1004.

HHS Fan Yeh & Ssu-ma Piao, Hou Han Shu (History of the Later Han Dynasty), +450.

HNT Liu An et al., Huai Nan Tsu (Book of the Prince of Huai-Nan), —120.

HSPC Wang Hsien-Chhien (ed.), Han Shu Pu Chu, 1900.

K Karlgren, B. (1), Grammata Serica (dictionary giving the ancient forms and phonetic values of Chinese characters).

KHCPTS Kuo Hsueh Chi Pên Tshung Shu edition.

MCPT Shen Kuo, Meng Chhi Pi Than (Dream Pool Essays), Sung, +1089.

PTSC Yü Shih-Nan, Pei Tshang Shu Chhao (Book Records of the Northern Hall), Thang, c. +630.

R Read, Bernard E. et al., Indexes, translations and précis of certain chapters of the Pên Tshao Kang Mu of Li Shih-Chên. If the reference is to a plant see Read (1); if to a mammal see Read (2); if to a bird see Read (3); if to a reptile see Read (4 or 5); if to a mollusc see Read (5); if to a fish see Read (6); if to an insect see Read (7).

SPPF Sun Pin Ping Fa (Sun Pin's Art of War), Chou (Chhi), c. —235.

SPPY Ssu Pu Pei Yao edition.

SPTK Ssu Pu Tshung Khan edition.

STTH Wang Chhi, San Tshai Thu Hui (Universal Encyclopaedia), Ming, +1609.

TCHCC Tshung Shu Chi Chêng (The Compendious Collectania), Shanghai Commercial Press, 1935—9.

TCKM Chu Hsi et al. (eds.), Thung Chien Kang Mu (Short View of the Comprehensive Mirror of History), classified into Headings and Subheadings; the Tzu Chih Thung Chien condensed, a general history of China, Sung, +1189; with later continuations.

TCTC Ssu-ma Kuang, Tzu Chih Thung Chien (Comprehensive Mirror of History) for Aid in Government), +1084.

XXV
LIST OF ABBREVIATIONS

TFYK Wang Chhin-Jo & Yang I (eds.), Tshê Fu Yuan Kuei (Lessons of the Archives, encyclopaedia), +1013.

TH Wieger, L. (I), Textes Historiques.

TKKW Sung Ying-Hsing, Thien Kung Khai Wu (The Exploitation of the Works of Nature), Ming, +1637.

TPYC Li Chhitan, Shên Chi Chih Ti Thai Po Yin Chéng (Manual of the White and Gloomy Planet (of War, Venus)), treatise on military and naval affairs, Thang, +759.

TPYL Li Fang (ed.), Thai-Phing Yü Lan (the Thai-Phing reign-period Imperial Encyclopaedia), Sung, +983.

TSCC Chhêen Mêng-Lei et al. (eds.), Thu Shu Chi Chhêng; the Imperial Encyclopaedia of +1726). Index by Giles, L. (2). References to 1884 ed. given by chapter (chüan) and page. References to 1934 photolitho reproduction given by tshê (vol.) and page.

TT Wieger, L. (6), Taoisme, vol. 1, Bibliographie Générale of the works continued in the Taoist-Patrology, Tao Tsang.

WCTY Tsêng Kung-Liang (ed.), Wu Ching Tsung Yao (The Most Important Affairs to the Military Classics - a military encyclopaedia), Sung, +1044.

WCTY/CC Tsêng Kung-Liang (ed.), Wu Ching Tsung Yao (Chhien Chi), military encyclopaedia, first section, Sung, +1044.

WPC Mao Yuan-I, Wu Pei Chûh (Treatise on Armament Technology), Ming, +1628.
This is the first of the three ‘earthly’ volumes on Military Technology, though it is not the first to be published, Part 7 on the Gunpowder Epic having preceded it. Such derangements in the sequence of the volumes are due to the exigencies of collaborative work – but without them the completion of the whole enterprise would not be possible.

After the Introduction the next three sub-sections were mostly drafted by Krzysztof Gawlikowski, a leading authority on that immortal book the Sun Tzu Ping Fa (Master Sun’s Art of War), still greatly valued by strategists in spite of its high antiquity. One of the most interesting differences which is here brought out is the fact that plebeian people in ancient and mediaeval China were much more military-minded than the educated scholar-bureaucrats. Evidences of this come from novels such as Feng Shen Yen I (Promotions of the Martial Genii), the deification of military heroes such as Kuan Yu and Yo Fei in the San Kuo and the Sung respectively, and the great popular interest in combat arts (kung fu). On the other hand nobody has ever been more successful than were the scholar-bureaucrats in keeping the soldiers down all through the ages, ‘on tap but not on top’ for more than two thousand years. ‘Power grows from the barrel of a gun’ as Mao Tsê-Tung is reported to have said, but no one would have been more insistent than he that the Party should be in control of it. In this he would have been continuing (with a difference) the tradition of all the Chinese ages.

For the bow, the crossbow (probably invented in the Chinese culture-area and introduced to Europe twice) and pre-gunpowder artillery, I have had the benefit of the collaboration of Edward McEwen and Wang Ling respectively; the former a consummate archer and bowyer, the latter willing to extend his interests from the history of gunpowder to the machines which supplied the place of cannon before cannon existed. Finally, the section on early poliorcetics, siege warfare in ancient and mediaeval times, is due entirely to Robin Yates of McGill University, a great authority on the Mo Tzu book, who has also devoted a great deal of painstaking time in the proof-reading of the entire volume. As ever I extend my warmest thanks to all my collaborators.

And now it is time to offer thanks to all those whose selfless administrative work has made this book possible. The publication of this volume has taken an unusually long time, and much has changed since we first sent the volume to press. Then we had just moved into our new purpose-built home at the corner of Herschel Road and Sylvester Road in Cambridge. To Colin Ronan, then Secretary of the

* When Wang Ling and I were planning these volumes in 1948 we thought that seven would be enough to cover all the sciences and technologies. But we had no idea of the wealth of material which would have to be dealt with in each. People associated with the project have come to speak of the original seven as ‘heavenly’ volumes, and of the separate parts as ‘earthly’ volumes. For it proved to be necessary to bring out the several parts as distinct physical volumes, and indeed Vol. 5 may come to have as many as 13.
East Asian History of Science Trust,* we owe much gratitude for all his help with settling us down there, as well as for the host of administrative tasks he shouldered daily. Responsibility for the publication of the volume now lies in the capable hands of Christopher Cullen, Deputy Director of the Needham Research Institute and Chairman of the Publications Board.

Since this is one of the first volumes to appear from the new Institute and Library, it would only be proper to salute the architect, Christophe Grillet, and his assistants, together with the builder, Roger Bailey, and his foreman Peter Ashman, and all the workers who spared no pains to make the building beautiful and worthy. All our staff accomplished miracles in the move from our old home in Brooklands Avenue. Then I must say a word of gratitude to our secretary, Diana Brodie, accurate and imperturbable, who retyped many of the pages in this volume, and to the present secretaries of the Institute, Angela King and Winne Chen, for all their invaluable back-up work. We have pleasure in offering thanks to our former Librarian, Mrs Liang (Liang Chung Lien-Chu) who copied many a Chinese character onto the pages of successive drafts, and to her present successor, John Moffett, as also to my research assistants, Jovana Muir and Corinne Richeux. Finally I should like to thank Iain White and Helen Spillett, copy editors at the Cambridge University Press, and the officers of the publishing division for all their help in taking over this volume at an unusually early stage in its development and for resolving all the problems that have been involved.

Since this volume first went to press, we have suffered a great blow, namely the loss of Lu Gwei-Djen, my life-long collaborator and second wife. She was taken from me in November 1991 after only two years of happily married life. She went through every word that was written in all the volumes, including this one, and gave much valuable guidance into the intricacies of knowledge about China. She also collaborated with me on many original papers mostly on medical subjects. It would be no exaggeration to say that this whole project would never have been started without her.

In 1987, we were also shocked to hear of the death of Victor Meally of Dublin, who went through all our published volumes ‘with a fine-tooth comb,’ letting us know of the mistakes and printer’s errors. We are most grateful for this work, done with such devotion and dedication.

Lastly, we must offer thanks to those who interpret for us languages which we do not know. For Korean we rely on Professor Gari Ledyard, for Japanese the late Dr Charles Sheldon and now Dr Ushiyama Teruyo, for Arabic Dr Douglas Dunlop, and for Sanskrit Professor Shackleton Bailey.

Thanks are also due to Dr Christopher Cleary, Sarah Burgess, Bret Hinsch and Liu Hui-chün, research assistants to Robin Yates, and to the staff of the Harvard-Yenching Library.

And now let us draw back the curtain which conceals the military activities and the military science of two Chinese millennia from general knowledge.

* And also the writer of the volumes in the ‘Shorter Science and Civilization in China’ series.
In a foregoing section the current of our enquiries led us in the direction of naval combat, and the time could therefore not be long postponed when we must come to study the inventions connected with combat itself. To regard the Chinese as a people who were never successful in war would be as great an absurdity as to set them down as deficient in the great seafaring qualities. Yet this is what Europeans have sometimes done, misled by the predominance of a civil philosophy with a great pacific tradition, and also perhaps by the effects of post-Renaissance occidental science in raising so greatly the war potential of Westerners in their later contacts with the Chinese seaboard. In fact, China has never lacked devoted soldiers, ingenious military technicians, and distinguished captains; though no doubt certain historical situations gave them a more ample field for their genius than others. The tale of wars throughout the ages in China and around her borders is nevertheless long, continuous and intricate. After the innumerable campaigns of the feudal period which ended in the unification of the first empire, there were the struggles with the Hsiung-Nu (possibly the Huns) which continued throughout the Han. In the San Kuo period (+ 3rd century) there were the epic conflicts of generals such as Chu-ko Liang¹, Tshao Tshaó² and Sun Chhúan³; while after it, for many hundred years, the barbarian houses of the northern kingdoms warred with the autochthonous empires confined to their southern domains. This same pattern, indeed, reasserted itself after the long peace of the Sui and Thang, for we find the Sung thrown back upon Hangchow in the + 12th century, just as the Liu Sung had had Nanking for their capital nearly a thousand years before. But now the northerners recruited abundant Chinese talent as well as valour to the service of their arms, and it is precisely in the + 11th and + 12th centuries, as will clearly be seen later on, that the greatest advances were made in military techniques. The manifold applications of the new knowledge of the incendiary and explosive properties of gunpowder and its related compositions were all made in the wars between the Sung and the (Jurchen) Chin, including the invention of the true metal-barrel cannon, which can now be dated to + 128₉. After this crowning achievement of Chinese military science, there followed the long decline of the Ming, a dynasty whose defences were never seriously challenged until the Manchu invasion discovered their inadequacy, both material and moral. And then the Jesuit cannon-founders ushered in symbolically the modern period.

The study of the technique of war is not so lamentable a subject as in some

¹ 諸葛亮 ² 曹操 ³ 孫權
moods it may appear to us to be. In all ages it has stimulated the improvement of
techniques, in China as elsewhere. The perennial search for the hardest possible
metal led from bronze through iron to steel of various kinds, and this not only for
shock weapons but also for the defence of the individual against them, as in all the
forms of armour, replacing the prepared skins of animals or the pierced slips of
wood or bamboo. And what the metallurgist began the chemist continued. How
great were the effects which flowed from the invention of gunpowder, a Francis
Bacon did not dare to underestimate. A chemical explosion was something abso-
lutely new in human history, newer qualitatively than the physical sub-atomic
explosions of our own time, for man had never known an explosion of any kind
whatever. The preparation of the substances required for it invited the study of
crystallisation and filtration; the fact that though fire it needed not air, invited
meditation on the relations of these two ‘elements’. Then, after the appearance of
the true barrel-cannon, the problems of dynamics, of flight and violent motion,
began to present themselves in earnest, for the trajectory of the missile could now
be controlled to an extent far greater than with any of the old catapult machines.
These, of course, in their time, had afforded much opportunity for the exercise of
engineering skill, in China as in the West. But now the boring of the cannon to
make an accurate cylinder, besides giving rise to the modern comprehension of
the relation between heat and mechanical work, also led to possibilities of employing,
in ways before undreamt-of, that other occupant of cylinders, in itself quite an-
cient, the piston. While before it had always been used as the handle of a tool, in
Malaysian fire-lighters, Chinese bellows and Alexandrian pumps, now it could for
the first time be thought of as a projectile, but a tethered one, capable of produc-
ing alternating rectilinear motion if someone could arrange an obedient succession
of explosions within the cylinder. This last chapter of technological history, which
led to the steam engine and the internal-combustion engine, is of course well
known; what needs expounding is that earlier obscurer chapter between the first
achievement of the fateful mixture of chemical substances and the appearance of
the true metal barrel-gun. This chapter is a Chinese one; the events which it
contains took place between about +850 and +1350; and we shall try to tell it in
due course. The hollow bamboo stem was the invitation of Nature which led to
all cylinder-barrels, but as will be seen later on, its first employment in connection with gunpowder was made with no thought of a cylinder in mind.

The present Section will seek to avoid, as always, many by-paths not strictly connected with the history of science and technology. The study of strategy and tactics as such is one of these. Nor can more than minimum space be devoted to the varieties of shock weapons, for they merit a place of importance no greater, perhaps less, than the tools of the craftsmen, with which we were occupied in Section 27a. It would be easy to fall into that morass of antiquarianism represented by the majority of books on ‘arms and armour’. Bearing in mind a distinction between techniques and technology, we shall reach the latter as soon as we study the more complex machines, for example the crossbow and its trigger-mechanism, the catapult artillery of the Chinese middle ages, and the methods of fortification and assault.

Our task of description is rendered more difficult by the fact that for China we know of nothing comparable, either in Chinese or a Western language, to the great work of Oman (1) on the history of the art of war, or that of Lot (1) for the armies and campaigns of the middle ages. Chinese military history is treated in a semi-popular book on the armies of Asia by von Pawlikowski-Cholewa (1), but it is superficial and compiled entirely from secondary occidental sources. An attempt was made by Werner (3) to deal with Chinese weapons, but partly perhaps because of the conditions under which it was written, it is not to be recommended save to those already well acquainted with the subject. From Lei Hai-Tsung (1) we have a study of the Chinese soldier throughout the centuries, and that is almost all.

Before going further into the realm of detail, it will be worth while to try to give a brief general outline of the history of military technique in the Chinese culture-area. When first we begin to be able to speak of armies, that is to say bodies of

a Vol. 4, pt 2, pp. 50ff.
b There is now of course the sixteen-volume history of wars and military campaigns in China, edited by Chen Thing-Yiian & Li Chen (1). For the history of modern warfare in China, see CKCTCS.

c Besides the many specialist works which will be mentioned in their places below, it may be worth while here to name some of the most important works which one must consult for parallels to the Chinese developments. The massive productions of the German school of military historians, Jahns (1, 2, 3); Delbrück (1); and Köhler (1), cover all Western Asia and Europe from the ancient civilisations onward. But for antiquity a more reliable and up-to-date companion is the monograph of Kromayer & Veith (1). It replaces the old but still interesting work of Rüstow & Köchly (1). On parallels in India see Chakravarti (1) and Date (1); in southeast Asia Quaritch Wales (3). For orientation on the rationale of warfare in general, the sinological historian of science will have need of the military theoreticians, a paradoxical tribe among whom it is not difficult to go astray. We have found the book of Wintringham (1) particularly helpful, but those of Fuller and Renn may be read with profit, as also Keegan (1).

d It is very regrettable that no one has attempted to give a series of coherent pictures of the armament of Chinese troops in successive ages, and its use. For the Chou period a great deal of work was done long ago by Plath (2) and Biot (19), but it stands in need of complete revision according to modern sinological knowledge. Two studies – Chou Wei (1) and Hayashi Minao (5) – of recent archaeological discoveries, the one in Chinese, the other in Japanese, show what can be done, and a great number of briefer specialised essays have appeared in the sinological journals. These will be discussed in the ‘Shock Weapons’ subsection of Vol. 3, part 8. Hirth (3), pp. 166ff., extended Plath (2) and Biot (19)’s analyses to a comparison of Chinese military techniques. To Granet (3), pp. 307ff., we are indebted for a much more satisfactory study of Chou warfare, built up from the innumerable descriptions in the Tao Chuan. Lan Yung-Wei (7) has updated his research with respect to infantry warfare in the Springs and Autumns period. Edward Shaughnessy of the University of Chicago is preparing a study of Western Chou warfare as seen in the bronze inscriptions and archaeological reports and its publication is eagerly awaited.
troops with recognisable organisation in the service of distinct States, we find that their most important feature was the chariot. The Shang and the Chou, down to the last third of the — 1st millennium, thus perpetuated in their chariot-fighting the methods which had been characteristic of the ancient Egyptian, Hittite, and Babylonian armies of an earlier age. Some have thought that this kind of conflict developed naturally from groups of chariot-riders hunting on the steppe or the edge of the desert, and warring with other groups which competed on the same territory. The Chinese chariot-fighting period shows some differences, however, from parallel periods in other cultures. Efficient equine harness developed there so early that the occupants of the chariot were never less than three, an archer standing to the left of the driver, and a lancer to the right. The former wielded a pair of composite reflex bows, and the latter was furnished with various long-hafted shock weapons for piercing or striking blows at the occupants of other chariots. Each man was of course also armed with swords, knives and daggers, first of bronze, eventually of iron. Their bodies were protected by light armour made from hide. The chariot forces, composed exclusively of members of the feudal nobility, were accompanied by infantry of mediocre importance, mostly grooms and servitors, yet later armed with weapons of the halberd type for attacking men mounted or in chariots.

Of the formations in which these armies marched something is known, for the banner of the South (the direction which princes and emperors must face) always flew in the van, and when encampment was made, it represented symbolically the presence of the parent city itself. Divination was widely practised, and theories of the sacrifice of prisoners to the gods, reminiscent of certain Central Amerindian practices, occasionally manifest themselves. Yet the dominant feature of the Chinese chariot-fighting period was a kind of chivalry not at all unlike that of the European Middle Ages, and sometimes pushed so far as to evoke the renunciatory paradoxes of the T’ai T’ieh Ching.

Naturally enough, one aspect of this was an inhibitory effect on technical development. The Tso Ch’uan has preserved for us a revealing story placed at — 574. On a certain day

Tang, the son of Phan Wang, together with Yang Yu-Chi, set up some cuirasses as a target and shot at them. They succeeded in piercing [no less than] seven at one time. Then

* E.g. Biot (18).
* Shaughnessy (1), however, argues that the Chinese chariot derives from Western prototypes.
* In later ages there was a great flourishing of plans for dispositions and formations (cf. SCC Vol. v. 8), but it never quite reached the fantastic heights attained by Indian and southeast Asian military writers. See Quaritch Wales (3), pp. 99, 159, 198ff.; Chakravarti (1), pp. 111ff.
* But against much opposition (cf. p. 55 below). In India the reliance on it seems to have been greater and the opposition less (Quaritch Wales (3), p. 25; Chakravarti (1), pp. 93ff.).
* Cf. Sect. 10a above; Vol. 2, pp. 36ff.
they went and told the prince of Chhu, saying 'With two officers like us, what can you, sir, have to fear in combat?' But the prince was angry and said 'You bring great shame upon the State. I foresee that tomorrow you will both perish [in battle] while shooting with the bow, victims to your art.'

Although apparently this did not happen, the skill of the two archers evidently went beyond the bounds of the feudal conception of fair play. We are not told in what devices their skill consisted; the point is that such improvements were often not encouraged.

Nevertheless a slow evolution took place, and we shall see in due course many changes, e.g. the introduction of steel swords, the spread of the crossbow and so on. During the technological unification of the whole Chinese culture-area one can even find an instance of what must be one of the most ancient technical military missions on record. In the -6th-century wars between the States of Chhu and Chin, a refugee from the former at the Chin court, Wu Chhên, suggested that he should be sent to the relatively uncivilised people of Wu in the south in order to train them in chariot-warfare and create a diversion in the rear of Chhu. This was done in -583 and the power of Chhu in due course considerably diminished.

Once the struggle for the hegemony, and ultimately for the empire itself, had got under way, however, all this gradually broke up. When absolute victory itself was sought, and not merely the accumulation of moral prestige as in a kind of joust between two feudal States, the limitations of chariots soon became apparent. The alternative of making some men archers and mounting them on horseback was borrowed from the nomadic tribes of the northern borders, and the size of the infantry component of the armies was greatly increased. At the same time the attack and defence of cities took on a new seriousness, with all that that implied for inventions such as catapult artillery, sapping and mining, the use of water and fire, mobile assault-towers, and the like. And correspondingly the Warring States period produced an important harvest of writers of Tactica. These points may be illustrated by a few quotations.

A story of -540 relates how the forces of the State of Chin gained an important victory over the mountain barbarians (shan jung).

8 Many parallels might come to mind from the end of the feudal period in Europe; for instance Christopher Trechler of Dresden invented in 1585 a form of machine-gun, but the emperor forbade its use (A. Rohde, pp. 20), not entirely, it must be said, on humanitarian grounds.
9 See SCC Vol. v. 8.
10 See pp. 135, 170 below.
11 See Tso Chuan, Duke Chhêng, 7th year (tr. Couvreur, vol. 2, p. 64); Shih Chi, chs. 31 and 29 (tr. Chavannes, vol. 4, pp. 5, 322). For the historical context of the event see Maspero (2), 2nd ed., pp. 281ff. We are indebted to Gen. S.B. Griffith for drawing our attention to it.
12 See Yates (3).
13 Tso Chuan, Duke Chao, 1st year, (tr. Couvreur, vol. 3, p. 28, eng. auct.).
Fig. 1. Horse-archers depicted on a Han relief, from Chavannes (11).
Hsün Wu’, the Lord of Mu, and commander of the centre host of Chin, destroyed the Wu-chung and a multitude of Ti [barbarians] at Ta-Yüan. This was done by augmenting the number of foot-soldiers. When the battle was about to be joined, Wei Shu said to him ‘These people fight on foot, and we from chariots. Here the terrain is full of obstacles. Now if we replace each chariot by ten armed foot-soldiers we shall certainly gain the day. Even if we have to fight among narrow rocky places we shall win. I propose that we use only foot-soldiers, and I myself will give the first example.’

The upshot was that beginning with the feudal dependants of Wei Shu the whole army dismounted, the commander-in-chief accepting the plan. But it was not done without opposition, for one of the favourite officers of Hsün Wu refused to abandon his chariot, and was beheaded by Wei Shu as an example to the others. At first the barbarians laughed at the new Chinese tactics, but the result was an overwhelming Chinese victory. Afterwards, throughout the Warring States period, the infantry arm was one of the factors to be reckoned with.

Even more important, however, was the adoption of the technique of horse-archery (Fig. 1) from the northern nomads. We are fairly well informed as to how this happened, or at least we have details of one focal point in the trend. In the State of Chao, which occupied much of modern Shansi and Hopei, and therefore bordered the northern marches, from −325 to −298 Wu Ling was reigning. In −307 he assembled his counsellors and said that he ‘proposed to introduce the clothing of the Hu barbarians and to train horse-archers’ (ch’un wu chiang Hu-fu, chi-shé). Thus a professional cavalry, formed to oppose the ‘natural’ cavalry of the steppe, was introduced into the Chinese military domain where it remained unchallenged down to modern times. The characteristic frontier tactics and strat-

With this conservative noble, remarks Granet, there fell not only the old order of feudal battle, but the whole conception of hereditary nobility with a specific military function. Parallels with the end of the European feudal Middle Ages are obvious.

Stih Chi, ch. 43, pp. 27bff. (tr. Chavannes (1), vol. 5, pp. 69ff.), parallel with Ch'an Kuo Tshê, ch. 19 (tr. Crump (1), pp. 296ff.). The reason for the change of clothing, which greatly shocked conservative Confucian susceptibilities, was to permit easier exercise and marksmanship on horseback. Han bas-reliefs, as in the famous pictures of the Battle on the Bridge in the Wu Liang tomb-shrine, show that traditionally the Chou warriors wore long robes when fighting. But now it was a matter of adopting trousers. See further in the monograph of Eberhard & Eberhard (1). It is likely that cavalry had, in fact, been introduced prior to King Wu Ling’s time, for the newly discovered Sun Pin’s Art of War, which dates from the last half of the −4th century, describes cavalry as though the Chinese were thoroughly accustomed to it (Yates (3); Yang Hung (7); Goodrich (2). The introduction of the long sword and scabbard slide in Warring States times also suggests that cavalry warfare had begun (Trousdale (1)).

Lattimore (1), pp. 61, 64, 387ff.

d The mounted archer, says Lattimore, destroyed the old feudal nobility of China, just as the English longbow defeated the chivalry of France. It is interesting to consider also Indian parallels. Hopkins (1), in a classical paper, described the military technique of the Sanskrit epics, which may perhaps be regarded as roughly comparable with that of the Warring States. In the chariot period the bow (not the crossbow) was important, but shock weapons no less so, and metal armour was worn by the nobles. But it is quite clear from Chakravarti (1), pp. 22ff. and other writers, that in India the chariot gave place, not to horse-archers but to elephants, used as primitive and rather vulnerable tanks. The cavalry arm grew in importance from the +1st century onwards, but it never displaced reliance on elephants, and the victories of Maḥmūd of Ghaznah (c. +1000) and Muḥammad Ghūrī (c. +1200) were all victories of horse-archers. Code (1) brings further documentation to this thesis.

1 荀休 2 魏舒 3 武靈 4 胡 5 今吾將胡服騎射
egy of the Han period was thus laid down well before the end of the Chou. We hear, for instance, of a famous Chao general, Li Mu', who scattered forts and signal towers all over the border regions with flying columns of mounted archers in readiness to harry the incursions of the nomads.* But again there was at first opposition, and the king of Chao needed all the support he obtained from his counsellors Lou Huan² and the veteran Fei I³.

By the time of the early Han period the technique of arms had reached a rather high level. The chief improvement was the introduction and universal use of the crossbow which, if not of very rapid fire-power, was much more accurate and shot a more deadly bolt than any projectile weapon which opposed it. The bronze trigger-mechanisms of these crossbows, masterpieces of casting metallurgy, will demand our close attention later on. Combined in large sizes with three spring components each, they provided effective artillery weapons for stationary warfare around fortified sites. All the poliorcetic developments of the Warring States period were now brought to a level of perfection not much exceeded afterwards. We have already seen how (as an example) Li Kuang-Lii in −101 employed hydraulic engineers to sap the walls of a Central Asian city.⁵

Another wave of developments took place during the San Kuo period. The name of the Shu general Chu-ko Liang became attached not only to an invention of great importance with respect to military supplies, namely the wheelbarrow,⁶ which could also be used to form laagers, but to crossbow-catapults which fired a number of arrows at once, and to repeating or magazine-crossbows. Crossbow-catapults had, in fact, been developed in the late Warring States and Chhin periods four hundred years earlier,⁷ but their attribution to Chu-ko Liang suggests that they became more common in the arsenals of the late Han and San Kuo periods. These we shall examine presently. At this time, too, there was a perceptible improvement in the use of incendiary materials, both on land and in naval combat, as the Battle of the Red Cliff⁸ witnesses, and the stirrup gradually came to be adopted, revolutionising cavalry warfare. Metal armour had been in use since the end of the Warring States period. During the time of the Six Dynasties there was seemingly little change, but the Northern Wei and the Sui participated in one development of considerable interest, namely the wearing of uniforms with distinctive colours, permitting the easy recognition in battle of the men of one's own side. Recent archaeological discoveries and textual data suggest that this development may have started as early as the −5th century, though it may not have been adopted by all armies in the field. At an earlier stage we saw one instance of this practice, the campaign of +589 which ended with the destruction

* Biography in Shih Chi, ch. 81, p. 10ff.
* Cf. Sect. 27c above; Vol. 4, pt 2, pp. 258ff.
* Vol. 1, p. 234.
* Yates (3)
of the Chhên dynasty. During the Thang there was still little new, but in the obscure laboratories of Taoist temples an embryo of the future was developing, for alchemists were experimenting with mixtures similar to, but not yet exactly, that which was to bring about so many consequences. Indeed the chemical arm was strangely mobilised, for by the end of the dynasty flamethrowers embodying double-acting pumps for projecting naphtha had been perfected, and it was indeed in connection with these that gunpowder found its first employment in war about the beginning of the +10th century.

And now the crossbow, and crossbow-catapult or arcuballista, projectile-phase blended without a sharp transition into the gunpowder projectile-phase. The +11th and +12th centuries saw a great variety of devices introduced during the fighting between Sung and Liao, and Sung and Chin. After the rise of the Yüan this wave of inventions continued, though with diminishing force, until the beginning of the Ming, during which period there was a systematisation of all the earlier techniques by the time of arrival of the new stir from Europe.

At the conclusion of this section we shall have something to say about the comparison between Chinese and European military history. Military theoreticians have found it possible to make a distinction between periods when the main emphasis is on the shock of troops in hand-to-hand fighting, and other periods when the main emphasis is on the throwing of a cloud of projectile weapons. It appears that the former have been associated with great elaborations of defensive body-armour while the latter have tended to do without it. In armoured or shock periods reliance is placed on massed advance (or maintenance of prepared positions) and the hope of the individual soldier is that the armour will protect him while his weapons will injure others. In unarmoured or projectile periods dependence is placed on mobility and fire-power, while the hope of the individual soldier is that the projectiles he fires will hit others but that he will be able to avoid those fired by them. It seems rather doubtful whether the military techniques of China passed through these phases in anything like the extreme forms which they took in other civilisations. Neither the heavily armed Greek hoplite nor the Roman legionary ever had any counterparts in Chinese armies. In China the distinctions are more difficult to make. Chinese soldiers were primarily archers, and mounted more often than on foot, yet the time frequently came for hand-to-hand fighting, as in attacks on camps or sieges of cities, and then it was duly carried out. It can hardly have been a coincidence that when a new propulsive force was discovered astonishingly more powerful than the bent springs of bows, it was in China that it received all the most brilliant adaptations of its youth, and there that it reached such maturity as to spread rapidly over the rest of the civilised world.

* See Vol. I, p. 122 above. This development occurred much later in Europe; it was one of the innovations of the New Model Army in the English Civil War of the +17th century.

* Cf. Connolly (i).
(b) CHINESE LITERATURE ON THE ART OF WAR

(1) THE MILITARY THEORETICIANS

The abstract consideration of tactics and strategy must at all times have been a subject of intense interest to rulers, and no civilisation has more, or older, texts to show concerning it than that of China. They need not, it is true, long detain us, for their content is social rather than technological, yet they constitute a remarkable series of practical treatises. However, there are also traditions which predate the written word.

Folklore held that the beginnings of the art of war dated from the time of the mythical founder of the Chinese Empire, Huang Ti (the Yellow Emperor). He was said to have been the first to introduce military battle formations, drill and exercises for soldiers in preparation for battle; his assistants were said to have introduced bows and arrows and the drum, which, in wars of antiquity, played a role of practical importance, giving the signal for attack, as well as having an important ritual role. Legend held that Huang Ti used specially trained wild animals in battle—bears, tigers, panthers and other beasts of prey—but since such methods of fighting are unknown to historical sources, quite early writers suggested that in point of fact these animal names referred to the titles of military units; possibly skins of those animals were worn and their effigies figured on warriors’ weapons and armour. Of course it must also be remembered that such skins and effigies might well have carried some magical significance, terrified the enemy and, at the same time, strengthened the battle morale of the troops themselves. Indeed such effigies figuring on armour, weapons, etc., lasted on as one of China’s military traditions down to the twentieth century, while the names hu (tiger) and phi-hu (tigers and panthers) were always synonyms of brave soldiers.

* In Europe also there were some connections between the development of theories of action and military experience, i.e. the art of struggle.
* Shih Chi, ch. 1, p. 3; Shih Pen, (“Tso phien” (1)), (p. 5); Thai Phong Yu Lan, ch. 79, sect. 3, p. 474b; cf. Hsia Tseng-Yu (1), pp. 13-4.
* For example, smearing the drum with the blood of prisoners offered in sacrifice after the battle was an important ritual of war. See Kierman (2), p. 45. Cf. Chuen Han Shu, ch. 1, part 1, pp. 10-11; Biot (1), vol. 1, p. 265.
* See Shih Chi, ch. 1, p. 3.
* Kuo Pho (1) (+276 to +324), was the first to suggest such an interpretation. See his commentary to Shih Chi, ch. 1, p. 5. Subsequently, this interpretation was developed, using the explanation that it concerned totemistic clans which claimed animal ancestry and used animal symbols (Fan Wen-Lan (1), p. 90; cf. Vyatkin (1), p. 295). Archaeological digs have proved that effigies of animal heads frequently figured on weapons and on the armour of warriors in the Shang period (i.e. on breastplates, shields, helmets, and weapons), Yang Hung (3), p. 84; (2), p. 80; (1), pp. 9-11; Li Fu-Hua (1). In the South, special battle masks in the guise of animal heads were worn (Eberhardt (27), p. 372). It may be supposed that these were the customs which the myth reflected. Cf. J. Soustelle (2), p. 43, figs. 7, 8, on the role of the eagle and jaguar knights in the Aztec civilisation.
* At the beginning of the 20th century, on the old fortresses, dragons and false shooting windows for artillery were sometimes painted (Janchevitski (1), p. 299). During World War II for example, aeroplanes on the Chinese side were painted in the semblance of wild beasts, e.g. the ‘Flying Tigers’.
There was also a legend that Chhih Yu, leader of the southern peoples and Huang Ti's opponent, began the fabrication of various types of metal weapons. In fact it was he who was worshipped as the deity of War in the closing centuries of the -1st millennium. In the battle of Cho Lu Mountain, especially famous in Chinese mythology, an attack with fire and water was launched at the enemy, a method which also became one of the traditional Chinese ways of waging war. Both opponents are said to have practised witchcraft and called the forces of Nature (the Five Elements) to their assistance, and in late antiquity this was recognised as a constant, permanent element of war.

Obviously, such myths and legends cannot be viewed as historical sources of information, but they do provide a certain introduction to ancient ideas on methods of waging war, on the art of war, and on elements of war most important to the Chinese. And of course the fundamental point to which these legends bear witness is that the classical Chinese art of war was of pre-State origin, that it was first recognised as a constant, permanent element of war. The first works on the art of war were attributed to the mythological figures mentioned above; unquestionably, however, they are apocryphal. The interesting Yin Fu Ching (Harmony of the Seen and the Unseen) enjoyed considerable esteem; it was traditionally attributed to Huang Ti, but in all probability it dates from the +6th or +7th century.

Tradition held, too, that Huang Ti's assistant Feng Hou was the author of...
the highly regarded Wo Chi Ching\(^1\) (Grasping Opportunities Manual).\(^a\) The text which has come down to us is probably a much later one, and may be as late as the beginning of our era.\(^b\) Many treatises attributed to the legendary period, and mentioned in the Chhien Han Shu bibliography, have long been lost.\(^c\) The deep-rooted conviction of the existence of ancient military treatises of earlier origin than those known to us is confirmed by references to them in ancient books, and also by quotations from them, which exist in works which have been preserved. For example, from the Tso Chuan we know about the Chiin Chih\(^3\) (Army Management) as a once highly esteemed military handbook,\(^d\) although the existence of another work entitled Chiin Chêng\(^3\) (Military Administration) raises a problem.\(^e\)

The earliest real names which have come down to us are of the – 7\(^{th}\) century, Hu Yen\(^4\) of Chin, and Wang-tzu Chhêng-Fu\(^5\) of Chhi, men who ‘developed and threw light on the principles of war’ (shên ming chîn yo\(^6\)).\(^f\) But the first writer whose works have been preserved was Sun Wu\(^7\), whose Sun Tzu Ping Fa\(^8\) (Master Sun’s Art of War), though written in the full chariot-fighting age, is still today given the

\(^{\text{a}}\) The second character of the title is often replaced with Chhi\(^7\), which carries a similar but narrower significance – an indirect attack or an attack by ruse.
\(^{\text{b}}\) Cf. Liang Chhi-Chhao (6), p. 74. It may even be Liu Sung.
\(^{\text{c}}\) Chhîh Yu, erh phien\(^8\), Huang Ti, shih liu phien\(^9\), are mentioned there, as well as several other treatises attributed to Huang Ti’s officials; Chhien Han Shu, ch. 30, pp. 1758–9, cf. Yates (7).
\(^{\text{d}}\) Tso Chuan, Duke Hsi 28\(^{\text{th}}\) year, Duke Hsuan 12\(^{\text{th}}\) year, Duke Chao 21\(^{\text{st}}\) year (Legge (11), pp. 209, 319, 685).
\(^{\text{e}}\) According to Creel these two characters appeared several times in Tso Chuan but do not constitute a title (Creel (7), p. 288). In Sun Tzu however they are used as a book name (see Sun Tzu Ping Fa, ch. 7, Kuo Hua Jo (7), p. 117).
\(^{\text{f}}\) Such are the words of the Shih Chi, ch. 25, p. 2a. They are contained in that introduction to the chapter on the musical tubes (standard pitch-pipes) of which so much has already been said in Sect. 26h. And as we saw in Sect. 18e, this introduction seems to be part of a lost treatise on military affairs (Ping Shu\(^10\)), which may have been written by Ssu-ma Chhien himself (cf. Chavannes (2), vol. 1, pp. ccf., vol. 3, pp. 293ff.). In ancient China music was considered as closely related to war. The Five Pitches corresponding to the Five Elements were used for defeating the enemy in a semi-magical way by their supposed influences on the chhi\(^13\) of both armies. See Liu Thao, ch. 3, sect. 11, pp. 275–7. Here, as in the next three subsections, the edition Chheng-K’o Ping Hsiêh Ta Hsi\(^14\) (CKPHTH) was used, composed by Li Yu Jih (2). It contains the most important Chinese military texts. The Liu Thao\(^15\) was also known as the Thâi Kung Liu Thao\(^16\). The exact date of this text and its history still remain in some doubt. Haloun (5) notes that it was closely related to military manuals called Tha-kung’s Art of War (Thai Kung Ping Fa\(^17\)) and may have separated from the latter some time in the +2nd century or after. A manuscript of the Liu Thao was found at Tun Huang, dating from the early Thang, now held by the Bibliothèque Nationale, Paris, as Pelliot: MS # P4502, but it lacks a title, and so cannot be used to verify the name of the text. Fragments of the extant text and passages attributed to the Liu Thao in later compendia were found in the Western Han tomb at Lin-I, Shantung, in 1972 and so at least these fragments must be of Warring States, Chhin or early Han date (see Yin-Chhiieh-Shan Han-Mu Chu-Chien Chêng-Li Hsiao Tsu (6), pp. 91–102 (Mo-pên) and pp. 107–26 (Shih-wên); Wu Chhiu-lang (7); cf. Volker Strätz (8), pp. 3–32).
highest regard in military circles, both occidental and Asian. Modern criticism accepts him as a quite historical figure, a contemporary of Confucius, and an officer, perhaps a general, of the State of Wu, then ruled by Ho Lu, who died in -496. He doubtless served in the victorious campaign against the Chhu State, but already foresaw that the chief danger to Wu would come, as it did, from Yüeh. The following quotation gives some idea of the quality of the work.

To lift an autumn hair is no sign of great strength, to see the sun and moon is no sign of sharp sight, to hear the noise of thunder is no sign of a quick ear. What the ancients called a clever fighter is one who not only wins, but excels in winning with ease. Hence his victories bring him neither reputation for wisdom nor credit for courage. He wins his battles by making no mistakes. [Now] making no mistakes is what establishes the certainty of victory, for it means conquering an enemy who is already defeated. Hence the skilful fighter puts himself into a position which makes defeat impossible, and does not miss the moment for defeating the enemy.

Thus it is that in war the victorious strategist seeks battle only after the victory has been won, whereas he who is destined to defeat fights first, and afterwards looks for victory. The consummate leader cultivates the Tao and strictly adheres to method and discipline; thus it is in his power to control success. In respect of military method we have, first Measurement, secondly Estimation of Quantity, thirdly Calculation, fourthly Balancing of Chances, and fifthly Victory.

Here we may see certain connections between military command and the growth of the scientific mentality. Accurate factual knowledge and cool-headed calculation are not far estranged from the scientific view of the world. To be able to find out the facts of the situation, and still more, to be able to look them in the face, without self-deception, when found; to know how to avoid all vagueness,
to argue on the basis of concrete figures, whether of geographical distances or strengths of units in numbers; to raise and maintain as high efficiency as possible in the communication services; and then at the end to be able to guess right when the imponderables and the unknowns are assessed – such must have been some of the qualities of great commanders at all periods of history, in China as elsewhere. We may recognise them as among the factors leading towards rationality and objectivity in the approach to Nature and to man, circumscribed, though no doubt they always were, by the essential irrationality of war itself.

Another aspect of rationalism appears in Sun Tzu, namely the opposition to divination and soothsaying. His book is completely free from any reliance on 'supernatural' aid; 'Let the taking of omens' he says 'be prohibited, and do away with superstitious doubts. Then, till death itself comes, no calamity may be feared. [Chin hsiang, chhü i chih ssu uu sono isai]. And this is echoed in several of the other ancient Chinese Tactica. Of course, the writers of this ancient period probably made an exception for the divination procedures of the State itself, but thus to restrict them was relatively enlightened.

We may allow ourselves one more quotation from Sun Tzu's book.

Sun Tzu said: 'In war, a general receives his commands from the sovereign. Having collected an army and concentrated his forces, he must blend and harmonise the different elements thereof before pitching his camp. After that comes tactical manoeuvring, than which nothing is more difficult.

The reason for this is that it is so hard to turn the devious into the direct, and misfortune into gain. Thus to take a long and circuitous route, after enticing the enemy out of the way, and though starting after him to contrive to reach the goal before him, shows knowledge of the artifice of deviation.

Manoeuvring with an army is advantageous, but with an undisciplined multitude most dangerous. If you set a fully-equipped army to march, in order to snatch an advantage, the chances are that you will be too late. On the other hand, to detach a flying column for the purpose involves the sacrifice of its baggage and stores. Thus, if you order your men to roll up their buff-coats, and make forced marches without halting day or night, covering double the usual distance at a stretch, going a hundred li in order to wrest an advantage – the leaders of all your three divisions will fall into the hands of the enemy. The stronger men will be in front, the tired ones will fall behind, and on this plan only one-tenth of your army will reach its destination. If you march fifty li in order to outmanoeuvre the enemy, you will lose the leader of your first division, and only half your force will reach the goal. If you march thirty li with the same objective, two-thirds of your army will arrive. We may

* Ch. 11, tr. Giles (11), p. 126.
* For example, the _Sun Lao_, ch. 2, p. 1b p. 352, forbids recourse to _wu_ and diviners in the army, as does the _Mo Tzu_ (Yates (4), p. 583), but in both cases the control of divination is apparently to be held by the officers in command. They did indeed take the auspices, but did not let unauthorised use of divination by their juniors or oracular specialists disturb the army's morale. The _Yin-Yang_ military specialists, however, probably developed divination in military affairs to a high art even before the end of the Warring States period and their practices held an important place in almost all later military encyclopaedias (Yates (7), pp. 233–7). So also _Su-ma Fa_, ch. 3, _Wales_ (3), p. 25, see a great contrast here between Chinese and Indian practice in ancient times. Indian commanders had to take omens at every step.

take it then that an army without its baggage-train is lost; without provisions it is lost; without bases of supply it is lost [...]. Ponder and deliberate before you make any move. He will conquer who has learnt the artifice of deviation. Such is the art of manoeuvring,'

The Book of Army Management [Chün Chêng] says: 'On the field of battle, the spoken word does not carry far enough; hence the institution of gongs and drums. Nor can ordinary objects be seen clearly enough; hence the institution of banners and flags.'

'Gongs and drums, banners and flags, are means whereby the ears and eyes of the host may be focussed on one particular point. The host thus forming a single united body, it is impossible either for the brave to advance alone, or for the cowardly to retreat alone. This is the art of handling large masses of men [...].

Disciplined and calm, to await the appearance of disorder and hubbub amongst the enemy – this is the art of retaining self-possession. To be near the goal while the enemy is still far from it, to wait at ease while the enemy is toiling and struggling, to be well-fed while the enemy is famished – this is the art of husbanding one's strength. To refrain from intercepting an enemy whose banners are in perfect order, to refrain from attacking an army drawn up in calm and confident array – this is the art of studying circumstances.

It is a military axiom not to advance uphill against the enemy, nor to oppose him when he comes downhill.

Do not pursue an enemy who simulates flight. Do not attack soldiers whose temper is keen. Do not swallow a bait offered by the enemy. Do not interfere with an army which is returning home. When you surround an army, leave an outlet free. Do not press a desperate foe too hard.

Such is the art of warfare.'

Sun Wu was fond of classifying the factors which were to be reckoned with. Thus in the first chapter he distinguishes five constant factors (ching) in war, morale (Tao), climactic and terrestrial conditions (thien li), the nature of the commander (chiang), and method and discipline (fa). In the tenth he describes six types of terrain, in the eleventh nine kinds of tactical situations, and in the thirteenth five varieties of intelligence agents (hsien). A similar division is used in the only chapter of any technological interest (ch. 12) on attack by fire (huo kung); where we learn that incendiary methods may be used against soldiers encamped, or against stores, baggage-trains and arsenals, the fifth is '(to hurl) dropping fire [huo chui] amongst the enemy'. This certainly means incendiary arrows. But no details are given, and the discussion mainly envisages grass-fires set in dry seasons. In fact most of the extant ancient and mediaeval theoretical books lack technical interest; there are occasional references to chariots, covered mobile tanks (fén yun) and rams for attacking city gates and the walls of cities; and notably the crossbow and its trigger, but nothing much about the weapons in use and their
relative merits. Of the numerous treatises of a technological nature mentioned in the *Han Shu* bibliography, only the *Mo Tzu* survives.

Yet the *Sun Tzu Ping Fa* is recognised, quite correctly, as the basic text of the classical Chinese theory of war. It determined the fundamental principles of Chinese warfare for whole millennia, and no later writer ever succeeded in approaching the level represented by this treatise. One of the Chinese scholars studying the subject is probably right in affirming that up to the present no work in world literature on war can compare with this treatise. Comparing it with military thought in Ancient Europe, E. A. Razin wrote:

... a Chinese theoretician, in times of antiquity, analysed the most important elements determining the conduct of war, demonstrated the contradictions inherent in the nature of war, and formulated laws which govern the waging of war. European military theoreticians of antiquity never even considered setting themselves such a task.

Although a certain convergence can be found in the approach to some specific questions by Sun Tzu and Vegetius (+4th century), their works are not really comparable. It should be noted, however, that in the West, as in China, large numbers of ancient works have been lost, and our opinions can be based only on those texts which have been preserved. Nevertheless, in modern Europe it would be a difficult proposition to find a single military theoretician who could compare with Sun Tzu. This is what Liddell-Hart had to say on the subject:

Among all the military thinkers of the past, only Clausewitz is comparable, and even he is more 'dated' than Sun Tzu, and in part antiquated, although he was writing more than two thousand years later. Sun Tzu has clearer vision, more profound insight, and an eternal freshness.

Ever since the Sung period, there have been heated discussions about the authorship and date of origin of the *Sun Tzu Ping Fa*. The most comprehensive commentary on the doubts raised in China is due to Chhi Ssu·Ho (*4*). These can be reduced to the following questions: In the *Tso Chuan*, which describes the war with the State of Chhu in detail, and in which Sun Wu is said to have participated (according to the *Shih Chi* biographical note), there is no mention of such a commander or of his strategy. Neither is there any mention of him in the *Shih Chi* chapters which describe those events. The biographical note itself provides very scant information; in fact, it only describes one colourful incident in his life (but
this has no connection with the subject of the treatise). Hence the doubts as to
whether Sun Wu actually existed. In many respects, the ambience of the treatise
seems to correspond to the concepts and circumstances of the Warring States,
rather than the Springs and Autumn period. Wars waged by massive armies over
long periods of time, during which cities were besieged, belonged to the time when
such terms as *pa wang*¹ ('hegemon') for example, were used, and when the con­
cepts of the Legalists were first introduced, as well as the idea of continuous strife
between the Five Elements. It should also be stressed that treatises which ex­
pounded the author's personal views and opinions came late too; to begin with,
only the views and statements of other long-deceased figures were recorded in such
works. Of course no schools of philosophy, nor specialist treatises, existed in the
Springs and Autumn period.

It has also quite frequently been contended that this treatise was written by Sun
Pin² (−4th century), allegedly a descendant of Sun Wu. It was to him that the
abbreviation Sun Tzu applied in discussions on military matters (Chhi Ssu-Ho
⁴, p. 179). But since the text which has come down to us was edited by Tshao
Tshao³, it was not clear to what extent it had been modified by him.

Many of these doubts were not founded on sufficiently firm ground. For exam­
ple, the military concepts advanced in the treatise might well date from the end of
the Springs and Autumn period, particularly since they originated in the South
(outside of the ancient States of the Central Plain) where traditions of aristocratic
wars were far less deeply rooted. Tsun Hsin⁴ was quite right in indicating that the
fundamental ideas advanced in the treatise, such as fear of prolonged war and
sieges of cities, related to earlier times, whereas works from the Warring States
period showed a different approach to such questions.⁸ Many remarks on termi­
nology lose their significance if the possibility is admitted that changes were intro­
duced during the subsequent editing. Supposing it had been intended to attribute
a later text artificially to some earlier personality, it may be assumed that in all
probability some well-known historical figure would have been selected; the fact
that so little is known of the author would rather seem to confirm the authenticity
of the text. Chang Chhi-Yün (⁴) advanced one of the most original hypotheses on
the subject, affirming that, at first, Sun Wu was the title of a work on the art of war
preserved in the Sun family, and that it only began to be considered a name at a
later date. He identified this family ancestor with Wu Tzu-Hsü⁵. This conten­
tion, however, is undermined by the fact that Sun Wu is actually mentioned in
some other ancient works.

However, archaeological finds of the seventies settled many earlier doubts, con­
firmed the authenticity of the text known to us, and tended to reaffirm the reliabil­

¹ See Anon. (210), pp. 131–2.
³ 翰林
⁴ 孫臏
⁵ 曹操
⁶ 孫信
⁷ 伍子胥

ity of the traditional version. In 1972, a large number of inscribed bamboo slips were found in two graves of the Han Period (dating from between -136 and -118) situated on a height known as Yin-Chhueh-Shan¹ (Silver Sparrows Mountain) near the little town of Lin-I² in Shantung Province. The slips in question constituted volumes dealing with military matters. Found among them was the almost complete text of the Sun Wu treatise, the Sun Pin treatise which had become lost in antiquity, fragments of texts relating to Sun Wu, describing his conversations with Ho Lu and his activity at Court, and also certain hitherto unknown fragments and chapters connected with the *Sun Tzu Ping Fa.*

In 1978, a number of inscribed wooden slips were found in a grave dating from the end of the Early Han Period, situated near Shang-Sun-Chia-Chai³ village in Chhinghai Province. These contained fragments of the *Sun Tzu Ping Fa,* and also one unknown chapter and documents dealing with military matters.⁴ They confirmed that although it was customary at the time to speak of thirteen chapters of the *Sun Tzu,* other *Sun Tzu* writings also existed. The two early texts found differ from each other. Though it could not be said with absolute certainty whether Sun Tzu was their author or whether they were written by his pupils, certain information from different fragments makes it clear that some at least of those texts must have been written in the State of Wu, not later than the -5th century. The Shantung text, though relatively comprehensive (it comprises twelve of the thirteen chapters of the treatise as we know it), contains many gaps because parts have been lost. As regards volume, it represents only one-third of the known version, but does not differ from it in any fundamental manner, though in all well over a hundred variations have been noted.

On the strength of all these finds, it can be affirmed that some of Sun Tzu's writings were lost. It is possible that different versions may have existed in antiquity; at present several are known.

If Sun Wu's authorship is accepted, and there is no reason why it should not be, then it must be appreciated that not only is the book *Sun Tzu Ping Fa* a unique masterpiece of military thinking, but also quite a revolutionary development. In contrast with the Springs and Autumns period (-722 to -480), when wars were waged by the aristocracy in accordance with the rules and requirements of

¹ See Anon. (219), as also Anon. (219), together with Hsü Ti (r) and Lo Fu-I (3).
² See Anon. (229) and (230), together with Chu Kuo-Chao (r).
³ The sequence order of two chapters has been reversed, in two cases the sequence of characters in chapter headings has been changed, also some characters have been replaced by others. Nevertheless, the text contains lost fragments which deal with local affairs and so were subsequently omitted, or provides a more comprehensive explanation of some concept; moreover a thesis is occasionally expounded in a somewhat different manner. Sometimes the old text is more accurate, but on some occasions it is shorter.
⁴ Other fragments found confirm Sun Wu's biography as presented by Ssu-ma Chhien, and add further details. See Chiang Hung (r) and Chêng Liang-Shu (r), pp. 47ff. Some of the material, notably the chapter given the title *'A Visit to King Wu'* ('Chien Wu Wang'),⁴ is similar to the biography of Sun Wu that appears in the *Shih Chi* (Kuo Hua-Jo (2), pp. 584-5).

¹ 山雀山 ² 即今 ³ 隅孫家業 ⁴ 見武王
chivalry, Sun Wu rejected every restriction imposed by custom and morals, recommending that military operations should be based solely on the principle of maximum gain. Obviously this principle excluded wars waged for reasons of prestige, or because of personal animosities between princes, or for other reasons of that kind.

Moreover, as we have already noted, contrary to the ancient traditional magico-religious attitude to war, with its consultation of omens and oracles before any decision could be made, and its magical and religious rituals practised to assure success in conflict, Sun Wu admits exclusively of that kind. Any decision could be made, and its magical and religious rituals practised to maximum gain. Obviously this principle excluded wars waged for reasons of actions, contending that the outcome of war depends solely on its appropriate planning and efficient conduct. His treatise expounds the principles of the art of war understood in this way. Reading between the lines of his text one can sense a close affinity with the Taoists and the Legalists, as also looser ties with the Yin-Yang Chia of the Naturalists and the schools of the Confucians.

By the -3rd century, the time of Han Fei (d. -233), both these works had become extremely popular. We know this from a passage in the Han Fei Tzu book which goes as follows:

Everybody in the State discusses strategy and military affairs; every household has a copy of the Sun Tzu Ping Fa and of the Wu Tzu Ping Fa — yet the army grows constantly weaker and weaker. This is because many people talk about war, but very few are prepared to buckle on armour.

Therefore an enlightened ruler makes use of men’s strength but does not heed their words, rewarding accomplishments but prohibiting useless activities. Then the people will be willing to exert themselves to the point of death in the service of their sovereign.

This throws an interesting sidelight on the perennial interest of the mass of the people in military matters, an interest which, as we shall see (pp. 80ff. below) persisted for centuries, in spite of all that the civilian bureaucracy did to exalt the civil ethos and to depress the military one.

After the Sun Tzu Ping Fa came other books of the Chou period, some of which

a The most popular version of the Sun Tzu treatise, which was included in the Northern Sung Wu Ching Chi Shu, differs from several versions based on the Southern Sung Sun Tzu Shih-I Chia Chu. Minor differences and alterations appear in different editions and publications of the text. All the ten editions of the treatise known are reviewed and discussed in detail by Yang Ping-An (1). The earliest of those preserved is the wood-block edition of the latter work now reproduced in facsimile with a preface by Kuo Hua: Jo (2). A Tangut translation of the work printed in the first half of the +12th century is preserved in the Western Institute Library in Leningrad, but its first page is in the British Museum; Grinstead (1). According to Keping (2) the translation was made from an unknown variant of the treatise which differed from all others. Indeed, differences exist both in the actual text and in the comments to it. It is fairly obvious, therefore, that this was not the lost Sung text which Giles mentioned, (3). p. xxxi, and which provided the foundation for many Chinese versions. It should be added that differences between the various versions are not very great; as a rule they are connected with the editing, and generally speaking, do not alter the meaning of Sun Wu’s statements. The differences between the ancient variants mentioned above are more important.

b On all these see Vol. 2, pp. 329ff., 429ff., 532ff., and 59ff. respectively.

survive while more have been lost. Among those that have survived is the second highly renowned treatise, the *Wu Tzu Ping Fa* (Master Wu's Art of War), rated second only to Sun Wu's text. Indeed, from antiquity, the classical theory of the art of war was defined in China as *Sun Wu Ping Fa* (Sun's and Wu's Art of War). The text originates from that extremely colourful figure Wu Chhi, who died in -381. Wu Chhi was a member of the Tso family in the State of Wei, whose teachers were Tseng Tzu and Tzu-Hsia, both pupils of Confucius. He was a famous military commander in the States of Lu, Wei and Chhu, where he was assassinated after carrying out radical reforms. The treatise dates from his period in the service of Wei; in all probability, in accordance with custom, it was written by one of his pupils. His views on many questions differ from those advanced by Sun Tzu, for he is much closer to the Ju Chia (Confucian School).

The two treatises just mentioned provided the foundation for the *Wu Ching Chi Shu* (Seven Ancient Military Classics), which acquired its final shape during the Sung Period, in Shen Tsung's reign, that is between +1078 and 1085. This military septuagint included other works then recognised as basic, such as a treatise by Phang Hsuan. But there were other pre-Han books on military matters, including the *Su-ma Fa* (The Marshal's Art of War), though this is not as old as Su-ma Jang-Chü of Chhi (-6th century) to whom it was traditionally attributed. Another was the *Liu Thao* (The Six Quivers) supposedly written by Thai-kung Wang, the great adviser to the founders of the Chou Dynasty, but in actual fact

Notes:

1. The two names were already joined together in antique texts, e.g. in *Lu Shih Chhun Chhiu*, ch. 19, sect. 3 ('Kao 1'), p. 241. Among translations of this text, two should be mentioned: Griffith (1), pp. 150-68 and Konrad (2).

2. His biography is given by Su-ma Chhien, *Shih Chi*, ch. 65, pp. 2165-9. In an essay on Wu Tzu, Kuo Mo-Jo reviews various items of information about him, (4), pp. 202-30. For example, he suggests that Wu Chhi was the author of the *Tso Chuan*. See also Ch. Goodrich (2).

3. Various views and opinions have been expressed on the subject of its authenticity. Kuo Mo-Jo believed that the preserved text is not authentic and that, in all probability, it was written in the middle of the Early Han period. He also admitted the possibility that it might be the altered and expanded text of another ancient treatise by Wu Chhi, mentioned in the *Chhien Han Shu* bibliography among miscellaneous works, *Tso Chia*, (4), p. 207. (See also Chang Hsin-Chêng (1), vol. ii, pp. 943-4). Hu Ying-Lin believed the treatise to be authentic and to have been written by one of Wu Chhi's pupils in the State of Wei, because it contains information relating to that period of his life only, (2), pp. 18-19. Sun I-Chih, on the contrary, believes that the text contains Wu Chhi's statements from his period of service in the State of Chhu, (1), p. 20. Matters are made still more complicated by differences which exist in preserved bibliographic descriptions. In the *Chhien Han Shu* it is said that the Wu Chhi treatise has forty-eight chapters, whereas in the *Su Shu* there is mention of one chapter only, in the *Sung Shih* of three. The present text known to us comprises an introduction and six parts, and even here certain differences exist between the preserved variants.

4. Fragments from this were early incorporated in the *Ho Kuan Tzu* book. See Haloun (5), p. 88.

5. Occasionally this work was attributed to Thai-kung Wang, while Su-ma Jang-Chü was supposed only to have edited it. It was also alleged that the present text is not authentic, dating only from the +5th or +6th century. Cf. Chang Hsin-Chêng (1), vol. ii, pp. 943-50; Sun I-Chih (1), p. 19.
it probably dates from the -4th century. Then there was the *Wei Liao Tzu*: (Book of Master Wei Liao); this was attributed to Wei Liao, the dignitary of the State of Wei in the reign of Hui Wang (−335 to −319), though it could also have been written by a man of the same name who served as an army commander before the King of Chhin proclaimed himself Emperor. For centuries this book was believed to date from a late period, but archaeological discoveries have now confirmed its authenticity. The *San Liu* (Three Stratagems) though attributed to Huang Shih Kung of the Chhin (−3rd century), was probably written much later, in the +5th or +6th century. Finally the *Li Wei Kung Wen Tui*, is the last work of this Canon; though taking the popular form of a dialogue between the Thang Emperor Thai Tsung and his famous general Li Ching, (+571 to +649), and certainly written by an expert hand, it is actually of later date. Indeed it is possible that this text dates from the +10th or +11th century, and it closed the list of works which soldiers seeking promotion during the Sung period had to study.

*Beginning with the Sung period, this book was usually considered non-authentic, dating from the Han or even from between the +4th and +6th centuries. Despite the discovery of some parts of it at the Han dynasty site at Lin-l, there remain doubts about the dating of the work as a whole. Cf. Hsu Ti (1), pp. 29−30; Lo Fu-I (3), p. 33; Chang Hsin-Chêng (1), vol. ii, pp. 933−8. Ancient legends relating to Thai-kung Wang have been analysed by Sarah Allan (see Allan & Cohen (1), pp. 37−99). Information about the text, its authorship, etc. are given in the introduction to a German translation of the text by Strätz (1).

It was also found at Lin-l. Nevertheless, the ancient text differs fairly significantly from that transmitted by tradition and included in the Canon, primarily because it is much shorter, similar to the text included in *Chhin Shu Chih Tao* of the Thang. In point of fact, we are dealing with three versions of the treatise, expounding what are actually the same theses in different form. Their analysis indicates that originally two texts written by Wei Liao may have existed, and (in the *Chhin Han Shu*) Pan Ku attributed one of them to the Ping Chia School, the other to Tsa Chia. See Chang Hsin-Chêng (1), vol. ii, pp. 944−5; Hsu Ti (1), p. 30; Lo Fu-I (3), p. 33; Anon. (296, 297), Ho Fa-Chou (1); Chung Pei-Hua (1). New critical studies of the various versions of the text, discussions on their subject-matter, and basic information on the work, will be found in the *Wei Liao Tzu* edition prepared by Military Unit No. 86853, and the Shanghai Teachers' Institute; Anon. (293). See also Cheng Liang-Shu (1), pp. 15−48, and Weigand (1), introduction; Yates (7).

This book has also sometimes been attributed to Thai-kung Wang. Tradition held that during a period of pilgrimage Chang Liang (d. −187) was given the book by a mysterious old man who called himself Huang Shih Kung; cf. Vol. 2, p. 155. The scroll is said to have carried the title *Thai-Kung Pin Fa* (Grandfather's Art of War); cf. Shi Chih, ch. 55, pp. 2034−5. Later, this text was known by the name *Huang Shih Kung San Liu* (The Three Stratagems of the Old Gentleman of the Yellow Stone); cf. Chang Hsin-Chêng (1), vol. ii, pp. 950−1. For a detailed analysis of this legend, see Bauer (1, 2). The work itself has been given a translation and commentary by H. H. Schmidt (1).

This text and all others included in the *Wu Ching Chi Shu* were rendered into modern Chinese in 1975, with the addition of useful comments, explanations, and information about the authors. Wei Ju-Lin (1), (2) prepared the *Sun Tzu* and *San Liu*, Liu Chung-Phing (1), (2) the *Ssu-ma Fa* and *Wei Liao Tzu*, Hsü Phei-Kên (1) the *Liu Tao* and *T'êng Chen* (1) the *Li Wei-Kung Wen Tui*. The information given was, however, not always critical enough.

1) *Yü Hui*, ch. 140, p. 4a. The works were included in the collections in a specific order. At first, the order of precedence was as follows: (1) *Liu Tao*, (2) *Sun Tzu*, (3) *Wu Tzu*, (4) *Ssu-ma Fa*, (5) *San Liu*, (6) *Wei Liao Tzu*, (7) *Li Wei Kung Wen Tui*, *Chu Fu* (d. c. +1086), who prepared the Sung Period edition of the collection, changed this order to the following: (1) *Sun Tzu*, (2) *Wu Tzu*, (3) *Ssu-ma Fa*, (4) *Wei Liao Tzu*, (5) *Li Wei Kung Wen Tui*, (6) *San Liu*, (7) *Liu Tao*. This order of precedence was preserved throughout the centuries because it reflected the importance attributed to the *Sun Tzu*. Occasionally the *Li Wei Kung* was preferred to the *Wei Liao Tzu*.
Besides all these books, mention must be made of some texts lost in earlier times and recently found again; these are also important for our knowledge of ancient Chinese military thought. Unquestionably the most important and significant of them is the *Sun Pin Ping Fa* (Sun Pin’s Art of War) - a text mentioned earlier. However, although attributed to Sun Pin (– 4th century), it was probably written only partially by him, while some chapters were due to his pupils. Sun Pin was a descendant of the great Sun Wu, but whereas his ancestor discussed the theoretical foundations of the art of war, Sun Pin, on the other hand, enters into various matters of detail, and approaches specific problems differently.

Other texts, too, though of lesser importance, have been found in recent archaeological digs. Indeed, the *Chhien Han Shu* bibliography lists no less than 55 books on military matters, though sixteen of them are concerned with divination, including astrology, geomancy and Five-Element theory. More interesting and significant, perhaps, is another group of 15 works dealing with military techniques which include seven on archery, with two specifically devoted to the crossbow, and three on shock weapons. Pan Ku adds that these were concerned with the construction of war machines of all kinds, and the training of men in their use. In his usual concluding epitome, he quotes Confucius and the *I Ching* to justify such training, and goes on to reveal that in the time of the empress Lu (c. – 185) her family made away with many of the texts which had been collected. Sixty years or so later, therefore, under the emperor Wu, Yang Phü was commissioned to assemble them all again and edit them, a work which was finally completed about – 20 by Jên Hung.

During the Three Kingdoms period, Chu-ko Liang (+ 181 to + 234), that colourful figure famous in the State of Shu as a politician and strategist, exercised enormous influence on the Chinese theory of war and conduct of military operations. He left many original writings on political and military matters, but his...
most popular work was the apocryphal *Hsin Shu* (Book of the Hearts and Minds); the present text probably dates from the Yuan period, or possibly even the beginning of the Ming. The title is linked with his concept that military operations should be based primarily on the mentality, convictions and emotions of the soldiers on both sides and of the civilian population. He is commonly credited with having conceived the *kung hsin* strategy of attack on hearts and minds, though both Sun Wu and Wu Chhi had already written at considerable length about it. Chu-ko Liang was famed for his tactical ruses — *chi* (stratagems) — and for making use of *Yin* and *Yang* forces, the Five Elements, geomancy, astrology, and so on. The epic Yuan novel *San Kuo Chih Yen* (The Romance of the Three Kingdoms), in which he is one of the principal heroes, contributed greatly to his popularity.

There was also Than Tao-Chi, who died in +436, and who is believed to be the author of *San-Sih-Liu Chi* (The Thirty-Six Stratagems), though this is not certain; the text may be either earlier or later than his time. The title itself has become a kind of saying, synonymous with the art of war and everyday ruses. This is partly because the text describes thirty-six stratagems or manoeuvres well-known in history, and partly because the number thirty-six is symbolic. Both the *I Ching* and the *Li Chi* say that the figure 6 corresponds with the concentration of *Yin*, with which military affairs were identified. Consequently, the figure 6 times 6 represents the highest concentration of *Yin*, hence also of the element *wu* — fighting and the art of war. This text presents in the most concise form an old and important tradition of Chinese military thought, categorising established stratagems as individually-named manoeuvres. However this text remained unknown until 1941 — the title-page of a copy found in one provincial library carries the sub-heading *Mi Pen Ping Fa* (Secret Book on the Art of War), which perhaps gives a clue why the text remained unknown for so long. Since Than Tao-Chi’s time, hundreds of stratagems were devised in China, though the classical book on that topic was unknown to the reading public and even to many theoreticians.

Later centuries were not so prolific in the military writings they produced. A number were written, but on the whole they mostly developed or even just repeated concepts first advanced in ancient works; though various questions concerning weapons, fortifications, geomancy and astrology were discussed in greater
detail. This, however, caused a certain change in the nature of military science and the art of war. Whereas ancient Chinese literature was concerned primarily with reflections on the nature of war and the basic principles governing the use of military force, with a specific philosophical outlook on war, later writings concentrated much more on practical information and advice. Thanks to commentaries on the *Sun Tzu Ping Fa* which had given various concrete examples of applications of the principles which it expounded, and an approach to the infinite variety of operations by classified systems of *chi* (stratagems), the ancient philosophy of war was eventually reduced to specific professional knowledge. To an increasing degree, the art of war became a military profession.

Many ancient Chinese theoreticians and schools attached great importance to the political and moral factors which were considered decisive in war. Texts of this kind were preserved, while texts concerned with weapons and military equipment were almost completely lost. It seems that during the Warring States period the two trends existed side by side, one giving priority to the moral and psychological factors, the other stressing the role of technical equipment — the writings of the Mohist school and the *Sun Ping Fa* are examples. In later times the technical equipment of armies began to play an incomparably greater rôle, but all the same, the old philosophical concepts were preserved as unquestionable truths.

The attitude to extra-human factors was revised in a similar way. Following a period of rationalism in the art of war which took place between the —6th and —2nd centuries, there was a return to superstition and thaumaturgy. Search was made for magical models of marshalling armies which would ensure victory, using for this purpose the symbolism of the Five Elements, as well as the *Yin* and *Yang* forces. Astrology, geomancy and astro-geomancy were harnessed to serve military purposes. And while originally it had been accepted that victory was won through active offensive operations, later on the diametrically opposite view became dominant, aiming to win battles by defensive means only. Perhaps the spread of Taoism had a hand in this.

(2) **THE MILITARY ENCYCLOPAEDISTS**

Whether by the time of the Thang everything that could be said about strategy had already been said, or whether so many techniques had now accumulated that need was felt for systematisation, the character of the literature changes and encyclopaedias replace theoretical works. Among the last of these must be mentioned the *Li Wei Kung Ping Fa*² (Li Wei Kung’s Art of War) attributed to Li Ching³ (d. +649), the great Thang general who defeated Turkic invaders. A more popular book, however, was another work attributed to him, *Li Wei Kung Wen Tui*⁴ (Li Wei Kung’s Answers to Questions), written in the form of a conversation between him and the Thang emperor Thai Tsung. This work may possibly have been
30. MISSILES AND SIEGES

written by the end of the Thang, but more probably it dates from the beginning of the Sung period. It was later included (as we have seen) in the Military Canon.

However, of all the early works, the one of greatest interest to us now was the Thai Po Yin Ching¹ (Canon of the White and Gloomy Planet of War [i.e. Venus]),¹ written in +759 by a Taoist, Li Chhüan², who was also one of the commentators of the Sun Tzu Ping Fa.³ It gives us an admirable account of the war techniques of the period, particularly valuable because it provides a background for the spate of inventions which followed in the subsequent dynasty. The book opens with brief observations on morale and planning, giving conditions which might be regarded as requisite for a victorious campaign. The second part (on strategy) is still not far from the theorists, but the third introduces new subjects such as the physiognomy of men and horses, army organisation, and field discipline.⁴ Then follows a survey of the war machines in use for the attack and defence of cities, trebuchet artillery, arcuballistae, mining and fortification, scaling ladders, assault towers, drawbridges, crenellations, incendiary methods, and the like. A section on naval warfare is included, together with bridging and various other means of crossing rivers, such as swimming on inflated skins.⁵ The story of fortification is continued in the fifth part, with lists of stores, water-clock timings, signalling with beacons, medical services and military colonies (thun thien⁶).⁷ Afterwards comes a lengthy discussion of the various formations of troops, including squares⁷ and the three-rank system of crossbowmen to which we shall shortly recur. Li Chhüan finally describes the sacrifices which a commander should make to gods and spirits, adds medical and veterinary prescriptions, and ends his book with two long sections giving details of divination procedures. Technicians were now in the ascendant, and among them the star-clerks and weather-clerks were nowise distinguished from armourers, mechanicians, leeches and horse-leeches.

We are able to look at the situation just about three centuries later because we still have most useful material from this time. There was the very popular Hu Chhien Ching⁸ (Tiger Seal Manual)⁹ written by Hsii Tung³ (+970 to +1011) and

¹ Full title: Shen Chi Chih Ti Thai Po Yin Ching⁴ [Secret Contrivances for the Defeat of Enemies; the Manual of the White Planet].
² We met with him on a previous occasion (Sect. 10).
³ It also contains (ch. 34) a brief account of the geography of the frontier regions. This has been studied by Pulleyblank (5).
⁴ Such sections as these can be found in all the subsequent compendia, each copying from and sometimes enlarging its predecessors.
⁵ These agricultural colonies played a very important part in the gradual expansion of the Chinese into the northern and north-western border lands. One of the first generals to settle his troops on an area of land surrounded by nomad grazing grounds, and so to establish a self-supporting fortified camp which could later become a city, was Chao Chhung-Kuo¹ about -60. But Chang-Yeh, Chiu-Chhüan and Tun-Huang had already been settled sixty years before, after Huo Chhü-Ping⁶ had turned the Huns out of those districts. There were many later examples, e.g. Yenan in +1072. See Biot (18), who drew upon Yi Hai, ch. 177, among other sources.
⁶ To repel barbarian cavalry, like the squares of occident al nineteenth-century armies.
⁷ The 'Tiger Seal' was the insignia or symbol of authority granted to a commanding general by his sovereign.

Presented to the Emperor in +1005. But even more to the point is the precious compendium put together by Tseng Kung-Liang in +1040 (preface of +1044), the *Wu Ching Tsung Yao* (Collection of the Most Important Military Techniques). For many years this was kept secret, indeed not printed in full till more than five centuries later, and even now it is available in only one *tshung-shu* collection. It permits of direct comparisons between the knowledge of the Tang and the early Sung. The work is divided into two separate parts, each of 20 chapters; the second part may be dismissed if we note that three-quarters of it constitutes a great treasure-house of battle descriptions and stratagems drawn from the dynastic and other histories, while the last quarter deals with divination procedures. The first part is most interesting for us.

After general discussions on training and discipline, it deals with the disposition of pikemen (*chan fung tui*), and cavalry (*yung chhi*). There is a chapter on communications and signal troops (*fung huo*) and another on principles of fortification (*ying ja*). Formations (*chen ja*) are now becoming rather fantastic, following Indian models and resembling various constellations, but from what we know of Chinese common sense, these probably remained mostly on paper. The terms for the various arms scattered over them do not include gunners (*huo shou*) so that they probably date from before the middle of the +10th century. In one of these diagrams is the ‘recumbent crescent’ (*yen yueh*) formation attributed to Li Ching, and one can see two left wing headquarters (*iso Isung kuan*) and the left wing reserve (*iso yu hou*). The tenth chapter describes equipment for sapping and mining, illustrating the pit-prop frames, pulleys for removing spoil, and so on, also a number of different kinds of mobile scaling ladders and mantlets. Then, towards the end of chapter 11, after an account of naval warfare, Tseng Kung-Liang...
30. MISSILES AND SIEGES gives many details of incendiary methods, including the use of expendable animals, and on p. 27b wrote down for posterity the first formula for a gunpowder composition (\textit{huo yao}) known to us in any literature. From this he breaks off into a long account of the different kinds of catapult artillery in chapter 12, returning thereafter to gunpowder and its manifold uses in bombs, flamethrowers, and toxic smoke canisters. The following chapter is devoted entirely to bows, crossbows, shock weapons, and armour, and the remainder of the first part is geographical, dealing with the defence of the frontiers (\textit{pien fang}) and arranged according to places and provinces.

In Ts'eng Kung-Liang's time, nearly a century after the successful unification of the empire under the Sung, there were no very serious enemies to contend with, for since + 1005 there had been little fighting with the (Chhi-tan) Liao. Far different was the situation sixty years later, when the (Jurchen) Chin were founding their northern State from + 1115 onwards. Before their capture of the Sung emperor at Khaifeng in + 1126 and the settlement of the Sung capital at Hangchow in + 1135, there was violent fighting between the two armies, Sung and Chin. From + 1127 to + 1132 the city of Tê-An in Hupei (north of modern Hankow) withstood eight separate sieges by several Chin generals commanding considerable forces. But within was a notable captain, Thang Tao, and an equally notable civil magistrate Chhen Kuei, both of whom lived not only to tell the tale but to write down a treatise on the defence of fortified places which reads like an epic to this day. It is the \textit{Shou Chêng Lu}, presented to the throne in + 1170 and + 1193. All the sieges involved a massive use of trebuchet artillery by both sides, but in + 1127 the attackers hurled containers of gunpowder, and later, in + 1132, the defenders used fire-lances as well, an invention apparently due to Chhen Kuei himself.

After this, the other military books of the Sung seem rather tame, for example, the \textit{Pai Chiang Chuan} (Memoirs of a Hundred Generals) compiled by Chang Yü. The Mongol period was an age of action rather than of writing, and the next time of flourishing military literature was the Ming. A great wealth of books on these subjects then appeared, as may be seen from the bibliographies of Lu Ta-Chieh (1, 2) which cover all the dynasties. Some need be but mentioned, such as the \textit{Chên Chi} on training and tactics, written about + 1546 by Ho Liang-Chhên; and two works by Chhi Chi-Kuang (+ 1528 to + 1587) who was the most original and best known theoretician of later times. These were the \textit{Lien Ping Shih Chi} (Treatise on Military Training), and \textit{Chi Hsiao Hsin Shu} (New Treatise on Mili-
itary and Naval Efficiency); they were still held in high esteem even as late as the
beginning of this century. The technical element in these is subordinate to the
organisational, but Ho included a short section on incendiary and explosive weap­
on, and Chhi illustrated the fo-lang-ch'i (Portuguese breech-loading cannons), as
well as muskets, mines and rockets. The laager of mobile shields shown in Vol.
5, pt 7, Fig. 159, is also derived from his book.

A difficulty about the literature of the late Ming is that a number of books on
military subjects, especially those which dealt, like Li Phan's, with the raising
and training of militia, were afterwards banned by the government of the
Chhing. This applies, for example, to an important work on military pyrotech­

nics, the T'ing Than Pi Chiu (Knowledge Necessary for Army Commanders) writ­
ten by Wang Ming-Hao in the last decade of the +16th century. Most of its
content was however incorporated into the third great compendium of Chinese
war science, the Wu Pei Chih (Treatise on Armament Technology) finished in
+1621 and presented to the throne by its author Mao Yuan in +1628.

This is the most extensive military encyclopaedia in all Chinese history. First
Mao reprinted the old Tactica from Sun Tzu downwards, and then a resumé of
military history arranged according to the dynasties. Next come chapters de­
voted to discipline, exercises and tactics, including the formations again, where we
see the various arms deployed, archers (chien shou'), artillerists (phao shou'),
shock troops armed with sabres (lao shou') and cavalry units (ma'). In these chapters
the illustrations of arms in connection with training somewhat overlap with the
next section, the longest in the work, on war material of every kind. This ranges
from flagsa and mobile spear-rack armouriesb to bombards and cannonc at least equivalent to those of contemporary Europe, as well as the types introduced by the Portuguese. One finds rocket-launcher batteriesd and land-mines.e Finally Mao Yüan-I added a long section on divination techniques,f and another on geographical matters which includes not only many maps of the coast but also sailing-charts from the +15th century naval expeditions.g Of these remarkable documents we have already said something in Section 22d on Geography (in Vol. 3) and then again in connection with Navigation (Sect. 30 in Vol. 4, Pt.3).

After the establishment of the Chhing dynasty further publications based themselves on Mao's book, such as the \textit{Wu Pei Pi Shu}1 (Confidential Treatise on Armament Technology), issued by Shih Yung-Thu2 in the +17th century, but the changes were mostly mistakes.h

It is interesting to tabulate the rises and falls in the rate of production of military literature through the different dynasties, and the bibliographies of Lu Ta-Chiehi enable us to do this. Including the works of which only the titles have come down to us, the detailed figures are as follows:

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
 & no. of & no. of books on & \% of the whole & books/year \\
 & years & military subjects & production & \\
\hline
Chou & 809 & 92 & 11.4 & 0.10 \\
Chhin & 14 & 20 & 2.5 & 1.33 \\
Han & 422 & 25 & 3.1 & 0.06 \\
San Kuo & 59 & 60 & 7.4 & 1.07 \\
Chin & 155 & 16 & 2.0 & 0.07 \\
Nan Pei Chhao & 102 & 23 & 2.8 & 0.14 \\
Sui & Thang & 325 & 77 & 9.6 & 0.24 \\
Wu Tai & Sung & 372 & 107 & 13.3 & 0.29 \\
Liao, J/Chin & Yuan & 253 & 16 & 0.97 & 0.04 \\
Ming & 276 & 268 & 33.3 & 0.97 \\
Chhing & 267 & 101 & 12.5 & 0.38 \\
\hline
\end{tabular}
\caption{Books on military subjects, Chou to Chhing}
\end{table}
From this one can pick out the Chhin, the San Kuo and the Ming periods as the most productive, but the intensity of writing does not seem always to follow the times of greatest strife and warfare; if it did, one would expect the Northern and Southern Dynasties, and the Sung with the Northern ‘barbarian’ dynasties, to have made a better showing. No doubt the conditions which have to prevail in order to induce generals, technologists and military theoreticians to set down their thoughts and experiences in writing are quite complicated. But at least it is interesting to have a breakdown of this kind.

Clearly, Chinese literature on military matters is vast, though as yet unfortunately very little known abroad. It had importance even in antiquity, for the Chhien Han Shu bibliography lists 55 books entirely concerned with military affairs. Another group of 15 dealt with military techniques (chi chhiao), including 7 on archery, 2 specifically on the crossbow and its use, with 3 on the construction of war machines of all kinds. Pan Ku also tells us that in the time of the Empress Lü (c. -185), her family, for some reason or other, made away with many of the texts which had been collected. Then, sixty years or so later, under the Emperor Wu, Yang Phu (admiral of river and coastal fleets) was commissioned to assemble them all again and edit them. This work was completed about -30 by Jen Hung, a guards officer of literary interests, but most of these texts were also subsequently lost.

Our knowledge of the military theories and philosophies of ancient China is incomplete because it has to be based on texts, many of which were preserved or mentioned by accident only. Moreover, much teaching at that period was transmitted by word of mouth and not committed to a written text. And, of course, during great political upheavals great quantities of works were lost, including many of importance.

Besides the texts recognised as ‘military’ today, there were many others which we normally think of as the classics or the works of ancient philosophers, having particular chapters devoted to quasi-military matters. Some of these played an important rôle in Chinese military thought, and mention must be made of the Tao TéCh’ing, the Kuan Tzu book and the Shang Ch’in Shu; these were often counted outright as military works, while the Hsün Tzu book was also occasionally numbered among them. Other texts related to or including sections on military matters are the I Ching, Shu Ching, Chan Kuo Tshê, Tso Chuan, Lü Shih Chhun Chhiu, Meng Tzu, Mo Tzu and Kuei Ku Tzu. But none of these could conceivably be called military encyclopaedias.
In the West general principles of action evolved only in modern times within a philosophical and psychological framework, with cybernetics also contributing important ideas. In China a comparable theory was developed in antiquity, created and popularised mainly by the Military Theoreticians (Ping Chia\(^1\)), although the Taoists (Tao Chia\(^2\)), the Diplomats (Tsung-Heng Chia\(^3\)), the Legalists (Fa Chia\(^4\)), the Naturalists (Yin Yang Chia\(^5\)) and the Confucians (Ju Chia\(^6\)) also gave some attention to it. The most important and influential work in this field was always Sun Tzu’s treatise; some of the principles contained in it have even been formulated as general rules of action or are closely related to such rules. Since his time the general theory of action has constituted an important part of the classical Chinese theory of war; even in antiquity, military treatises were studied by men of private enterprise or by politicians as a guide to their daily activity.

The Chinese theoreticians analysed human action in a way similar to praxiologists,\(^b\) but quite different from the sociological perspectives common in the Western world. Whereas in the West action was considered by many sociologists the central component of the social system,\(^c\) the Chinese analysed it in a cosmic perspective, as part of the natural order. They were always looking for rules common to people and natural phenomena.

Another important treatise which contributed much to the general theory of action was the Kuei Ku Tzu\(^7\) (Book of the Devil Valley Master) written probably in the – 4th century.\(^d\) This book does not belong to the Ping Chia\(^8\) school, though it is closely related to military knowledge and contains some sections about it.\(^e\) In it we find general terms equivalent to ‘action’ (though the stress is on ‘achieving results’, not ‘acting’ as such). They are: ‘to conduct business with good results’ or ‘to arrange affairs satisfactorily’ (chêng shih\(^9\)), and ‘to carry out everything’ (chien wan wu\(^10\)). Thus the Kuei Ku Tzu expressed the general theory of action in a more elaborate form, but the text is very abstract and sometimes difficult to understand, lacking the impressive metaphors so much used by Sun Tzu. Nevertheless, both books contain similar ideas. The Kuei Ku Tzu stresses more the ‘natural aspect’, the need to adjust to the forces of Yin and Yang, to the changes of the Five Elements, and to appropriate time. It should be mentioned that these ‘naturalistic’

\(^1\) Discussed above, pp. 12–20.
\(^2\) I.e. those who study the springs of individual action and conduct.
\(^3\) Sorokin (1), pp. 395ff.; Parsons & Shils (1).
\(^4\) A large part of this book, chapters of which are believed to be of pre-Han origin, was translated by Kimm Chung-Se (1) into German. For detailed information about the work and the author see Sato Hitoshi (1); Chênh Ying-Lüeh (1, 2); Liang Chia-Pin (1); Chao Thieh-Han (1). See also Vol. 2, p. 206.
\(^5\) The Kuei Ku Tzu was sometimes even published among military treatises and was studied as a military text, see Chênh Ying-Lüeh (2). According to one tradition Sun Pin was Kuei Ku Tzu’s pupil (Kimm (1), p. 109). It may be noted that the recently excavated text of Sun Pin is indeed close to his teaching.
30. MILITARY TECHNOLOGY

concepts were also referred to by later military theorists, though the Kuei Ku Tzu was much less popular than Sun Tzu, and indeed was reckoned as rather ‘immoral’ and ‘secret’.

After they were first expounded, Sun Tzu’s principles of action were never substantially changed or rejected. Later thinkers only added a few new concepts and interpretations. Before presenting the main principles, however, we should remember that ‘action’ for him was mainly competition between two sides in achieving something; profit (li¹), territory, influence, a better initial position, and so on. Sun Tzu’s principles are not easily discernible at first reading, but here we present them in a more orderly fashion, with the use of later interpretations and concepts.

1. The principle of acting according to a plan. Before starting any action the situation should be analysed and an exact plan should be prepared. This must be based on the strength and weakness of both protagonists, their potentials and latent capacities, on expected changes, the intentions of allies and subordinates, etc. Sun Tzu introduced the use of several technical terms for this purpose; ‘estimations’, ‘calculation’ (chi²), ‘making plans’, ‘scheming’ (mou³), ‘compare’, ‘evaluate’ (chiao⁴). Action may be set in motion only if its success can be guaranteed according to one’s estimates. A good plan is a basic element for achieving any success.

2. The principle of achieving profit. Every action aims at gaining profit or avoiding harm. The way chosen should provide for maximum profit, with the least possible expense and risk. According to this principle one should, in the course of competition, demonstrate one’s own potential and avoid the actual use of weapons or coercion. Fighting always causes losses; moreover, if coercion is too frequently used, then its awe-inspiring power will disappear and it will hold no terrors. Therefore demonstrating one’s own power is much more effective than using it.

3. An auxiliary principle is: do not destroy anything or anybody. If fighting, the aim is to subdue a partner and to preserve everything whole. Only in this way is it possible to achieve ‘complete profit’ (chhüan li⁵), i.e. seize everything undestroyed without losses to oneself.

* Sun Tzu Ping Fa, chs. 2 and 3.
* In some cases Sun Tzu went as far as accepting a good plan as a guarantee of success, in others, only as a factor increasing the chances of success. Cf. chs. 1, 3, 4, 6. Confucius also expressed a similar idea, namely that action, especially war, should be taken only after preparation of a plan (Lun Yu 7, 10, 2–3; tr. Legge (2), p. 198).
* Sun Tzu Ping Fa, chs. 1, 3, 6, 8.
* In Sun Tzu Ping Fa (ch. 3) only a general idea is given, but it was expressed in more detail in other ancient sources, e.g. Kuo Yu¹, ch. 1, p. 1a; ch. 2, pp. 6b–7a. Even the etymology of the character ‘military’ (t'ou¹) was believed to be related to these ideas. The meaning is essentially defensive, for the lances (ko²) are there precisely to stop (tein⁷) hostile incursions into one's territory.
* Sun Tzu Ping Fa, ch. 3.
4. The principle of weakening the enemy. Before combat some preparations are necessary; they should be aimed at strengthening one’s own position and weakening that of the enemy (or opponent). If done well, it eliminates any resistance, and victory will be easier.

5. The principle of burdening the opponent with a task. A useful principle for the maximisation of profit is to burden the enemy by provoking him to come to a pre-planned place or to leave a good position, to weaken himself and to create disorder on his own side. One should also play on his mistakes, or even induce them. Again, the enemy may be weakened or destroyed by somebody else who may be provoked to do it. A similar effect may be achieved by skillful use of circumstances, conditions unfavourable to the enemy, e.g. difficult terrain, changing weather, distance, hunger, illness, and the like. In this way one may limit one’s own efforts; so that the opposite side defeats itself or is defeated by outside conditions. The paradoxical conclusion is that victory or defeat is based not on balance of power but on skill; the weak may defeat the strong, and success is based on the doings of the opposite side, not on one’s own. Afterwards the concept of the creation and seizing of opportunity (wo chi) became a substantial one.

6. The principle of independent spontaneous movement. All individual persons (the enemy, soldiers, allies, officials, and the like) have their own intentions, psychological characteristics and drive, under any given set of circumstances.

* This idea is present in Sun Tzu Ping Fa but developed fully in Liu Thao (esp. ch. 2, part 3). As a principle it is given in Huai Nan Tzu, ch. 15, p. 6b.
* Sun Tzu Ping Fa, chs. 1, 6.
* This principle was often used in foreign policy as a fundamental one. Chhao Tho, a famous politician and scholar of the Earlier Han period, in teaching the Crown Prince said: ‘to use barbarians to attack barbarians — this is the Chinese method’ (i man i kung man i Chung Kuo chihhsing yeh). Chien Han Shu, ch. 49, p. 2281. This idea was also expressed in other words: i sha (use barbarians to punish barbarians), TCTC, ch. 47, p. 1515. See also Yang Lien-Sheng (13), p. 33; Duman (1), pp. 44–5. A special case of this was the political urge for strategic flanking movements, which we discussed in detail in Vol. 1, p. 229f. The Europeans could play at this too.
* Sun Tzu Ping Fa, ch. 6. For a better understanding of this concept of putting the burden of defeat on the enemy or on external conditions, one may use the parallel of the pulley or the lever. The ancient Chinese invented something similar: for social relations; they tried to use the smallest possible force to overcome great resistance. For details on ancient Chinese physical knowledge, see Vol. 4, part 1, pp. 19–42. Connections between physics and military theories were rather close in ancient China; both were studied by the Mohists.
* It should be noted, however, that the Chinese understood ‘conditions’ in a different way from Europeans; to them it was the most substantial part of a causal complex and an active factor, a moving force. It was explained quite well by the metaphor given in the Chh Kuo Tshh where a direct cause is compared with a sharp sword or a pointed arrow, and conditions with a situation: only when human strength is applied to a sword, or a bow used with an arrow, are they able to kill or wound somebody (ch. 12, p. 428; tr. Crump (1), p. 195). Psychological studies confirm that today the Chinese still tend to understand a direct cause as unimportant and accidental, whereas conditions necessarily cause a specific effect. If they wish to cause or to prevent something, they tend to change the conditions, rather than initiating a direct cause. See Gawlikowski (5).
* Sun Tzu Ping Fa, chs. 3, 6.
* The idea of seizing opportunity was known to Sun Tzu, but a special term for it was lacking. It appeared in the later texts with the development of this concept (Li Wei Kung W’en Tshu, ch. 1; Wu Chi Ching). In some cases wo chi has other meanings, for example, ‘managing or using moving forces’ which relates to the universe, to the use of ‘natural spirit’ and ‘heavenly patterns’.

1 据楼
2 逐錮
3 以夷夷攻夷夷中国之形也
4 以夷伐夷
If one wants to lead them or stop them, one should use their own potential, 'might' (shih¹), to achieve this, not just give orders or prohibit something. Sun Tzu used the metaphor 'round stones rolling down from a high mountain'. One should understand the mental characteristics of others ('roundness of stones') and then create the necessary circumstances ('put the stones on a high slide'); only then will the people do what is needed, usually without realising that they are fulfilling the commander's plan. Sun Tzu compared 'might' with a drawn crossbow and with a mountain stream pushing aside stones.

This general principle was implemented in several forms. One was the selection of the proper person for a given task; a commander should know the mental characteristics of his subordinates and use them in a beneficial way, making capital either of someone's intelligence and the stupidity of the enemy, or using avidity, treachery, bravery, great physical strength, and such factors, to achieve this.

Another skill was to lead others by creating the necessary conditions for them to behave in a desired way. For this purpose Sun Tzu recommended setting people in a real situation which would lead them to behave in a planned fashion, or creating a make-believe situation only to mislead one's opponents or the opposite side. He introduced the term 'form' (hsing²) and recommended 'shaping' one's own side to mislead the enemy. He advised luring the enemy by profit and frightening him by danger (often only imaginary), always remembering that the enemy is doing the same.

Another aspect was the education of the people and of personnel by their rulers or commanders, to create those characteristics needed for future action. Wu Tzu recommended several methods for instilling confidence and trust, and a wish to fight.

Yet another was to cause temporary changes in one's antagonist's mentality. Sun Tzu, for example, recommended raising the enemy's anger to pro-

* See Ames's (1) study of Huai Nan Tzu which translates shih as 'strategic advantage' and 'political purchase'.

c Sun Tzu Ping Fa, ch. 5, and comments, Kuo Hua Jo (6), pp. 17-19. Especially important was the tradition of using selected troops for dangerous or difficult tasks, or for starting an attack. Usually men ready to face death were used, having been prepared psychologically in a specific way (Wu Tzu, ch. 1, pt 5; ch. 6; Liu Thao, ch. 6, p. 3; Sun Pin Ping Fa, chs. 3, 5).

d Sun Tzu Ping Fa, ch. 6, p. 22. The concept of 'form' is rather a complicated one. As the highest 'form' he recommended 'form without form' (hsing wu hsing*), a conception very much related to Taoism. The concept later came to be much elaborated in the different philosophical schools; see, for example, the chapters in the Kuan Tzu translated by Rickett (2) as 'On Conditions and Circumstances' and 'Explanation' of Hsing Shih (Hsing Shih*), pp. 58-90, and Ames (1), cf. Lau (6), Yates (7).

e Sun Tzu Ping Fa, ch. 6, p. 23.

f Wu Tzu Ping Fa, ch. 6, pp. 71-3. See also biographical information about him in Shih Chi, ch. 65; tr. Griffith (1), pp. 57-9; Lu Shih Chuen Chiu, ch. 25, pt 6; Han Fei Tzu, ch. 9, pt 30, tr. Liao (1), vol. 1, pp. 300-1. An analysis of this biographical data was made by Kuo Mio Jo (4), p. 214. See also Ch. Goodrich (2).
voke him into unreasonable actions, or creating general obedience by severely
punishing leading rebels.a

7. The principle of striking with ‘fullness’ (shih) against ‘emptiness’ (hsü). The
nature of every fight is to avoid the strong and strike the weak (like water
leaving high places and flowing down to the low). In competition one should
use one’s advantages and strong points to benefit from the enemy’s disadvan-
tages, and attack his weak points, ‘hitting an egg with a grindstone’.c All this
is what constitutes ‘form’ (hsing). Estimation of the enemy’s true forms as
well as one’s own is the basis of all calculations and planning.

Afterwards this principle was developed into a general one: fight on the
basis of complementarity, i.e. resist one’s opponent with the appropriate
counterparts or characteristics. For example, one should not oppose the
enemy’s ‘concentration’ with one’s own ‘concentration’ or ‘dispersion’ with
‘dispersion’, because ‘concentration’ and ‘dispersion’ are counterparts, and
should be used against one another.d Strength against strength only makes
one weaker and does not guarantee success.f

In addition a specific principle was elaborated: at the beginning resonate,
only afterwards, oppose; at the beginning be patient and afterwards quickly
smash the enemy; first behave according to his wishes and then destroy his
plans.g

8. The principle of combining profits and losses. Every advantage is inevitably
accompanied by certain disadvantages, strength in one aspect is connected
with weakness in another; to achieve any profit one must lose something, for
what is profitable in one aspect is unprofitable in another. Success may be
achieved only by the art of combining profits and losses, by changing one’s
weaknesses and losses into advantages, and by changing the opposite side’s
advantage into weakness and loss.h

a Sun Tzu Ping Fa, ch. 1, p. 12. See also the account of how he trained palace women as troops, ready to
respond to his talents (Shih Chi, ch. 63; tr. Griffith (1), pp. 57–8). An account of this event was found in 1972
among other materials related to Sun Tzu, the texts which were not included in his thirteen-chapter treatise
(Anon. (210), pp. 106–8). This description constituted a kind of teaching material, like other military texts.
b These terms were also of high importance in medical theory, shih as ‘pleroic’, hsü as ‘asthenic’. See Sect. 44
in Vol. 6.
c Sun Pin Ping Fa, ch. 3, p. 19; Giles tr. (11), p. 35.
d On these concepts see Vol. 2, p. 41 and s.v.; the pre-Socratic philosophers also had them.
ese Sun Pin Ping Fa, ch. 29, pp. 29–30; Kung Ku Tzu, ch. 2, pp. 96–7; Rand (1), pp. 73–6; this is now not
considered to be part of the Sun Pin Ping Fa. Wu Chiu-Lung (r) assigns it to section 27 of the ‘Treatises on
Government and Warfare’ (Lan Ching Lan Ping Chik Let) ‘Concentration and Dispersion’ (Chi Shu), slips
0122r, 0129r, 0170r, 0180r etc.
*e Sun Tzu Ping Fa, ch. 11, p. 41. This principle is usually given in metaphors or in concrete application. One
popular saying may also be quoted: ‘at the beginning behave according to rituals, afterwards – fight’ (hsien li hou
f Sun Tzu Ping Fa, ch. 7, p. 24.
9. The principle of acting according to the nature of things and their changes. One should always act according to the flow of events, 'in accordance with the Way of Heaven' (shun thien tao), in conformity with the conditions of time and space, and with the laws of change (pien). Nothing is stable, absolute and unchangeable. There is the constant change of the seasons, of day and night, of rain and wind. Strength is changed inevitably into weakness, order into chaos, bravery and the wish to fight into hope of retreat. One may achieve success if one can calculate and predict these changes, and use them for one's own profit. It is also especially important to recognise turning-points, and immediately change one's behaviour accordingly. The highest point in the development of an event, or of a particular characteristic, was named a 'pole' (chi). Sun Tzu recommended attacking the enemy when his spirit had become weaker, when an order on his side would fail, and when his strength was exhausted.

10. The principle of achieving a goal by some indirect way. During a competition one's goal may be achieved much more easily and certainly by an indirect way which the opposition does not expect. A direct way, which is easier to predict, and does not entail much imagination, has far less chance of success; and may be blocked by one's opponent, causing very heavy losses.

Principle 9, closely related to Taoism, was accepted by all the main philosophical schools. It thus became an integral part of Chinese thought, though there were differences in interpretation. Some philosophers understood it in a rational way, others preferred a quasi-magical viewpoint, searching for astrological knowledge, Five-Element correlations, and so on.

The psychological aspect is very important for the concept of action, because any success would be based mainly on knowledge and skill, on the ability to predict future changes, on one's own potential and on the possibilities of the enemy, on one's ability to manipulate a situation, and so on. Real material op-
erations with one's own forces were secondary. Moreover, there were strong tendencies to rely on the 'nature of things', and on calculated and expected 'natural changes', combined with a tendency to avoid action by force alone, or to rely on sophisticated tools. These concepts naturally oriented social efforts towards aims other than the improvement of military technology.

(4) COMBAT AND COMPETITION

As was suggested earlier, there evolved in China a concept of war and fighting quite different from the European one. Westerners tend to 'fight against' somebody, whereas, since Sun Tzu's time, the Chinese tended to 'fight for' something. In the first case both sides concentrate on the enemy, and accept as their main task defeating or annihilating his opposition; in the second, attention is focussed on achieving a given political or economic purpose. When two sides are fighting against each other the logic of their action is a very simple one; it is two-valued. When they are fighting for something it becomes much more complicated, and the logic of the action is multi-valued, since defeating the enemy does not constitute the only aim. Indeed one may have several aims, and the enemy must establish what constitutes the purpose of war. He may be misled if both sides fight with different aims. Moreover, if they are fighting against each other, and if fighting is based on a 'duelling' approach, the question of honour becomes crucial, as also do the rules of fighting and of prestige. On the other hand, when fighting for something, like a 'company fighting for its position in the market', achieving the aim is the most important factor, knightly behaviour is not applicable, and one may easily sacrifice prestige to gain one's object. One could even accept a transitory success for the enemy if it led in the end to one's principal aim. In the second case an actual fight is not always necessary; an aim may sometimes be achieved without coercion. Competition may be combined with co-existence, indeed the 'enemy-partner' may be allowed to exist for a long time. His efforts to satisfy his needs may be accepted up to a point.

Ever since the 5th century, therefore, Chinese military and political thought developed a strong tendency limiting the use of force and war between

b An interesting comparison of Western and Chinese strategic thought was made by Scott Boorman, and some of his concepts have been used here (Boorman (4), pp. 23-5, 211). The concept of a 'duel-like war' deeply influenced Western thought. Even in a book analysing ancient and 'primitive' wars throughout the world, the author stated that 'the objective of the war must be the defeat of a people' (Turney-High (1), p. 103), but this opinion needs to be revised in the light of more recent research, Otterbein (1).

c In that case strategy and tactics differ significantly; they may even be contradictory. Ultimate success is not connected with tactical questions; one may be defeated in one aspect after many temporary successes. As Takagawa Shukaku said 'in weichih, tactics depend on strategy, whereas in chess, strategy is based on tactics' (Takagawa (1), p. 70). This comparison seems applicable to some extent also to Western and East Asian strategic thought. In China, however, a tactical victory had some value, and many theoreticians clearly separated the achieving of a strategic aim from the winning of purely tactical victories.
States; it was accepted by many thinkers that war is very dangerous and costly, and according to them even victories were dangerous. As Sun Tzu said: 'To fight and get victory in all battles is not supreme excellence; supreme excellence consists in subduing the enemy's army without war.' In the Kuan Tzu book one may find, for example, the following statement: 'It is best to have no battles at all; next best is to have only one.' Similar ideas were expressed in the Wu Tzu and many other political and historical works which constituted the basis of classical Chinese strategy.

Generally, there were three main tendencies. The first, propagated by the Confucians (and to some extent the Legalists), recommended achieving the superiority of a State by improvements in government, and the creation of internal harmony and well-being. However, while their orientations may be treated as similar, their means differed sharply. Sometimes the creation of a strong army and good military preparations were recommended by Confucians as well as Legalists to be sufficient for protecting peace and achieving political success in inter-State affairs. These ideas may be found in many military treatises such as Wei Liao Tzu, Wu Tzu, Ssu-ma Fa, Liu Thao, San Lueh, etc.

The second school of thought assumed that 'victory without fighting' may be achieved by skilful diplomacy, by sending agents and envoys to foreign countries, by making the enemy withdraw his plans, or merely by clever calculation, 'defeat by plans' (mou kung). In the last cases some fighting might be allowed, though victory was achieved in reality by the competition of minds rather than by force. This concept was expressed in the famous saying 'to break an enemy's forces while at the cups and dishes' i.e. at the ritual feast in the ancestral temple, where strategy was planned (chêchhung tsun tsu). Such ideas were propagated in Sun Tzu, the Li Wei Kung Wen Tui, and by other ancient philosophers from the School of Politicians (Tsung Hêng Chia). Some of these elements also exist of course in all the previously-mentioned military treatises.

The third tendency searched for easy victories and subduing enemies by using the Yin–Yang theory, the forces of the Five Elements, by magical numerology, astrology and the like; in other words by the implementation of natural forces and magic. These concepts also influenced many theoreticians, as may be seen in Wu Tzu, Liu Thao, and the Sun Pin Ping Fa, but especially in the Thai Po Yin Ching, Yin Fu Ching, Hu Chhien Ching, Wo Chi Ching, Li Wei Kung Ping Fa and other texts.

3 Sun Tzu Ping Fa, ch. 3, p. 15; tr. Giles (11), mod.
5 It is true that some Legalist writers envisaged the State primarily as an engine of war, but none of them thought it could do without good laws conducive to the well-being of its people.
6 Cf. Shih Ching, part 3, book 3, ode 2, sect. 4; tr. Legge (8), p. 515; Kuan Tzu, ch. 6 (part 17); tr. Rickett (1), vol. 1, p. 224. Probably these concepts contributed much to the development of defensive strategy in the Han. According to them proper borderland preparations, and sound defence, should be sufficient for defeating the Northern Barbarians (Hou Han Shu, ch. 119), i.e. the Huns.
Of the three, it is the second orientation – the avoidance of combat and crushing victories – which seems to be the most important, and which dominated Chinese military thought and political practice. It stems from a cultural background which generated several specific principles, one of which recommended conquering or subduing the enemy slowly step by step, i.e. ‘eating a whole [leaf] like the silk-worms do’ (tsan shih chhing thun’). Another basic principle resulting from this attitude to war was that ‘the best is to attack minds, the worst is to attack fortresses; the best is psychological warfare, the worst is military combat’ (kung hsin wei shang, kung chheng wei hsia; hsin chan wei shang, ping chan wei hsia). It therefore stressed the psychological aspect of war, the possibility of substituting an image of force for real combat, and manipulating the mind of the enemy, the wishes of his people and the plans of his leaders. In brief, the ancient Chinese well understood that the ultimate aim of war is a change of the enemy’s mind, so that he is ready to accept something apparently unprofitable; and they recommended achieving this directly, if possible, without the use of weapons. Such ideas were expounded not only in the military books like Sun Tzu and Wu Tzu, but also in various descriptions of political events and discourses on policy in the Tso Chuan, Shih Chi, Chhien Han Shu, Hou Han Shu and other texts.

Even when war was waged, military theoreticians recommended a limit to coercion and the use of force; and instead they implemented other means such as, for instance, provoking disunity among leaders of the opposition, bribing commanders, or even killing them. With the usual stress on psychological aspects, they recommended basing strategy and tactics on the personal characteristics of the opposing commander, or on the ‘national psychology’ of the enemy. An example of this can be seen in an interesting quotation from the Wu Tzu book.

The men of Chhi are hardy, the State is rich, the sovereign and his officials are arrogant and extravagant, and they treat the people with contempt. The government is lenient, but emoluments are inequitable. Its arrays are of two minds, at the front they are strong, but weak at the rear. Therefore although massive [the army] is not firm. The way to fight them is this: divide [their army] into three parts, and attack them from the left and right, threaten them and follow them [all the time]. Then they will be defeated.

The people of Chhin are strong, its territory mountainous, its government strict. Its rewards and punishments are to be trusted. Its people are unyielding, and all determined to fight. Its battle formations are easy to disperse, and then everybody fights for himself. The way to attack them is as follows: at first offer them some apparent advantage and entice them by your retreat. Their troops will take the bait and will become separated

a See Miu Thien-Hua (1), p. 752; Shih Chi, ch. 6, p. 576, tr. Chavannes (1), vol. 2.

b This idea was first recorded in Chin Chhè, the lost military treatise quoted in the Tso Chuan (Duke Hsuan, year 12; tr. Legge (11), pp. 314, 319). The present form of its expression is derived from comments in the San Kuo Chih (ch. 39, p. 983), the words of Ma Su in his discussion with Chu-ko Liang, and quoted by him as a popular expression. Afterwards the ‘Tale of Three Kingdoms’ (San Kuo Chih, Ye I) much contributed to its popularity (tale 87, p. 696), tr. Brewitt-Taylor, vol. 2, pp. 281-2.

1 蓋食鯨吞 2 攻心為上攻城爲下，心戰為上兵戰為下
3 齊 4 甲乙 5 甲乙 6 馬謖
from their commanders; then you may take advantage of the situation and hunt down the dispersed troops. Moreover, if you prepare ambushes, seize any opportunities, so that even their general can be taken in.\(^a\)

Sometimes a psychological factor was introduced in war by yet another way. Through well-thought-out political and psychological preparations, the opposition could eventually be paralysed and its resistance seriously weakened. For example, in *Liu Thao* among the twelve methods of the ‘civilian attack’ (*Wên Fa\(^1\)*) it says:

Satisfy the enemy, behave according to his wishes, then he will doubtless become proud and arrogant. Among his officials traitors will appear, and afterwards it will be easy to defeat him.

Increase the fascination of the ruler of the enemy State with pleasures and merrymaking. By providing more than he wishes, by presenting to him pearls, beautiful girls, and the like, his State may be subdued even without any war.

Bribe high officials of the enemy court, cause disunity between central and local authorities, hence provoke internal conflicts and chaos; then the State will inevitably collapse.\(^b\)

Another classical method since the time of Chu-ko Liang (+ 3rd century), was to practise extreme politeness and benevolence towards the enemy’s leaders and soldiers in time of war; to imprison them while fighting but release them soon after, present them with gifts and show them all possible kindness. As a result their will to fight would certainly decline and they would eventually be subdued for a long time, without any wish for revenge.

One of the most interesting concepts was expounded in the *Wu Tzu* book. In this text five categories of war are distinguished according to their causes. The first is the righteous war, aiming to suppress violence and quell disorder;\(^c\) the second the aggressive war, aimed at taking advantage by using greater force; the third is enraged war, caused by the ruler’s anger; the fourth is wanton war waged against all the rules of propriety, only for advantage; the fifth is war caused by disorder or famine in one’s own country. The strategy for each war should be different, and anyone who wishes to oppose every kind of aggression should prepare suitable plans. In a righteous war norms of propriety are important. In an aggressive war a humble position is necessary and readiness to accept a peace offer. Enraged war may be stopped by diplomatic speeches. In a wanton war victory may be achieved by trickery. War caused by an internal situation must be waged with proper calculation, and adjustment to the prevailing conditions.\(^d\)

\(^a\) *Wu Tzu*, ch. 2, part 1, pp. 33-4; tr. Griffith (1), mod.

\(^b\) *Liu Thao*, ch. 2, part 3 (14); also Hsii Phei-Kên (1), pp. 93-4; tr. Strätz (1), pp. 47-50.

\(^c\) It would be interesting to trace the similarities and differences between this type of hostility and the ‘just war’ of Christian theology—a concept still not without influence today.

\(^d\) *Wu Tzu*, ch. 1, part 4, pp. 50-1; tr. auct., adjuv. Griffith (1). Similar ideas, the classification of wars with recommendations of strategy, may be found also in other sources. See, for example, *Chou Shu*, ch. 2, pp. 3a-4b.
So the Chinese theoreticians created many concepts with only one aim; to avoid relying in combat on the use of force. Different means were often combined together; ‘attack on the enemy’s intentions’ would be combined with various aspects of diplomatic and military activity. One of the famous examples of how a victory could be achieved without relying on actual fighting is the plan for self-defence prepared in the Yen state in the 3rd century. In the Shih Chi a description of Prince Tan’s speech is given:

Now the king of Chhin has an avaricious mind and insatiable desires. Until he has conquered all the territories of the world and subjected all the rulers within the Four Seas, he will not be satisfied. At present, he has already captured the king of Han and annexed all his lands. Moreover, he is sending troops to invade Chhu in the south and Chao in the north [...] Chao cannot resist Chhin and will certainly surrender; then disaster will reach Yen. Yen is a small and weak State which has already suffered several military setbacks. I reckon that even with the power of the whole country we cannot resist Chhin, while the other feudal lords are so afraid of them that they will not dare to form an alliance [against Chhin]. In my humble opinion, if we could get one of the bravest men in the world to go to Chhin as an envoy and offer the king of Chhin heavy profits, he, being greedy, will certainly give this man a chance to do what we want. If we could force the king of Chhin to return all the lands he has conquered [...] all will be well. If not, then kill him. The generals of Chhin are leading armies outside the country, so that if a disturbance occurs inside, the new king and generals will suspect each other. Taking advantage of this opportunity, we can then form an alliance with the other feudal lords, and so we will certainly defeat Chhin.

For this purpose Yen sent an envoy, Ching Kho, to the king of Chhin presenting him with the head of an important political émigré (Fan Yu-Chhi, who had committed suicide especially for this purpose), and also made a false offer of one of the richest districts of the country. At the time of the audience the envoy tried to assassinate the king but was not successful; afterwards Yen was taken over by Chhin, and the first empire was formed. Many similar cases, but with positive results, were known to have occurred in China.

Since these concepts were commonly accepted, inter-State competition could not be dominated by military groups. Moreover the Chinese military were often not very martial according to Western standards; the attributes demanded of them have, as we saw earlier, often made army chiefs more like politicians. This was one important reason why it was so easy after a war to change from military to
civilian government. In Chinese history, then, there were many wars but little militarism.a

Keeping in mind that war was not essential in inter-State competition, and that combat and the use of force were not essential when war did occur, two important concepts may be discerned in the Chinese principles of war. The first is the so-called ‘Sons and Father Army’ (fu tsu chih ch'un), emphasising that a commander should treat his soldiers like his own sons, eating together with them, standing by them and showing his care as well, of course, as exercising discipline. This was an echo of everyday familial social patterns. Today this tradition is still strong, even in Japan and Hongkong: the patriarchal type of organisation and types of dependent personality are still quite popular.b This principle also created favourable conditions for the evolution of personal armies, which emerged many times in Chinese history, because it pushed to the fore the idea of the commander as a paternal person.c

The second concept concerned bravery, stimulated by putting an army into the ‘place of death’ (ssu ti), when the situation was such that soldiers believed there was no chance of survival and were therefore ready to die. This was also related to prevailing attitudes to death; individuals tied very closely to collective communities were perhaps able to accept death more easily.d Perhaps the idea of reincarnation (introduced by Buddhism), together with the cult of ancestors and heroes, created a conviction that individual death was not an ultimate end. In many cases an individual was obliged to devote his life to his family or chief, on the understanding that, under certain circumstances, he might even have to commit suicide.e Whereas in the West expectation of death could lead to a loss of drive, in East Asia the same situation often led to just the opposite, a feeling of fury. This psychological phenomenon, the possibility of a sudden change from complete control of one’s own behaviour to the loss of all mastery over the emotions, was used by military theoreticians. It resulted in two combat patterns. One was the ‘relaxed army’, fighting without bravery, and ready to escape when the situation became...
dangerous; and the other the 'death army', fighting to the bitter end with enormous bravery. It seems that training soldiers and officers to fight in a 'reasonable way', with calculation of sacrifices and their consequent advantages, turning an organised and well-balanced resistance into an ordered retreat, was the most difficult to arrange of all the processes of modernisation carried out at the beginning of the twentieth century.\(^a\)

Chinese principles of war clearly show that the theoreticians did not relate the final victory to any military potential. The main factor was the commander's skill. However, strategy which was devised for a war should not run counter to the balance of military strength. Although Sun Tzu demanded numerical superiority at the tactical level, Wu Tzu rejected its necessity even in a single battle (his principle was to fight one against a thousand). The idea of how the weak may fight against the strong was a \textit{leitmotiv} in Chinese military thought and was, it seems, connected with Taoism.\(^b\) The best concise description of strategies recommended for different balances of forces may be found in the \textit{Sun Pin Ping Fa}. One of the most famous examples of these principles occurred in a war between the States of Wu and Chhu. In the year \(-512\) Wu Tzu-Hsi\(i\) proposed provoking Chhu into sending an army, by creating an illusory danger for them in the north, and when the Chhu forces arrived, those of Wu should retreat. An apparent danger should next be created in the south, and again be followed by a retreat. The procedure was repeated several times within a year, provoking the State of Chhu to send an army but not allowing them to achieve anything, nor permitting any real battle to take place. In the end, after all this had been done, the army of Wu was able, without great difficulty, to conquer the capital of Chhu.\(^c\)

\(^a\) Sun Yat-Sen gave a quite interesting example of a political suicide. While recommending the creation in the National Revolutionary Army of the spirit of self-sacrifice and the death-wish, he told about two Chinese students who, being unable to sacrifice their lives to the fatherland because the revolution had not yet begun, drowned themselves in the sea and so 'gave their lives for the revolution' (Sun Chung-Shan (2), p. 857). This suicide had no practical meaning or use; it only showed their devotion to a given idea, namely, the revolutionary change of the fatherland. The \textit{Shih Chi} contains many cases which are variations on the same theme. One may find there a description of the famous suicide of the great poet Chhii Yuan (ch. 84), and a well-known description of how, by his extreme benevolence, Wu Tzu created in his soldiers the wish to sacrifice their lives for him (ch. 65; tr. Griffith (1), pp. 71-3). In the \textit{Shih Chi} one military trick actually involving suicide is given. During a war between Wu and Yieh, once the Yieh soldiers had started an attack, three of their party came to the Wu lines and with a great shout cut off their heads. While the men of Wu were watching this with astonishment, another part of the Yieh army launched a surprise attack, defeated the enemy and wounded the king. See \textit{Shih Chi}, ch. 41, p. 1739; Yang Hsien-Yi & G. Yang (1), p. 47. For an analysis of some aspects of attitudes to death in China, see Granet (6), pp. 203-20. Another interesting analysis of 'ideological suicides' in China and Japan, involving Buddhist practices, is given by Demieville (11), pp. 5-17, 407-32. On Chinese attitudes towards death, see Watson & Rawski (eds) (1).

\(^b\) See descriptions of combats and training given by: Vogak (1), Rzhnevskii (1), Vladimir (1), Rossov (1), Cherepanov (1), Blagodatov (1), Vyso gorets (1).

\(^c\) Cf. \textit{Tao T'ieh ch'i}, chs. 24,36.

\(T\) so\(Ch\)uan, Duke Chao, 30th year; tr. Legge (11), pp. 733-5. Cf. commentary to \textit{Sun Tzu}, ch. 6 (Kuo Hua-Jo (1), p. 126). This strategy was used later on by the Communist Party leaders during the war against Japan. See Mao Tse-Tung (4), 'On Protracted War'.

\[\text{乏子胥}\]
One of the basic ideas of the classical Chinese philosophy was 'to follow the current' (shun') instead of 'opposing it' (ni2); particularly expounded by the Taoists and the Yin-Yang school, this also influenced military thought in many ways. It resulted in one special way of fighting, namely by pitching the weak against the strong. According to the *Liu Thao*, Thai Kung\(^5\) recommended provoking the enemy to become yet stronger, and to increase his forces. In this way he would become proud, and then underestimate the opposing army. When he became strong enough, some weak points would certainly arise, and these were precisely the points at which an attack should be launched. The method was called 'using strength to attack [its own] strength' (*kung chhiang i chhiang*\(^4\)). Moreover, Thai Kung recommended creating disharmony within the enemy's court, pitting a ruler's bribed attendants and officials against other officials, and discouraging the fighting spirit of a people by showing them one's own lack of aggressive intentions, thus 'dispersing his masses by his masses' (*sa chung i chung*\(^3\)). Another method he recommended was to fight against the enemy after blocking his mind, and thus his abilities to create clever policies.\(^6\)

Such military concepts were obviously related to Taoism and the other philosophical schools, such as Confucianism, Legalism, Yin-Yang theory, and to the ideas of the 'Diplomats' (*Tsung Hêng Chia*\(^6\)). Essentially, though, they were based on the same cultural heritage, and were adjusted to other cultures of East Asia, containing as they did the main principles of war used by many peoples from remotest antiquity.\(^b\) Although the concepts differ basically from those accepted in Europe between the end of the +13th century and the Second World War, they have much in common with attitudes in the Roman Empire and, paradoxically, with contemporary ideas. Some similarities may be observed also with +16th- and +17th-century European military concepts, which laid special emphasis on trickery and manoeuvres.

It must, of course, be appreciated that in the West war was mainly a conflict between nations, as the Romans, and later von Clausewitz \(^1\), appreciated. In consequence warfare was offensive, whereas in Imperial China, from the −3rd century onwards, military activity was a means of supporting a permanent internal order, keeping peace on the borders, and maintaining dependency and acknowledgement of suzerainty of neighbouring peoples. Coupled to this is the fact that the avoidance of brute force seems to have been a very old tradition in East Asia. Certainly Sun Tzu's Warring States concept of offensive warfare leading to a possible destruction of the enemy's country is much nearer to +19th-century

\(^{a}\) *Liu Thao*, ch. 2, part 5, pp. 257–8; tr. Strätz \(^1\), pp. 62–3.

\(^{b}\) If one compares the basic elements of tactics used by so-called 'primitive peoples', as outlined by Turney-High \(^1\), pp. 25–6, one can see how close they are to the principles described above. A good description of the evolution of Chinese military thought and its relations to the various philosophical schools is given by Wei Ju-Liu \& Liu Chung-Ping \(^1\).

\(^{1}\) 順

\(^{2}\) 逆

\(^{3}\) 太公

\(^{4}\) 攻強以強

\(^{5}\) 撤衆以衆
Western concepts, evolved in a multi-national political milieu, and must not be ignored; but in the main the Chinese adopted a defensive strategy. This promoted a stable social and military organisation, but it laid stress on propaganda warfare and espionage with the aim of preserving political and economic systems.

Of course, Chinese efforts to conserve force were not unique. The ideal Roman general was not a figure in the heroic style, leading his troops in reckless charges to victory or death; he would rather advance in a slow and carefully prepared march, building supply roads behind him and fortified camps each night in order to avoid the unpredictable risks of rapid manoeuvre. He preferred to let the enemy retreat into fortified positions rather than accept the inevitable losses of open warfare, and would wait to starve out the enemy in a prolonged siege rather than suffer great casualties in taking the fortifications by storm. Overcoming the spirit of a culture still infused with Greek martial ideals, the great generals of Rome were noted for their extreme caution. Was not one called Fabius Cunctator?

But the ancient Chinese, it seems, went even further. They also had plenty of past experience of military combats, but their civilisation did not generate a military-oriented culture and military institutions, like the Greeks and Romans. All attempts to propagate military values and raise the prestige of soldiers failed, and so it happened that in the course of millennia, they fully accepted non-militaristic concepts of war. The Chinese understood quite early that a great and stable empire could be created rather by political means and economic structures than by military conquest. It seems also that they lacked the wish to make great conquests, an attitude that has attracted Western minds since antiquity. Both these factors, the lack of 'military industry' and the conscious avoidance of unduly costly victories, helped to preserve the Chinese State and its culture, and also contributed to their slow growth.

The great development of the psychological aspects of war, and the elevated role given to all subjective factors, were certainly related to reality; though in China logistics were usually much weaker than in Rome, with the result that the material aspect of war was less important, and was considered to be less important. The strength of China was based not only on a certain degree of technological superiority, but also on her political, economic and human potential and on her high civilisation. If China was defeated by foreign peoples, it was obviously due to internal political reasons, by an inability to organise existing potential, and not due to technological backwardness. The classical Chinese theory of war is in one aspect surprisingly 'modern', but in another, with its negligence about weapons, it belongs to the past.

a See an inspiring comparison of China and Rome by Creel (7), pp. 1-3. It should be added that militaristic tendencies in the West were also stimulated by the embattled heritage of Israel present in Christianity. See Bainton (1); Craigie (1).

b This was the case, for example, with the crossbow in Han times and gunpowder weaponry in the Wu Tai and Sung, which we discuss in Vol. 5, pt 7.
Besides principles of combat and general principles of action, the classical Chinese theory of war included several other components: a theory of territory, a theory of command, a diagnosis of military matters, concepts of army management, of intelligence, of the use of water and fire, of military formations and army training. Moreover, since the Han epoch developed the science and pseudo-science of military equipment, the Chinese were also concerned with fortifications, astrology, correspondences of the Yin and Yang forces and the Five Elements, magic formations of troops, and so on. Here a short description of some of them is given.

(i) Territory (thu¹)

The theory of territory constituted one of the most important parts of the classical theory. The proper use of territory was treated as very significant in achieving victory, and as a separate factor in supporting an army's efforts. Conditions, as mentioned earlier, were treated by the Chinese as an active factor; the configuration of territory created an army's strength, and determined its combat power. Nevertheless, the classical theory of war gives priority to men, not to physical factors. In the Wei Liao Tzu book, for example, there is the following statement: 'The seasons of Heaven are not as beneficial as the profits of the Earth, and the profits of the Earth are not as beneficial as harmony among the People. What the sages appreciated did not range beyond human affairs.' Yet if people were the most important element in war, the next most important was territory.

Since Sun Tzu, territory was analysed in two aspects: physical and political. With regard to the first aspect, Sun Tzu introduced several territorial classifications. The most popular one enumerated 'mountains' (shan²), 'rivers' (shui³), 'salt-marshes' (chhih tsê⁴) and 'dry and level country' (phing lu⁵). Afterwards 'forest' (lin⁶) was added. For every kind of territory a specific tactic was recommended. In its physical aspect Sun Tzu defined six kinds of territory, 'easy-to-cross' (thung⁷), 'entangling' (kua⁸), 'delaying' (chih⁹), 'narrow passes' (ai¹⁰), 'precipitous heights' (hsien¹¹), and 'distant' (yuan¹²). And as far as its political and psychological aspects were concerned, he distinguished nine categories:

1. A place where the army and the soldiers' minds easily disintegrate (san ti¹³), i.e. one's own country, through which the army is passing on its way to some expedition.

b Sun Tzu Ping Fu, ch. 9, p. 28.

c Sun Tzu Ping Fu, ch. 10, pp. 33-4.
2. A place where doubts and hesitations arise (chhīng ti\(^1\)), from which individual escape is still possible.
3. A place of strategical value, for which every side would like to fight (chēng ti\(^2\)).
4. Open ground, where any side may move across it in any direction (chiao ti\(^3\)).
5. A place of intersecting highways, important for international relations (chhū ti\(^4\)).
6. A place of serious situation (chung ti\(^5\)), i.e. territory within the enemy's State, with many unbesieged cities behind the advancing troops, and a place from which retreat would be difficult.
7. Embarrassing terrain (phi ti\(^6\)), with mountains, forests, narrow passes, marshes and lakes.
8. Hemmed-in ground (wei ti\(^7\)); a potential place for ambushes, with few roads leading in and all easy to block.
9. A place of death (ssu ti\(^8\)), from which there is no escape, and where soldiers may expect only to die.\(^a\)

These categories were interpreted in different ways, even by Chinese commentators. To Westerners, accustomed to classifications based only on physiographic characteristics, it was unusual and difficult to understand, so that it was sometimes even thought of as illogical.\(^b\) But if one remembers that territory was treated as creating fighting power and impetus for the army, this classification becomes quite logical. It was, indeed, an interesting attempt to describe territory according to those characteristics which determined human behaviour.

The function of territory in war was also interpreted in another way. In Sun Tzu there is the following statement,

According to the principle of war the first measurement is Distance, the second measurement is Volume, the third is Number, the fourth is Weight, the fifth is Victory.
Territory creates distances, distances create weight, weight creates victory.\(^c\)

This passage is probably a quotation from a very ancient text, older than Sun Tzu's treatise. It was not fully understood and has always disturbed commentators. However, the basic meaning is clear enough; territory determines physical distances and contours, and these determine the necessary strength for an army, because there are potentially strong and weak areas which indicate the number of troops which should be used in particular places. The distribution of troops determines the might that can be mustered at any particular place, and this in turn affects the balance of power; this last factor is the one which determines victory. This is why terrain or territory constitutes a primary factor in war.

\(^a\) Sun Tzu Ping Fu, ch. ii, pp. 36-7.
\(^b\) See, for example, the opinion expressed by Giles (11), pp. 100, 114. Konrad understood it better (Konrad (1), p. 244).
\(^c\) Sun Tzu, ch. 4, p. 18; tr. auct.
It should be mentioned, that some theoreticians, for example the poet Tu Mu\(^1\) (+803 to +852), understood this passage in a different way. Territory was for him not only contour and distance but also the size of the State, with its population and resources. These factors were significant, too, in determining victory.\(^3\) Sometimes of course, territory was interpreted in a semi-magical way with the help of \textit{Yin–Yang} concepts, and this became popular after the Warring States period.

\(\text{(ii) Signs given by enemy activities}\)

On the basis of natural phenomena and of social and psychological knowledge, Chinese thinkers described a set of indications which gave information about the state of the enemy, his actions and intentions. This knowledge was necessary for a commander as an aid in making proper decisions. Since Sun Tzu's time it constituted a separate branch of military science in China, and his remarks, early though they may be, are still undoubtedly the best on this aspect. He said,

When the enemy is close at hand and remains quiet, he is relying on the natural strength of his position. When he keeps aloof and tries to provoke a battle, he is anxious for the other side to advance. If his place of encampment is easily accessible, he is offering a bait [. . .] The appearance of a number of screens in the midst of thick grass means that the enemy wants to make us suspicious. The rising of birds is the sign of an ambush, and startled animals indicate that a sudden attack is coming. When there is dust rising in a high column, it is the sign of chariots advancing; when the dust is low, but spread over a wide area, it signifies the approach of infantry; when it goes in different directions, it shows that they are collecting firewood. A few clouds of dust moving to and fro signify that the army is encamping.

Humble words and increasing preparations are signs that the enemy is about to advance. Violent language and driving forward as if to attack are signs that he will retreat. [. . .] a plot. When there is much running about and the soldiers fall into ranks, it means that the critical moment has come. [. . .] from want of food. If those who are sent to fetch water begin by drinking themselves, the army is suffering from thirst. If the enemy sees an advantage and makes no effort to secure it, the soldiers are exhausted [. . .] Clamour by night signifies anxiety. Disturbances within the army indicate that the commander's authority is weak. If the banners and flags are shifted about, it indicates chaos. If the officers are angry, it means that the men are weary.\(^b\)

Some of this advice relates to the specific equipment used in antiquity, or to the classical Chinese ways of warfare, but much is still valid. Among the many brilliant statements, true now as ever they were, is:

\(^{a}\) See comments to \textit{Sun Tzu Ping Fa}, ch. 4. Kuo Hua-Jo (8), p. 92. These ideas, however, were rather far removed from the classical theory.

\(^{b}\) \textit{Sun Tzu Ping Fa}, ch. 9, pp. 29–30; tr. Giles (11), pp. 87ff., mod. auct.

\(^{1}\) 杜牧
Frequent rewards signify the end of resources; many punishments signify a condition of dire distress. To begin by blustering but afterwards taking fright at the enemy's numbers, indicates a supreme lack of intelligence.a

Indirectly, the advice given contains guidance on what should be avoided, and what the enemy expects. It was also used for tricks à rebours. For example, Chu-ko Liang introduced a famous stratagem, repeatedly shifting the positions of banners and flags in order to indicate chaos, and so lure the enemy to attack.

After Han times these rational principles of diagnosis were supplemented by pseudo-scientific indications based on the Yin-Yang forces and various magical procedures. Of course, the distinction between these two kinds of principle was not an easy task. In both cases, the scientific and pseudo-scientific, the investigation was similar; it consisted, after all, of the observation of symbols indicating something else, and then their evaluation according to the contemporary state of knowledge.b

(iii) The commander (chiang')

According to the classical Chinese theory the commander was a key person in achieving military victory and also in preserving internal peace and preventing aggression. The Sun Tzu book maintained that

the commander is the support of the State. If the support is firm, the State may be strong; if there are defects in the support, the State must correspondingly be weak.c

The Wu Tzu book elevated the role of the commander even more highly.

The establishment of the potential power of a whole army, of a host of a million, is based on one single man. This is called the factor of the spirit [...]. The commander's majesty, virtue, human-heartedness [jên2] and courage must be sufficient to lead those under him, to give peace to the multitudes, to awe the enemy, and to throw away all doubts [of subordinates]. When he issues the orders none dare disobey, and wherever he is, no rebels are rash enough to oppose him. If one gets a commander like this, the country will be strong, if one loses such a man, the country will perish.d

In the Liu Thao a similar idea was expressed: 'Peaceful existence or danger for the State are based on the commander alone' (shê chi an wei i tsai chiang-chên3).e These concepts probably originated from the old custom of appointing the commander as chief of the border region; the practice was important for defence,f but was also

a Sun Tzu Ping Fa, ch. 9, p. 30; tr. Giles (11), p. 95, mod. auct.
b Cf. Vol. 4, pt 1, pp. 135ff., where we discussed the role of the military diviner listening to the sounds of the chhi in his humming-tubes and prognosticating from them the outcome of an approaching battle.
c Sun Tzu Ping Fa, ch. 3, pp. 16-17; tr. auct. Cf. Giles (11), p. 21.
d Wu Tzu, ch. 4, part 1, p. 64; tr. auct. adjuv. Griffith (1).
e Liu Thao, ch. 3, part 4, p. 265; tr. auct.
f See: Ku Chieh-Kang (g), pp. 9-10; Hu Hou-Hsilan (8), vol. 1, pp. 35-7; Chhên Mêng-Chia (4), p. 325. According to the Shih Chi, Wu Tzu himself was a commander of this kind.

3 祖安危一在將軍
closely related to the classical theory of war in its emphasis on the human factor and on the use of skill rather than force. Therefore it comes as no surprise that Sun Tzu even proposed fixing the whole strategy on one aim, that of killing the opposing commander.

The classical theory of war with its stress on morale and personality, on mental unity and social harmony, and on the manipulation of external conditions, treated the commander as the army's moving soul and force. This was expressed quite clearly by Wu Tzu and Sun Tzu, but the best metaphor was given by Sun Pin, who compared the army to arrows and the commander to a bow; the ruler was an archer. Besides the rational ideas that the commander can create a fighting spirit in the army by his appropriate training and management, there were also metaphysical concepts. According to these, the commander was able to create the necessary spirit in the army by a mystical resonance with his own spirit and virtues. Moreover, he could assist this by using and manipulating the Yin-Yang forces and the Five Elements. This was, of course, esoteric knowledge, and many theoreticians refused to consider it. At all events, and quite independently of any interpretation, it became clear that the commander should possess special spiritual power and virtues. These were often discussed by the theoreticians.

Besides the combination of military and civil qualities, many other abilities were also demanded of a candidate for a post as commander. Wu Tzu pointed out five of them: ability to rule people (li), ability to be always ready for action (pei), resolution (kuo), carefulness (chih), economy of words and simplicity in his given orders (yiieh). According to him a commander should be careful, like someone expecting to meet the enemy just behind an open door; though on the other hand too much care was a great fault. The enumeration of virtues was often combined with an enumeration of a commander's possible faults. One of the best descriptions is given in the Liu Thao:

The brave man [yung] underestimates danger and easily loses his life. A person fast in action [chi] lacks stability and may easily lose his hopes. A greedy man [than] easily accepts rewards and may be bribed. A human-hearted person [jin] does not burden others with tasks and may easily become tired. A far-sighted man [chih] is often anxious about consequences and may become overstressed. A trustworthy person [hsin] is too ready to confide in others and so may be cheated. An honest person [lien] is not

*a Sun Tzu Ping Fa, ch. 11, pp. 40–1, Giles (t, t), p. 145.
b Sun Tzu Ping Fa, ch. 5; Wu Tzu, ch. 4.
c Sun Pin Ping Fa, ch. 10, p. 67.
d These concepts were analysed in detail by Rand (t), pp. 58–75. However, he overestimated their importance and did not even mention the existence of rational signs.
e In the Liu Thao the five musical pitches and their correspondence with the Five Elements and battle formations are given (ch. 3, part 1, pp. 275–6), see also Tai Po Yin Ching, ch. 8 (Phien 88).
1 Wu Tzu, ch. 4, part 1, p. 63.
indulgent to the people and so may be resented. A wise man [chih] often lacks resolution and may be vulnerable. A stubborn man [kang] is often boastful and may be seduced by flattery. A weakling [ju] likes to burden others with duties, who deceive him by not carrying them out.

Thus positive characteristics, when isolated or developed to a high degree became negative ones. All this was an acute analysis of applied psychology.

Sometimes victory was related to the understanding of the Tao by both the ruler and commander. Sun Pin probably gave the best formulation.

If numerous troops ensure victory, then we should only have to make a simple calculation to find the winner. If wealth ensures victory, then we would only have to measure grain to know the victor. If sharp weapons and strong armour ensure victory, then it would be easy to know the victor [in advance]. But the wealthy are still not safe, and the poor are still in peril; the numerous are still not victorious, and the few are still not defeated. [The factor] deciding victory, ensuring peace or peril, is the Tao.

In so far as the Tao Te Ching recommended emptiness, renunciation, persistence, and never going against the grain of things, Taoist knowledge and sympathies were obviously necessary for any commander. But ‘acting according to the Tao’ was subject to a variety of interpretations in Chinese history. According to Sun Tzu it was simply recognising reality, and using natural changes and conditions. The Confucian interpretations introduced the moral factors of virtue and the will of Heaven. Later Taoists and Naturalists searched for increased knowledge of the universe. Each option made specific demands on the commander; sometimes he was even expected to possess magical power and knowledge, a view that had not existed in antiquity but which has persisted even down to modern times. For example, Edgar Snow sketched such a popular image of general Chu Tê, leader of the Communist forces fighting against Japan.

No wonder Chinese legends credit him with all sorts of miraculous powers: the ability to see 100 li on all sides, the power to fly, and the mastery of Taoist magic, such as creating dust-clouds before an enemy, or stirring a wind against them. Superstitious folk believe he is invulnerable, for have not thousands of bullets and shells failed to destroy him?

In this way a subjective attitude to war achieved its highest point; victory was related to personal esoteric knowledge and magic power.

The relationship between the commander and the ruler constituted another topic constantly considered in the military treatises. Since the time of Sun Tzu the common opinion was that the commander should act independently of the ruler.
and the court; from the moment that he received the order until the end of a military campaign the prince had no power over him. Moreover Sun Tzu pointed out that the principles used in governing the State should not be applied in the army, and the rules for appointing officers should not be confused with the criteria for civil officials. As commentators pointed out, the principles used in State administration are based on human-heartedness (仁) and on norms of propriety (禮), on justice (義) and confidence (信); whereas the army cannot use norms of propriety and virtue — it should practise deception (詐), authority based on punishments (刑) and always adjust to a changing situation (宜) instead of keeping to stable principles.

A commander’s independence was often expressed in a very striking manner. For example, the Wei Liao Tzu book said that the commander is not dependent on Heaven above, nor upon the Earth below, nor upon the Men in the middle.

A similar formula was repeated when the commander was officially appointed by the ruler in the ancestral temple; independence from the ruler and the court were especially emphasised.

On the basis of these concepts an idea of the full separation of the army and State was born. As the Ssu-ma Fa put it:

in antiquity the State did not interfere in the affairs of the army, and the army did not interfere in State affairs. If the army interferes in State affairs, the virtues of the people decline. If the State interferes in army affairs, the virtues of the people also decline.

It should be added, however, that this defence of the army’s right to independence was formulated always with its subordinate position in mind; only within its limited instrumental functions was it given freedom. In reality the army was not fully independent of the State bureaucracy, and was never completely separated from it.

* Sun Tzu Ping Fa, ch. 3, p. 16; cf. Giles (11), p. 22. See in this connection what we say about Fung Shen Ye I on p. 82 below. Many famous examples of the army’s independence were known. The Shih Chi biography tells how in a court jest, Sun Tzu was once appointed commander of two detachments composed of court women. Because the women did not obey his commands he ordered that the leader, the most loved of the concubines, should be beheaded. The prince begged for their pardon, but Sun Tzu refused to obey, ‘being the commander in the field’ and independent of the ruler. See: Shih Chi, ch. 65, tr. Griffith (1), pp. 57-8. When Chou Ya-Fu was appointed a commander, the emperor came to the gate of the military camp. The guard did not allow him to enter and stopped him according to the normal regulations, permitting him to go in only after receiving an order from the commander. The emperor was very satisfied and condemned the commanders of other camps where everybody rushed out to greet him. See: Shih Chi, ch. 57, p. 2074; comments to Sun Tzu, ch. 3, Kuo Hua-Jo (1), p. 71.

* Wei Liao Tzu, ch. 8, p. 176; Weigand (1), pp. 81ff.

* Liu Thao, ch. 3, part 1, p. 566; Li Wei Kung Wen Tui, ch. 3, p. 146. See Oba Osamu (2), pp. 70–1, on the Han generals.

* Ssu-ma Fa, ch. 1, part 2, p. 81.
Any army and any combat unit needs military intelligence, and the classical Chinese theory of war especially emphasised this aspect because it was closely related to the understanding of war as a competition of plan-making, a duel of minds. As Sun Tzu put it:

thus what enables the wise sovereign and the good commander to act and win, to achieve successes beyond the reach of ordinary men, is foreknowledge.¹

According to him and to many other writers, subversive activity constituted a basis for combat and competition, in accordance with the principle ‘weaken the enemy before an engagement’. Sun Tzu even believed that victory over the Hsia dynasty, the establishment of the Shang, and afterwards that of the Chou, were accomplished mainly because the attacking side had one important person at the opposition’s court.² Thus all great historical changes had the use of secret agents as one of their basic factors. Of course this concept of the function of spies in making history was limited by Sun Tzu when he recognised also the need for certain virtues such as the enlightenment of a ruler and the wisdom of a commander. He believed that only highly talented persons could obtain virtuous agents and use their information and assistance in the right way. Nevertheless the concept of the value of spies remained, because it was related to the general conviction of the classical theory that man is the most important factor in war. Sun Tzu said:

Foreknowledge cannot be elicited from spirits [i.e. by divination], it cannot be obtained by analogies of occurrences, nor by calculations alone [i.e. measurement of the numbers of troops, distances, etc.]. Knowledge of the enemy’s situation can only be obtained from other men.³

Sun Tzu specified five kinds of secret agents: (1) ‘local spies’ (hsiang chien¹), recruited from the population at the time of the campaign; (2) ‘inside agents’ (nei chien²), recruited from the officials of the enemy, among them both worthy men and traitors able to disturb internal affairs as well as giving important information; (3) ‘double agents’ (fan chien³), the agents of the enemy used for one’s own purposes (these were considered especially valuable); (4) ‘doomed agents’ (ssu chien⁴) sent to deceive the enemy and expecting death as a result; (5) ‘surviving agents’ (sheng chien⁵), sent to the enemy’s side with the expectation that they would come back with news.⁴

¹ *Sun Tzu Ping Fa*, ch. 13, p. 43; Giles (11), pp. 160ff.
³ *Sun Tzu Ping Fa*, ch. 13, p. 43; tr. auct. adjuv. Giles (11), p. 163. ‘Analogies of occurrences’ (hsiang yu shih⁶) are interpreted by the commentators as occurrences of the same kind’ (lei hsiang⁷), similar to Tung Chung-Shu’s⁸ concept (cf. Vol. 2, pp. 281–2). This part of the sentence is lost in the recovered text. It may be understood also as ‘historical analogies’, which is probably nearer to Sun Tzu’s original idea.
⁴ *Sun Tzu Ping Fa*, ch. 13; Giles (11), pp. 164ff.
According to Sun Tzu, agents should be under the direct supervision of the ruler, who can use different combinations of them simultaneously. Great secrecy should be observed; in the case of an agent revealing his mission to somebody, both should be liquidated. For spies there should be no economy of money, gifts and emoluments, because it is both cheaper and easier to achieve victory with their help than by the use of the full force of an army.

In other treatises detailed systems for the transmission of secret information and orders were described.a

(6) THE MAIN CONTROVERSIES WITHIN CHINESE MILITARY THOUGHT

Some problems were solved by the theoreticians in different ways. Though classical theory might be in favour of one concept, sometimes another opinion was popular among the people and the officials. Even if rejected by the theoreticians, such a popular opinion might be revived many times, and exert considerable influence on military thought.

(i) Man and Nature

In Chinese military thought two main tendencies may be observed. The first interpreted the world in a rational and anthropocentric way; victory was considered as achieved by human skill and effort. The second searched for means using components of the natural world which were interpreted in a proto-scientific way; for example, it was assumed that men are able to win only when they act in harmony with the natural environment, with the conditions prevailing at the time, with the Five Elements, and so on. Particularly important was the idea that each of these may only be defeated by another specific Element, according to the Mutual Conquest order, thus Water conquers Fire, Fire conquers Metal, and Metal conquers Wood.b Because each of the Five Elements had corresponding numbers, planets, colours, parts of space, pitches of sound and hexagrams in the symbolic correlation system, this concept involved a highly complex system of beliefs. Since magical concepts and practices were not separated from scientific ones, this second tendency cannot be dismissed as entirely pseudo-scientific. And because magical practices were not separated from religious observances, military treatises often give detailed descriptions of the proper sacrifices to be made to many gods and spirits.

a See, for example, Liu Thao, ch. 3, parts 7, 8, pp. 269–70. It would be interesting to compare all this with what is said about spies and secret agents in Kautilya’s famous Arthashastra, see e.g. Shamsastry tr. (1), pp. 17ff., 22ff., 396–7, 417ff., 427–8. This Indian work was once thought to be of the 1st century, but Kalyanov (1) believed it should rather be assigned to the + 3rd. See here Sil (1), comparing Kautilya with Machiavelli.

c See, for example, Vol. 2, pp. 57, 84, 89–98.
In the classical theory of war the first, rationalistic tendency always dominated. Nevertheless, concepts elevating the role of Nature were also influential, and many military thinkers contributed to this, developing a whole system of martially useful natural sciences and proto-sciences. But the classical theory of war developed, it seems, totally in opposition to those quasi-scientific concepts and religious practices which were judged so important by other writers in early times. Certainly some treatises, like the Sun Tzu and the Wei Liao Tzu, rejected the mystical approach completely, but others, like Wu Tzu, accepted divination and symbols related to the correspondeces of the Five Elements as particularly useful organisational patterns, and also as means for strengthening the spirit of one's own troops, still others, like Sun Pin, combined natural philosophy with the classical theory. Here we give only the main elements of such proto-science, without any detailed description and analysis of their interrelations.

(ii) *Time*

Calculations of the 'proper time' were again composed of rational, scientific considerations (for example, which day will be windy, favourable to the use of fire), and magical (for example, the computation of 'lucky days'). For example, the day of Metal, and the hour of Metal, were generally thought to be favourable times for a defender; any attack against him would be unsuccessful.

(iii) *The Heavens*

Without astrology playing as great a part as it did in European antiquity, there were beliefs in ancient China about the great significance of the heavenly bodies. They gave information about a 'natural spirit' (thien chhi) existing at a given period and in a given space, corresponding to the periods of the dominance of the

a See Sun Tzu, ch. 11, 13, Giles (1), pp. 126, 163; Wei Liao Tzu, ch. 1, Weigand (1). pp. 88-9.

b See Wu Tzu, ch. 1, part 1.; ch. 3, part 7.

c One remembers Rudyard Kipling's 'Astrologer's Song', which contains the lines:

> What chariots, what horses, against us shall ride
> When the stars in their courses to fight on our side?

d See Sun Pin Ping Fa, chs. 8, 30.

e Fordetailed information about many of them, see Vol. 2, pp. 346-64.

f Every civilisation has had ideas about this. For example kairus (καιρός) in Greek meant the proper or appointed time, the right time, for action. And one remembers the prophecy 'To proclaim the acceptable year of the Lord', the passage from the Torah (Isaiah, 61.2), which Jesus himself read out in the synagogue (Luke, 4.19). Playing upon such conceptions this could be ver)' heartening for troops, for example, Cromwell's New Model Army.

g Thai Kung Ping Fa, ch. 1, part 3, pp. 55-6. Some recommendations related to time are quite rational. For example the Shu-ma Fa contains advice not to start a military campaign in the height of winter or summer, as this would be too difficult for the soldiers (ch. 1, part 1, p. 75). Cf. also Li Chi, ch. 1 ('Yueh Ling'); Kuan Tzu, ch. 3, part 8; tr. Rickett (1). pp. 215-19.
Five Elements and their symbols. Sometimes they were treated as envoys of the Heavenly Emperor (hao thien shang ti chih shih). Patterns of the heavenly bodies inspired some of the basic battle formations (chên), and constellations inspired camp lay-outs (ying). The most popular battle formations were called the Four Animals (ssu shou) corresponding to the constellations of the south, north, east and west, and were specified for troops in various situations. The divisions of an army, and the gates of a military camp, also used banners carrying their respective stars, constellations and symbols. But the most important was the combination of celestial bodies with the five pitches of sound, because each pitch either created a particular human spirit or defeated another according to the theory of the Five Elements.

There was also astro-geomancy, an idea of correspondences between the Heavens and the Earth, while the heavenly bodies were sometimes also used for fortune-telling. For example, if the moon had a red halo, it predicted a victory for outside forces, but if the disc itself was red then the army which remained in camp, or in a city, might expect victory. Even the decision about starting a military campaign was sometimes based on the colours of the heavenly bodies and their inter-relations. Besides the sun, the moon, planets and stars, comets were considered particularly important. But once again, the classical theoreticians rejected all this quasi-knowledge.

(iv) Winds and clouds

These were considered heavenly occurrences. Colours of clouds were supposed to indicate the dominance of one or other of the Five Elements, so that conclusions about the possibility of a victory were made. Winds were also very important. It was a common opinion that an attack was possible only in the direction of the

Notes:
1. Thai Po Yin Ching, ch. 8, p. 84.
2. Liu Tsao, ch. 3, part 1, p. 275-7; Li Wei Kung Wen Tui, ch. 2, p. 130; Thai Kung Ping Fa, pp. 64-5; Feng Hou Wei Chhi Ching, p. 5. Detailed descriptions of music, including its military use, are given in Shih Chi, ch. 24, tr. Chavannes (1), vol. 3, pp. 42off.
3. Cf. Vol. 3, p. 543, where we discuss Thang developments of the fen yeh system, whose roots go back to the Warring States period.
4. Thai Po Yin Ching, ch. 3, part 83.
5. Ibid, ch. 8, part 84.
8. Thai Po Yin Ching, ch. 8, part 88; Ho Chhien Ching, ch. 17, parts 169-76. See in the first place Loewe (12); Ho Ping-Yi & Ho Kuan-Piao (1) have recently studied one of the texts from the Tun-Huang MSS (S-3376) entitled Chan Yin Chhi Shu (Divination from Clouds and Vapours), probably written in the early 7th century and copied in the early 7th century. This was an arcane astrological handbook intended for military use, for it contains many presages useful for guiding army commanders. For example: 'when red clouds are observed on a king-hsin day, the enemy should not be attacked'. Cf. also the Chinese article by Ho & Ho (1), as well as Ma Shih-Ohhang (1).
wind; if it changed its direction, troops should at once limit their activities to
defence. The Eight Winds corresponded to the Eight Directions of space, and all
had their own names and characteristics.

Besides clouds and winds, the colour of the sky, rain and thunder were also
considered indicators of a given 'spirit' (chhi) possessed by one's own or by the
enemy's side. This was regarded as a basic factor for victory.

(v) Divisions of space

All spaces were divided into 'inside' (nei) essentially Yang, and 'outside' (wai),
essentially Yin. Moreover, space itself was divided into five parts (East, West,
South, North and Centre) corresponding to the Five Elements. According to the
spatial distribution of troops and the direction of an expected attack, some Chi­
nese theoreticians recommended the use of corresponding colours for dress, flags
and banners, numbers, sizes, sacrifices, and the like. For example, the Mohists
held the opinion that if an attack on a town was expected from the south, a
sacrifice to the Ruler of the South should be made at the southern side or the town,
and further recommended the use of red flags and uniforms, of the number 7 for
shooting with arrows, as also for the size of ritual implements, and so on. Many
theoreticians also gave similar directives for camping and marching. The division
of space was related to the natural features mentioned above, though sometimes
a more elaborate scheme was used, corresponding to the 'nine mansions' (chiu
kung). A position to the east of a mountain was considered the 'position or death'.

Many theoreticians recommended that it was preferable for troops to keep to
Yang places and avoid Yin places, with the result that a whole army might be
positioned according to this belief. Some interesting results accrued; on the rear
and flanks of an army it was best to have hills, and at the front water or marshes;
the opposite distribution of troops was regarded as 'unlucky'. A position to the
east of a mountain was considered the 'position of death'. Theoreticians also

a Wu Tzu, ch. 3, p. 61.
b Sun Pin Ping Fa, ch. 8, p. 61; Thai Po Yin Ching, ch. 8, part 88, sects 12-3; Hu
Chhien Ching, ch. 19, parts 183-189. See also the comparison of different sources in Chang Chhi-Yun (3), vol. 1,
p. 141. See also J. S. Major (4).
c Liu Tzu, ch. 3, part 12, pp. 77-9; Thai Po Yin Ching, ch. 8, part 88.
e Wu Tzu, ch. 3, part 7; Thai Po Yin Ching, ch. 6, part 71; Hu Chhien Ching, ch. 7, part 82.
f The 'nine mansions' was an astrological division of the sky; composed with one central mansion and eight
others corresponding to the Eight Directions and the Eight Trigrams, and involved in all the other magical
correspondences. The 'nine mansions' were often identified with spirits and used in the military pseudo-sciences.
For additional information on space division and its magical use see Vol. 4, part 1, pp. 291-9, 293-6.
g Sun Pin Ping Fa, ch. 8, p. 61; Thai Kung Ping Fa, ch. 3; Hu Chhien Ching, ch. 8, part 78. See also the criticism of
this concept in Wei Liao Tzu, ch. 1.
h Sun Pin Ping Fa, ch. 8, p. 61. He also considered a higher place as guaranteeing victory over a lower one.
recommended the use of banners with colours corresponding to the territory – for example, green in a forest.\(^a\) The colour of the soil was also important, and could predict victory according to the Five Element theory. Movements against a current of water were considered ‘unlucky’, and water flowing to the north was supposed to be ‘death water’ while that flowing to the east was ‘living water’.\(^b\)

\(^{(vi)}\) **Battle formations**

From antiquity onwards battle formations were regarded as a basis of military arts and knowledge.\(^c\) According to legend, formations were invented by Huang Ti, the founder of civilisation,\(^d\) though the invention of many of them was also ascribed to famous heroes. Some formations were purely practical,\(^e\) others made use of magical numbers, hexagram patterns, and the like. ‘Circular’ (\(yuan\ chên\)) and ‘square’ (\(fang\ chên\)) formations were mentioned in many ancient sources.\(^f\) The circular ones corresponded to Yang and Heaven, while the square corresponded to Yin and Earth. The most famous set of battle formations was the Eight Formations Plan (\(pa\ chên\ thu\)), known in various versions.\(^g\) The most popular version was ascribed to Chu-ko Liang, and included patterns for Heaven (\(thu\)), Earth (\(thu\)), Wind (\(fêng\)) and Clouds (\(yin\)), in addition to those for the Four Animals mentioned above.\(^h\) (Cf. Table 2 and Fig. 2.) These formations were believed to correspond to the Eight Trigrams, thus also to embody the Tao, and many sophisticated elaborations of the possible relations between them were devised. Formations and combinations of formations were divided into types to be used in various circumstances, for instance, the ‘direct fighting’ (\(chêng\)) appropriate for entering into combat, and ‘surprise manoeuvring’ (\(chhi\)) by which final victory could be achieved. Strict sequences were laid down, designating which formation could follow which, and also which could be used to overcome that adopted by the opponent.\(^i\) (See, for example, \(Thai Po Yin Ching\), ch. 6, part 72; \(Ping Huêch Ta Hui\) edition) and \(Wu Hou Hain Miao\)\(^j\) (Chung Kuo Tzu Huêch Ming Chu Chi Chhêng edition, vol. 72). \(Pa Chên Tu Ho Pien Shoo\), p. 6b and passim. Cf. Weng Yüan-Chhi’s\(^k\) commentary to \(Khu Huiêch Chi Wên\), ch. 13, pp. 13a–b. Among several kinds of the Eight Formations given by \(Hsiao Huêch Ken Chu\) (ch. 9, p. 356) there is one composed of the Five Elements, Heaven, Earth and Man. It should be mentioned that \(chên\) was also used in the meaning of ‘division’. In \(Sun Pin Ping Fa\) the eight \(chên\) are used in this meaning only, as a division of an army into eight parts, or as a given arrangement of an army, and not as battle formations (see \(Sun Pin Ping Fa\), ch. 7). The term \(Pa Chên\)\(^l\) therefore has several meanings.

\(^a\) \(Hu Chêng Ching\), ch. 7, part 69. The author also advised a commander to use colours of his banners corresponding to the colours of the army’s clothes and to the intended activity (red for attack with fire), etc.

\(^b\) \(Sun Pin Ping Fa\), ch. 8, p. 61.

\(^c\) Cf. \(Lun Tù\), ch. 15; tr. Legge (2), p. 158.

\(^d\) \(Thai Po Yin Ching\), ch. 6, p. 137; \(Li Wei Kung Wên Tui\), ch. 1, p. 106)

\(^e\) Cf. Vol. 5, part 7.

\(^f\) \(Sun Pin Ping Fa\), ch. 16, pp. 83–8; \(Wu Tzu\), ch. 3, part 3, p. 60; \(Kuei Ku Tzu\), ch. 3, p. 176.

\(^g\) \(Sun Pin Ping Fa\), ch. 16, pp. 83–8; \(Wu Tzu\), ch. 3, part 3, p. 60; \(Kuei Ku Tzu\), ch. 3, part 7.

\(^h\) See, for example, \(Thai Po Yin Ching\), ch. 6, part 72 (\(Ping Huêch Ta Hui\) edition) and \(Wu Hou Hain Miao\)\(^j\) (Chung Kuo Tzu Huêch Ming Chu Chi Chhêng edition, vol. 72). \(Pa Chên Tu Ho Pien Shoo\), p. 6b and passim. Cf. Weng Yüan-Chhi’s\(^k\) commentary to \(Khu Huiêch Chi Wên\), ch. 13, pp. 13a–b. Among several kinds of the Eight Formations given by \(Hsiao Huêch Ken Chu\) (ch. 9, p. 356) there is one composed of the Five Elements, Heaven, Earth and Man. It should be mentioned that \(chên\) was also used in the meaning of ‘division’. In \(Sun Pin Ping Fa\) the eight \(chên\) are used in this meaning only, as a division of an army into eight parts, or as a given arrangement of an army, and not as battle formations (see \(Sun Pin Ping Fa\), ch. 7). The term \(Pa Chên\)\(^l\) therefore has several meanings.

\(^i\) See, for example, \(Thai Po Yin Ching\), ch. 35, p. 927; \(Li Wei Kung Wên Tui\), ch. 1, p. 105; ch. 2, pp. 121–2. Chu-ko Liang was sometimes also named \(Wu Hou\)\(^j\); texts or formations ascribed to him use this name.

\(^j\) \(Chù Kuo Chên\), ch. 35, p. 927; \(Li Wei Kung Wên Tui\), ch. 1, p. 105; ch. 2, pp. 121–2. Chu-ko Liang was sometimes also named \(Wu Hou\)\(^j\); texts or formations ascribed to him use this name.

\(^k\) \(Wù Khoan Chên\), ch. 35, p. 927; \(Li Wei Kung Wên Tui\), ch. 1, p. 105; ch. 2, pp. 121–2. Chu-ko Liang was sometimes also named \(Wu Hou\)\(^j\); texts or formations ascribed to him use this name.

\(^l\) \(Wù Khoan Chên\), ch. 35, p. 927; \(Li Wei Kung Wên Tui\), ch. 1, p. 105; ch. 2, pp. 121–2. Chu-ko Liang was sometimes also named \(Wu Hou\)\(^j\); texts or formations ascribed to him use this name.
Table 2. *The Eight Formations* (according to Thai Po Yin Ching)

<table>
<thead>
<tr>
<th>Name</th>
<th>Trigram</th>
<th>Direct/Manoeuvre</th>
<th>Yin/Yang</th>
<th>Direction</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>天 Heaven</td>
<td>乾坤 Chhien</td>
<td>正 Chêng</td>
<td>YIN Yin</td>
<td>北西 North-West</td>
<td>元 Black</td>
</tr>
<tr>
<td>地 Earth</td>
<td>坤 Khun</td>
<td>正 Chêng</td>
<td>YIN Yin</td>
<td>南西 South-West</td>
<td>黃 Yellow</td>
</tr>
<tr>
<td>風 Wind</td>
<td>阳 Sun</td>
<td>正 Chêng</td>
<td>YIN Yin</td>
<td>南东 South-East</td>
<td>离 Red</td>
</tr>
<tr>
<td>雲 Clouds</td>
<td>雲 Khan</td>
<td>正 Chêng</td>
<td>YIN Yin</td>
<td>北 North</td>
<td>白 White</td>
</tr>
<tr>
<td>飛龍 Flying Dragon</td>
<td>陰 Chen</td>
<td>奇 Chhi</td>
<td>阳 Yang</td>
<td>东 East</td>
<td>上 upper</td>
</tr>
<tr>
<td>虎翼 Winged Tiger</td>
<td>兌 Tui</td>
<td>奇 Chhi</td>
<td>阳 Yang</td>
<td>东 East</td>
<td>下 below</td>
</tr>
<tr>
<td>鳥翔 Soaring Bird</td>
<td>離 Li</td>
<td>奇 Chhi</td>
<td>阳 Yang</td>
<td>南 South</td>
<td>赤 Red</td>
</tr>
<tr>
<td>瘰蟠 Curling Snake</td>
<td>畢 Kên</td>
<td>奇 Chhi</td>
<td>阳 Yang</td>
<td>东北 North-East</td>
<td>下 below</td>
</tr>
</tbody>
</table>

Remark:
In some places the Snake is given as equivalent to the trigram Khan, and the Clouds as corresponding to the trigram Kên respectively, which was probably a mistake.

enemy. The formations were thought of as distinguished from one another in terms of configuration, colour and number.⁸ (One particularly popular numerological idea was to begin with five and end with eight⁹). The patterns were often supposed to be invested with magical powers and liable to magical control.¹⁰ Yet

⁸ See *Thai Po Yin Ching*, ch. 6, part 71, p. 160; *Hu Chhien Ching*, ch. 8, parts 82, 83; *Li Wei Kung Wên Tui*, ch. 1, pp. 98-101. The same basic symbols and magical meanings were also used for camping arrangements. See also *Ping Hou li'ü Chi Ching*, *Wu Hou Pa Chên Ping Fa*¹ (Wu Hou's Plan of the Eight Formations), *Wu Hou Hun Miao* (Wu Hou's Mysterious Ideas).

⁹ See for example *Li Wei Kung Wên Tui*, ch. 1, p. 106.

¹⁰ See *Thai Po Yin Ching*, ch. 3, part 28; ch. 6, part 171, p. 161; *Hu Chhien Ching*, ch. 8, part 78, p. 178. See also calculations related to the River Chart and Lo Writing, *Rickett* (1), pp. 183-8.
there is no doubt that straightforwardly rational arrangements and formations, such as the ‘Ten Formations’ of the Yin-Chhiieh-Shan military texts, were also known.\(^a\)

Besides the pseudo-scientific ideas just mentioned, there were other components and practices related directly to magic and religion. For example, beliefs concerning omens, fortune-telling, sacrifices to spirits, amulets, magical training of the body, and the magical power of weapons (especially swords) were popular.\(^b\) Indeed, they were still strong at the beginning of the twentieth century,\(^c\) though ever since Sun Tzu’s time they were condemned and rejected by many professionals.\(^d\)

\(^a\) Sun Pin Ping Fa, ch. 16.
\(^b\) Descriptions of many of them are given in Hu Chhien Ching, chs. 17–20. However it should be noted that there was no strict borderline between the religious and the magical (generally using the Yin–Yang, the Five Element correspondences and the Eight Trigrams) on the one hand, and the natural-philosophical concepts of adjusting to the Tao on the other. Many omens concerning comets, clouds, winds, the behaviour of birds, snakes, thunder, and so on, were perceived purely as symptoms of a given natural ‘spirit’ (chhi’). For some descriptions of the myths and beliefs concerning swords see Lanciotti (5); Pêng Hao (1); J. J. Y. Liu (1), pp. 70, 85–7, 129–34.
\(^c\) Many of them flourished at the time of the 1 Ho Thuan (Boxer) uprising 1900; Anon. (251), vol. i, pp. 90, 355–4; vol. 4, p. 438. Cf. Naquin (1), pp. 100–1, 116–17, 134; Couling (1), pp. 59ff.; also Purcell (4), Tan (1), Esherick (1) and O’Connor (1).
Differences of opinion concerning the realistic importance of men, and of the rôle played by moral or psychological factors on the one hand, and by Nature on the other – or more generally, by the spiritual and the material factors in a campaign, constituted the basis of other controversies. Was the outcome of a war decided by...
the virtues of the ruler or the proper management or natural conditions of the State's territory, by psychological conviction or deception and physical power, by a heroic spirit or numerical superiority, even by men or weapons? These questions were discussed throughout two millennia. Many theoreticians tried to find a solution by compromise, others tended to one option. Whereas Confucians advocated moral, spiritual and human factors, others adduced material matters, brute strength or trickery. The Ssu-ma Fa and Wu Tzu represent the first tendency, Sun Tzu the second.
Figs. 9-11. Chhing dynasty battle formations as portrayed by the Russian diplomat D. V. Putyata.
The controversy was presented best in the famous discussion between Wu Chhi and the Prince Wu, the ruler of Wei state. When the prince expressed his opinion that the river and mountains created magnificent defences for his State, Wu Chhi replied 'We must rely on our virtue, not on a strategic position.' Afterwards he presented many historical and legendary examples of how, without a virtuous government, different States were destroyed, despite their possessing favourable territorial conditions. Mencius was of the same opinion.

That a State is strong is due not to natural obstacles like mountains and rivers; the world is overawed not by sharpness or arms. He who possesses the Tao has many supporters, he who has lost the Tao has few.

The Ssu-ma Fa presents in detail the concept of war based on benevolence and justice. According to this treatise, combats may be prolonged by the use of force, but final victory is the result of spirit and of virtue, above all courage and bravery based on an understanding of one’s own rightness. The author allowed the use of deception, tricks, and military science, but emphasised that they all should be subordinate to virtue; only virtues would be decisive. According to Mencius, people from a virtuous country using only wooden sticks may defeat soldiers with the best swords and armour, and may reduce the greatest strongholds.

In this way one important concept of Chinese political and military thought was born: an idea of the ‘Righteous Army’ (i ping). Such an army was created for restoring justice, therefore it behaved admirably to the people; embodying the virtues it must therefore be victorious. This became one of the most powerful beliefs in Chinese history. Some philosophers went so far as to reject the use of deception by a ‘Righteous Army’, but others maintained a moderate standpoint; if the purpose was right, then violence and trickery might be used. There was, of course, always a basic controversy between the professional mili-

\[\text{Shih Chi, ch. 65, pp. 2166–7. Cf. Griffith (1). See also Liu T’ao, ch. 1, part 7, pp. 240–1.} \]
\[\text{Meng Tzu, tr. auct. adj. Legge (3), p. 85, (2), ii, 1, para. 4.} \]
\[\text{Ssu-ma Fa, ch. 3 (part 4), p. 91; 94; cf. also ch. 1 (part 2), p. 79; ch. 2 (part 3), pp. 87, 89.} \]
\[\text{Meng Tzu, tr. Legge (3), p. 11.} \]
\[\text{Meng Tzu, tr. Legge (3), p. 85. This last statement is based on the belief that 'concord among men is more important than the profit of the Earth'.} \]
\[\text{This concept is explained in detail in Lu Shih Chhun Chhun, ch. 7; Hsin Tzu, ch. 15; tr. Dubs (8), pp. 157–70. Cf. Chhien Han Shu, ch. 74. The name seems not to be accidental, because while 'human-heartedness' (jen) corresponded to Yang, righteousness (yi) corresponded to Yin. Therefore righteousness was a virtue basic to an army.} \]
\[\text{It seems that it was an important factor in establishing new dynasties, for it paralysed resistance against a new ruler who was perceived as 'virtuous' and 'legal', possessing the 'Mandate of Heaven'. It was due to this factor that the Kuomintang united China relatively easily in 1929, and in a similar way the Chinese Communist Party achieved liberation in 1949. In both cases local chieftains subordinated themselves to the new government, and the old regime was eroded before the military victory of the opposition. On the use of this principle by Thang Thai Tsung, see Bingham (1), p. 96.} \]
\[\text{Cf. Hsin Tzu, ch. 15; tr. Dubs (8), p. 159.} \]
\[\text{See, for example, Kwan Tzu, ch. 9, p. 8a, tr. Rickett (1); Ten Thieh Luan, ch. 8, p. 4a, tr. Gale (1); Ssu-ma Fa, ch. 1, pp. 75–6; however, in a different degree, this opinion was accepted by many military treatises, Wei Liao Tzu, Liu T’ao, San Lueh, Sun Pin Pang Fa.} \]
30. MISSILES AND SIEGES

Tary theoreticians and the Confucians. This has been expressed excellently by Hsün Tzu¹, in his account of a debate before Prince Hsiao Chhêng² of Chao³ about — 250.

The prince said 'I should like to ask what are the most important points of military art.'

The Hon. Lin Wu⁴ replied 'To observe the seasons of heaven above and to take advantage of the earth below. Observe the movements of the enemy. Depart after the enemy and yet reach the goal before him. These are the important points in managing an army.'

Master Hsün Chhêng⁵ said 'No, I can’t agree. From what I have heard of the ancient Tao, in managing an army combat, everything depends on uniting the people. [...] If the officers and people had not been attached to each other and in accord with their prince, Thang⁶ and Wu [Wang]⁷ could not have conquered. Hence the men who can gain the support of the people are the best men to wage war [...]' The Hon. Lin Wu replied, 'No, I disagree. What is valuable in war is strength and advantage; when one moves one does it suddenly, and uses deceitful stratagems. He who knows best how to manage an army is sudden in his movements, his plans are very deep laid, and no one knows whence he may attack. When Sun [Tzu]⁸ and Wu [Tzu]⁹ led armies, they had no enemies in the whole world; why should it be necessary to wait for the support of the people?'

The unity of the soldiers mentioned here was of course based on the virtues of the ruler and the government. According to this Confucian concept, improvements of administration, introducing proper agrarian organisation and cultivating virtue among the people would guarantee military victory. Other military theoreticians, however, advocated the necessity of good weapons, equipment and fortifications.¹⁰

This was expressed quite clearly by Mo Tzu:

If the storehouses have no reserves of weapons, even though you may be righteous, yet you cannot punish the unrighteous.¹¹

Nevertheless the Confucian tradition has been strong for two millennia, and even some political leaders of modern China have supported these concepts and underestimated the rôle of weapons.¹²

Another important dispute concerns a similar problem: what is the most important means to victory, numerical superiority or a righteous and courageous spirit? There were two basic attitudes to this question. The first, presented by Sun Tzu,
demanded a numerical superiority of 5 to 1, at least on a tactical level.\(^a\) The second, presented by Wu Tzu, was to fight 1 against 1,000, to confront cowardly troops ready to escape with brave warriors ready to die.\(^b\) It should be mentioned, however, that even Sun Tzu did not overestimate numerical superiority. According to him, a good commander should know how to achieve ultimate victory either with a small number of troops or with a large number; final victory was possible regardless of any numerical imbalance. This concept was the more influential. Wu Tzu's idea of fighting with a very small number of troops against large numbers was regarded as a special case; only in the popular imagination did anyone fight according to this pattern. Still, usually the enormous spiritual, or even magical, power, of the soldiers, was a great help, though overestimation of the psychological factors, manifested in many different forms, was a constant characteristic of Chinese military thought. Practical experience, too, often supported this conviction. The moral factor really was a very important one; and in war waged with relatively simple weapons and without highly developed logistics, the spiritual factor was bound to be of great importance.

\(^a\) *Sun Tzu Ping Fa*, ch. 3, p. 15.

\(^b\) *Wu Tzu*, ch. 5, pp. 72–3.
Before examining further the classical Chinese ideology of war, we must consider how the Chinese construed their theory of warfare, what they thought of war itself, what place it held in their civilisation, and how distinctive they thought their ideas were. Here it must be appreciated that although this classical theory was originally developed in China, it had a great influence on China's neighbours, such as Vietnam, Korea and Japan.

Reasons for its perennial vitality

Classical Chinese military works, unlike those of ancient Greece and Rome, function in two dimensions at the same time: they are both part of the history of thought and also topical manuals of warfare. In Europe, it is only in the field of law that we find historical continuity over a comparable period, though no one regards the works of Roman law as applicable without change to our own times.

Despite the fascination with Western arms and modern exact sciences, the classical theory was still part of Chinese military education in the 1920s, as is evident both from the instruction material of the various armies of that period and in works of a theoretical character. Soviet advisers in the revolutionary armies have spoken and written about the persistent tradition many times. They have asserted that the ancient authors, Sun Tzu, Wu Tzu and Chu-ko Liang, still remained incontrovertible authorities on the military art for Chinese generals, and one of them, Vitalii Primakov, even went so far as to write that on account of their different education, Chinese military men had an entirely distinct understanding of strategy. Unlike Europeans, they did not construe it as a matter of striking with force, but as an art of stratagem, trickery and outsmarting the enemy. In effect, their behaviour was quite opposite to that propounded by Western canons of war. For example, they avoided wiping out an enemy force, or locking it into a circle. Instead, they only forced it to flee, and, as an inviolable rule, left a passage for retreat - 'the golden bridge'. They tried a gamut of trickery to bring the enemy into conflict with some other force, or to foment treason, or a rift within his ranks. To that end they did not even hesitate to disguise soldiers in foreign uniforms. Occasionally, they attempted 'an attack with water', or with stampeding animals.

which had tufts of blazing hemp tied to their tails. Such tactics were practised from remote antiquity, yet classical theory has also inspired the new political and military concepts of the present century. Though discontinued by modernisers who were looking either to the West or to the Soviet Union it regained its importance in the years of the war with Japan. For example, Hsiao Chien (2) wrote in 1940 that 70% of Sun Tzu's theory still remained valid, and the task facing the military today was to marry it to modern weaponry.

Since it was felt to be an analysis of war as such, and an exposition of its permanent laws, the theory has been used in China to analyse all wars waged around the entire world from antiquity to the present time. Indeed, Sun Tzu's treatise has been the only ancient work published frequently by the People's Republic in a popular form for mass readership, while descriptions of famous ancient tactics were employed by one of the generals during the march to the north in the autumn of 1926 (Vishnyakova-Akimova (1), p. 134). On the use against the enemy of animals with hemp burning at their tails, see: Karaev (1), pp. 45-8; Shi Chi, ch. 82, p. 2455; and Vol. 5, p. 17, pp. 66, 211, 214.

On the use against the enemy of animals with hemp burning at their tails, see: Karaev (1), pp. 45-8; Shi Chi, ch. 82, p. 2455; and Vol. 5, p. 17, pp. 66, 211, 214.

The influence of the classical theory was also evident in the concepts propagated among the Manchurian armies. See Anon. (249).

The most frequent publication was the modern colloquial Chinese version of Sun Tzu's treatise, edited by Kuo Hua-Jo (1), who was its chief propagator in Yenan in the 1940s. Between 1957 and 1965 there were nine editions in Shanghai and Peking; and in the following years new editions continued to appear, even in Hong Kong. Thus this phenomenon is not exclusively a matter of political inspiration. One might mention that a new popular edition of the Tao Te Ching has appeared in People's China as 'a military work'.

Because of the great number of such works we can mention only a few. Chang Hai-Khun & Tsao Tseng-Hsiang (1) and Chang Chhien (1) have reviewed the major wars and battlefields of antiquity. Shih Chin-Chung (1) and Kuo Hua-Jo (2) have described the famous Battle of the Fei River, while Kuo Hua-Jo (3) has done the same for the Battle of the Red Clif, as well as (5) for the Battle of Chi-Mo between the States of Chihi and Yen.

See Griffith (1), pp. 169-78.
continued examination of the ancient works as containing perpetually valid truths. Apart from these extremes, there existed many intermediate views, favouring a selective use of past achievements to a varying extent and in various forms. There were quotations from the classics (with and without references to the original sources). A borrowing of relevant elements from the ancient ideology was not in every case the result of familiarity with its fundamental texts. Frequently the classical theory of war was assimilated indirectly, by way of the vernacular culture which it had stamped with a distinctive mark.

Despite these diverse tendencies and variations, the classical theory still partly retained in this century the character of ‘perpetual truth’; a feature normally only belonging to Confucianism or Taoism or, in a somewhat different way, Buddhism. This is all the more astonishing because the theory was tied so closely to practical needs, and was essentially devoid of any element of faith; indeed it was almost an exact science.²

What were the causes of the astounding vitality of this ancient theory for so long a time? They seem due to the fact that the theory was primarily concerned with the intrinsic nature of war, with the cardinal rules of strategy, and the social and psychological aspects of belligerency. In other words, it dealt with just those areas where changes have been minimal, for classical theory had nothing to say on matters of weaponry and on technical subjects. Hence the impossibility of using it to discover, for instance, how an ancient army was organised, or what rôle chariots might play in the fighting; in brief, it avoided the very subjects which changed so noticeably with time. The timelessness of classical theory is particularly evident in its analysis of the psychological reasons for waging war and the rules of conduct it recommends; these have both remained surprisingly valid, in the Western world as well as in the East. Thus Razin (1) remarked how well the theory set out the basic science of war;³ while Andries put it even more emphatically: ‘The principles [...] of Sun Tzu are astonishingly modern, his art of war as military theory is one of the best ever formulated.’⁴

One can, of course, ask whether the traditionalism observable in many areas of social life in East Asia might not explain the scale of modern uses of that theory, and of the admiration felt for it. We think that the answer has to be in part affirmative, even though one cannot fully explain the scope, causes and character of Asian conservatism and traditionalism.⁵

¹ One might seek a partial parallel in the interest of Western Renaissance scholars in the classical writings on Tactica.
² For example many popular proverbs and sayings are derived from this theory, and many of them contain its basic statements. See Chhiên Chi-Kang (2), pp. 8–11. Nearly all quotations from Sun Tzu in Mao Tse-Tung’s works are in reality popular sayings only.
³ (1), p. 56.
⁴ Arnold Toynbee, while analysing his impressions from Japan, wrote that the people of East Asia place the new alongside the old, whereas the people of the West replace the old with the new; (3), p. 69. Essentially similar judgements on East Asia have been voiced many times in regard to technology, social structures and literature. See, for example: Chi Wên-Fu (4), pp. 69–73; Boriskovskii (1), pp. 99–101, 107, 127; Pershits, Mongait & Alekseev (1), pp. 75, 84; Pomerants (1), p. 296. For an analysis of the phenomenon of Chinese ‘traditionalism’ see Gawlikowski (1).
The classical theory of war also remained alive because it set out many principles of social activity, which, though not quite universal in character, were adjusted to the outlook and emotional responses of the peoples of East Asia. As long as no fundamental changes in culture occurred, the many elements of the classical theory were bound to retain their practical applicability. Of course, some such changes have indeed taken place, and consequently certain aspects of the psychological stratum of the classical theory have become out of date. Yet even in Japan, where a new industrial culture has developed to an advanced stage, many key elements of the traditional culture still remain.

The ties between the classical theory and the cultures of East Asian peoples were many-sided, highly complex and deeply-rooted, because that theory became basic both to the elitist 'canonical culture' and to the popular plebeian one. Whereas in Europe a knowledge of Clausewitz's ideas was confined to small groups, and even the military did not think it necessary to know them; in China and the neighbouring countries the concepts of Sun Tzu or Chu-ko Liang were widespread knowledge among educated people, and compulsory reading for those who wanted to try their hand in politics. Even peasant-farmers, coolies and teenagers could discourse upon famous stratagems and principles of action with expertise and involvement — as anyone knows who has listened to the conversations in war-time Szechuanese tea-houses.

But in that sphere, too, relevant changes have been in progress since the 1920s, with some of the élite as well as the ordinary people, particularly the young, looking to Western models, ideals and fashions. Nevertheless, in spite of various fluctuations, also caused by political considerations, Chinese interest in the classical theory of war was incomparably greater than were military ideas in Europe. The classical theory continues to occupy pride of place in China's national culture and, in a somewhat different way, in the cultures of neighbouring countries.

To explain this phenomenon one has to go back to the content of the classical theory, and to the way war has always been considered in China.

(2) A SYNCRETISTIC TRADITION; THE NON-MILITARY APPROACH TO WAR AND THE DUTIES OF SOLDIERS

In the ancient and later texts one comes across three general terms referring to
Encyclopaedias explain that war simply means opposing an enemy with the use of armed force (_ih ping li hsiang tui ti_), which seems to be a definition very aptly rendering the meaning of the Chinese term. It appears that the fundamental matter was to assemble the armed forces and take them out in the field.

But commanding an armed force did not necessarily mean armed combat. The ancient Chinese were able to make a very modern demonstration of armed force and its preparedness, yet refrain from any fight at close quarters, in order to achieve a particular political end. They regarded the latter as of prime importance, so that their military victories did not become feats in themselves, and thus obscure the principal objective, as so often happened in the Western world. There are two well-known sayings (_chheng yü_) which refer to such restrained behaviour. One is the 'treaty signed at city-walls' (_chheng hsia chih ming_), which means subordination to an opponent, or joining up with him as the result of his encirclement of one's capital city with troops, in other words, a forced submission. The other is the 'encirclement of Wei to save Chao' (_wei Wei chiu Chao_). This refers to the famous manoeuvre employed by Sun Pin in the war of -353. Instead of rushing the Chhi troops directly to the aid of Chao, which was invaded by Wei, he encircled the capital city of the latter. The Wei forces hastily returned to save their country and fought a battle against great odds which ended in their defeat. In this way, the ally was defended and the enemy crushed. The latter element – to crush the enemy with armed force – is actually missing in the ordinary understanding of the phrase, because what is really involved is an indirect approach which plunges the enemy into confusion by a surprise capture of his vital positions, or endangers them so that he is compelled to surrender.

Still another way, involving no force of troops, is the famous stratagem of 'an empty stronghold' (_khung chheng chi_). Back in the Three Kingdoms period, the celebrated Chu-ko Liang, while staying in a small town with an insignificant body of troops, was taken by surprise when a whole army of the enemy appeared.

a Such as _chen_ – to fight a battle, to go to war; _fa_ – an open attack on another State, a punitive expedition, to chastise rebels, to cut down, to smite; _chêng_ – to hunt down, to go on a punitive expedition, a military expedition, to correct, rectify; _pén_ – a secret or illegal attack (made against a prince or benevolent ruler), to invade; _chhi_ – an indirect attack, tosmite from a rear or side, odd, strange, rare; _kung_ – to attack, to strike. See the analysis of these and other military terms by Than Chhuan-Chi (1), pp. 178–87, Wallacker (5), pp. 93–9, Alekseev (1), pp. 187–9.

b T'hu Hui, p. 553.

c This saying mainly serves to indicate a compulsory situation, and functions in literature as a metaphor. See T'hu Hui, p. 32; Ma Kuo-Fan (1), pp. 108–9; and Dubson (1).

d Shih Chi, ch. 65, p. 2163; Sun Pin Ping Fa, ch. 1; Wu Ku (1), pp. 10–11; Huang Sheng-Chang (4), p. 444.
Chu-ko Liang immediately ordered the gates of the small stronghold to be opened wide, and then he himself sat over the gateway and began to chant verses to a lute accompaniment. The enemy commander sensed some extremely perfidious stratagem, for he could not believe that Chu-ko Liang was entirely bluffing, and so withdrew his forces to a safe distance. Ever since, this stratagem has been the classical form of obtaining a desired effect through a discreet use of appearances, avoiding an actual battle. The use of armed force is restricted even further by one of the models of action recommended in the *Shih Ching* (Book of Odes):

- Have in good order your chariots and horses,
- Your bows and arrows, and all kinds of weapons,
- With due preparations for waging war—
- And thus keep at a distance the [aggressive] South.

In other words, the build-up of military might and preparedness for war will of themselves deter the warlike Man tribes of the South. Concomitant with that are instructions, in the true Confucian spirit, on how to improve the methods of rule and virtuous government inside the country. In the *Ts'o Ch'uan* for — 596 we find a good explanation of the meaning of the character *wu*¹ (military), said to be formed from *chih*² (to stop) and *ko*³ (a halberd). From this it was inferred that the word ‘military’ did not mean fighting as such, but rather protecting the peace against enemies from both within and without by many methods, including the repression of crimes and injustices, enlightenment, and the establishment of harmony. The text criticises the display of weapons and the adoption of an awesome attitude to other States instead of practising virtue in one’s own.

Again, in the *Lun Yu* it is said:

If remoter people are not submissive, civil culture and virtue are to be encouraged to attract them; and when they have been attracted, they must be made contented and tranquil.

The *Sun Tzu Ping Fa* considers war very broadly. In it we read:

The rule of waging war [*yung ping*⁴] is this: to take the enemy’s country whole is the best thing of all; to shatter and destroy it is not so good. It is better to capture an entire army than to destroy it, to capture a complete regiment, a detachment or a company than to destroy them. Hence to fight and to gain victory in all battles is not supreme excellence; supreme excellence consists in breaking the enemy’s resistance without fighting. Thus the highest form of war [*ping*⁵] is to baulk the enemy’s strategic plans; the next best is to...
30. MISSILES AND SIEGES

It can be seen that war (ping) includes the nipping of the enemy's plans in the bud by employing agents, as well as by diplomatic moves to isolate him from his allies. It is only afterwards that Sun Tzu mentions leading an army out into the field. In view of all this, one should not be surprised to note that victories brought about by the highest art of war are passed over almost unnoticed and are no source of fame.

Given such a broad understanding of the terms wu and ping, they cease to be, in essence, the equivalent to the term war in European languages. With these the Chinese associated a very broad range of social phenomena and, consequently, understood the art of war (ping fa) quite differently from Europeans. Though treatises devoted to military matters often discuss the conduct of war and military preparations, many of them touch also on civil administration, and the proper internal policy of a State. Indeed, these subjects were often given priority, as can be seen in many ancient and mediaeval texts; and the Chinese included military knowledge in many political, philosophical and historical books.

This is evident, for example, in the memorandum written by Yu Hsiu-Lieh who objected to the bestowal of classical books on the Tibetans, when they asked for these in + 730.

Moreover, your servant has heard that though these Tibetans are of a wild and warlike nature, they are firm in their plans, intelligent, industrious and resolved to learn with rapt attention. If they read well the Shu Ching, they will learn war strategy. If they familiarise themselves with the Shih Ching, they will learn how to command an army, and how soldiers should be trained for defence. If they carefully read the Li Chhi, they will learn the system of weapons to use depending on the seasons. If they study the Tso Chuan, they will learn that resorting to stratagems is an accepted part of warlike operation.

Strategic planning, chhiian mou, was indeed the key area of knowledge for military theoreticians. In the Chhien Han Shu its principles are given thus:

Rely on the way of justice and right administration to defend the country, then cultivate stratagems and tricks in using the armed forces; first plan and calculate, only then wage...
war. Use form skilfully [decoy troop strength] and hide actual strength, observe the rules of Yin and Yang [time and terrain], apply knowledge and cunning.

As shown by ancient texts, the commander's tasks certainly included duties of administrative type; indeed the very term commander is confusing. The Tso Chuan lists the following among the things he had to do:

Thus military enterprise [wu] involves the repression of tyranny and cruelty, the ending of combat, the preservation of the sovereign power, and the firm establishment of merit, bringing peace to the people, harmonising all [the State] and increasing [the national] wealth.

A similar point is made by Hsun Tzu.

The way of ensuring affluence in the world consists in understanding the division [of duties]. Peasants and simple folk have the duty of keeping field-patches tidy, with boundaries between them clearly marked, of weeding out wild-growing grasses, of growing grain, and enriching the fields with manure to keep them fertile. The tasks facing the commander [chiang shuai] are to direct the field work in tune with the seasons, to move things forward to increase achievements, to maintain harmony among the village elders and to keep order to prevent them from acquiring privileges against the law.

Such a military-administrative approach to the rôle of the commander was combined with ideas in which the population was expected to perform productive and military functions at the same time (ping min ho); and to form administrative communes, organised in a hierarchical way, which could provide police and military units. These ideas have fascinated Chinese minds from the ancient to the most recent times and underlie almost every attempted reform; all that changes is the precise form of organisation. Such an outlook is already to be found in the ancient Chou Li, and attempts to carry it into effect were made by the rulers of many dynasties, from Han to Thang. Thus arose the famous system of thun thien, military-agricultural colonies or settlements, often situated towards the borders of the country, where farming and military functions could be carried out as necessary. Especially keen on these ideas was the famous Sung reformer Wang An-Shih, as also the rulers of the Ming dynasty, and, to some extent, those of the

8 See p. 34 above.
9 Chien Han Shih, p. 1768, tr. auct.
10 Tso Chuan, Duke Hsuan 12th year, tr. Couvreur (1), vol. 1, p. 636; Legge (11), mod. auct.
11 Hsin Tzu, ch. 10 ('Fu Kuo'), tr. auct. Cf. Dubs (8), pp. 151ff.; Burton Watson (5).
12 See Chhên Têng-Yüan (1); an in-depth interpretation of that phenomenon and its ideological roots is presented by Bauer (4).
14 See Wang Chien-Ying (1); Chang Wei-Hua (1); Chao Yu-Wên (1); Ku Chi-Kuang (1); Loewe (4), vol. 1, pp. 56–7; Elvin (2), pp. 36–8, 54–68.
15 See James T. C. Liu (2); Lapina (1).
16 See Wang Yu-Chhüan (2), (2); Bokshchanin (1).
They were revived during the Thai-Phing and I-Ho-Thuan uprisings, and they were still present in some of the reforms at the end of the nineteenth and the beginning of the twentieth centuries.

Just how much the Chinese were attached to these links between the organisation of the rural population into quasi-communal collectives on the one hand, and military units on the other, can be seen in the following statement from the Hsin Thang Shu: 'In ancient times military regulations were born of the system of well-fields' (ku chê ping fa chhi yu ching thien). Here we meet again with the concept of ching thien, the nine fields with a well in the middle, a concept even more ancient than that of thun thien. A little further on, the writer asserts that the basic function of the military is to check chaos (chih ping so i chih luan), 'chaos' being a euphemism for popular rebellions and barbarian inroads. Hence, what was in essence an administrative-productive organisation of the population, designed to maintain internal order and oppose possible invasion, could be treated as identical with 'military organisation' if the term 'military' were interpreted broadly enough. Could this system not go some considerable way to explain the singular longevity of Chinese bureaucratic society?

Thus those who were in command of war operations took interest not merely in armaments, regular troops and auxiliary forces, but also in their own, and possibly the enemy, population, people whose whole lives tend to be reorganised in accordance with wartime exigencies. Commanders had to enforce the rigours of a 'state of emergency', by meticulous supervision and control of everyday life, in such matters as the provision of food; seeking always how to strengthen morale on their own side and erode that of the enemy. While reading the respective instructions in

a At this time these principles were implemented only on a limited scale — applying mainly to Manchutians and Mongols (Michael (1)); Chinese military villages were organised chiefly in the frontier areas (Duman (2); Kuhn (1)). This book contains a brief description of various military-agrarian systems since antiquity, and an analysis of possible changes within a bureaucratic state system with a shift in its character from civil to military.

b See Li Chhun (2); Michael (3); liushechkin (1).

c During the development of the I-Ho-Thuan movement, the concept of organising the whole population into semi-military units was alive not only among the insurgents, but also promoted by some local officials and eventually accepted by the monarch. Anon. (259), vol. 1, pp. 1-2, 4-6, 16-17; Anon. (257), vol. 4, pp. 12-13; Rudakov (1), pp. 49-51; Purcell (4); Kaluzhnaya (1).

d An edict promulgated on 5 Sept. 1898, during the Hundred Days of Reform, enforced a system of military training for the whole population. It was one of the few measures upheld by the Empress-Dowager after the counter-coup, and the system was even expanded in the reforms of 1905. See Powell (1), pp. 96, 101, 173, who believes that this military reform had been inspired by European concepts. We do not believe he is right here, because in the texts of edicts and proclamations we come across many quotations from classical treatises, and the fundamental ideas of the reform had been present in China since early times.

e Hsin Thang Shu, ch. 50. p. 1a; tr. auct. We translate thus because the idea expressed was not at all new. In the Chhien Han Shu ch. 25, p. 1081, it was put in another way: 'the army spreads out from the well-fields' (chíh ching thien chú chhi chun fa). According to Chinese authors in antiquity the very creation of the army was based on well-field social units; thus the State military organisation and regulations were born out of the village commune structure. This is one example of the need to translate ping fa in some cases as 'military regulations or principles'.

f We have had a good look at this system at an earlier stage (Vol. 4, pt. 3, pp. 25ff.). It had all kinds of overtones and undertones, such as the nine cells of the Lo Shu magic square, the nine halls of the Ming Thang temple, and soon (cf. Vol. 3, pp. 58ff.).

1. 古者兵法起於井田
2. 井田
3. 置兵所以止亂
4. 因井田而製軍賦
military books, one has the irresistible impression that these matters were of tremendous importance for their authors and were integral with the whole process of waging war. Their approach to war was like that of officials of a bureaucratic state—which in fact they usually were. As H. Franke has convincingly demonstrated, the tradition initiated in antiquity was expanded in later times.

The military as a whole, and every commander in particular, had a broad range of jurisdiction because of the incomplete separation of military functions from State administration. Moreover the army and the soldiers as a group were not shaped as distinct social units, with their own systems of values, ideology and patterns of behaviour. In a word, they had no autonomy. Individual persons were often posted from civil to military offices and vice versa. Indeed, a common opinion prevailing in the Empire was that any good administrator could be a good commander because their functions were perceived as essentially the same, based as they were on administrative qualifications. Although the process of separation of the military (both as a social group, and as an organised structure) set in by the end of the Springs and Autumns epoch and developed during the Warring States period, it was never brought to completion in Chinese culture. Officials were traditionally divided into 'military' (wu) and 'civil' (wén), but their functions were far from being precisely separated, and they belonged to one single organisation—State administration.

The traditions of the army's discharge of many of its diverse functions: policing, keeping guard, taking charge of transport, and even of production, survived as late as the close of the nineteenth century. What we call the army in old-time

* Loewe has written (4), p. 87: '... when some seven decades later the Han Emperor Wu's men were embarking on their policies of expansion, there was no immediate source of persons who could be trusted to act as loyal military leaders and who possessed an intimate acquaintance with the terrain where the campaigns were to be fought. At the same time the government was initiating schemes to attract men to serve as officials in the civil service, and attempting to create a feeling of professionalism among them. There is no statement of the fundamental qualities which Wu Ti required of his military leaders, or of any distinction he made between such qualities and those of the senior civil servants. Very often a man would be promoted from a civil to a military post or vice versa and [...] senior provincial officials were often faced with the duties of military leadership as well as civil administration. But while it is not possible to find evidence for the existence of a professional group of generals, there are a number of cases of highly successful officers whose entire careers were devoted to fighting in Wu Ti's wars. All these characteristics persisted in Chinese society right down to the nineteenth century. Continual transfers, especially from civil to military posts, were a result of this situation; see Michael (2), vol. 1, p. 87; Putyata (2), p. 172. The lack of any clear differentiation between military commanders and civil statesmen was also well expressed in the composition of the lists of 'military heroes' or those venerated in the State Military Temple (Wu Miao). See Thung Tien, ch. 53; also the lists from various times collected by Wei Ju-Lin & Liu Chung-Phing (1), pp. 141–5, 151–4.

* See Thung Shu-Yeh (1), pp. 369–70. Some references, given by other scholars, indicate that already in the Springs and Autumns era there existed wén shih and wu shih ('literary scholars' and 'warrior scholars'), the elementary division among the lower strata of the nobility (Kuo Mo-Jo (2), (4), p. 80; Li Ya-Nung (3), pp. 150–6). But sometimes the opinion is expressed that this division started only in the Warring States era (Yang Khuan (3), pp. 203–8; Chang Chhi-Yiin (3), p. 57).

* Of course the wu element sometimes overwhelmed the wén element, but not often, and not for long. Cf. p. 92 below.
China was in actual essence many varying services of local and central administration which did not form a single organisational whole, and served the needs of every administrative level. The modernisation of the Chinese army essentially consisted in giving it a uniform structure, and freeing it from administrative functions other than those of a purely military nature. All this was a much more important and difficult problem than procuring modern weapons.

The separation of military functions and their permanent ascription to definite persons was obstructed, among other things, by a classically supercilious treatment of military men. Therefore they all invariably aspired to civilian posts, which were regarded as promotion; and they were quite willing to take up tasks in administration, education or production, because these were more prestigious than military chores. Thus the trend to fuse together civil and military functions was accompanied for two millennia by a contrary trend to separate the military as a despised social category with restricted civil rights, and a status inferior to corresponding civilian groups. These two trends dominated alternately; while the first usually prevailed at the commanding officer level, the second generally held good at the level of lower-ranking officers and soldiers. Yet even at periods of relative separation between the two classes, military men took care of many matters outside those purely military functions which determined their lower status.

This social attitude was connected with precise theoretical concepts. All the philosophical schools of ancient China assumed that factors of a political nature, not military power alone, would decide the final outcome of a war – a view accepted also by many military theoreticians. Of all the factors contributing to victory, Sun Tzu puts the Tao in the first place. He writes:

[The observance of the principles of] the Tao causes the people to be in accord with their ruler, so that they will follow him unto death, and would be ready to live always with him, undismayed by any danger.

The Wu Tzu text elaborates upon this view:

Marquis Wu asked: ‘I should like to know the way to make my battle formations firm, my defences strong, and how in war [I can] be certain of winning.’

Wu Chhi replied: ‘[... If] Your Majesty can employ the worthy in high position, and those who are worthless in inferior position, then your array will be already firm. If people are secure in their farms and dwellings, and friendly with their governing officials, then your defences will be already strong. If the clans approve of their own sovereign and disapprove of those from neighbouring countries, then your battles will be already won.’

a See Michael (1), pp. 64–6, 105–6; Putyata (1), pp. 12–27; Jakinf (1), vol. 1, pp. 254–7; Gawlikowski (3); Bobrov (1).

b See Chang Chi-Yun (3); Kracke (1), pp. 56, 91. Upgrading the prestige of the military service was a major task during the army modernisation (1), pp. 35–6, 56–7, 63, 163.

c Of course, writers like Julius Caesar or Machiavelli emphasised political loyalties and morale as major factors in warfare, but not perhaps as strikingly as the Chinese.

d Sun Tzu Ping Fa, ch. 1, tr. Giles (11), p. 2, mod. auct.

e Wu Tzu, ch. 1, sect. 6, tr. Griffith (1), p. 154, mod. auct.
Wu Tzu also maintained that

Generally in administering a country and controlling an army it is necessary to instruct the people with *li*¹, and to encourage them with *i²* [justice, good customs and natural law and righteousness] so as to inculcate the sense of honour. Now if men’s sense of honour is great they will be able to take the initiative and go on campaign, if less, they will still be able to defend.¹

In the Confucian School there even appeared statements directly questioning the role of armaments and military strength. Mencius, having presented the Kingly Way – the ideas of ensuring prosperity to the country by good management, reduction in tax and *corvée* burdens, provision of material conditions for flourishing growth, and education in moral virtues – addresses the king with the following words:

you will have then a people who can be employed, just with sticks which they have prepared, to oppose the strong mail and sharp weapons of the Chhin and Chhu troops. [...] In accordance with this is the saying: ‘the benevolent has no enemy’.²

That was essentially an elaboration on the concepts of Confucius himself, who asserted that one could beat an army, but never defeat the will of the people.³ Analogous concepts were expressed many times in various ancient texts; they are already to be found in developed form in the *Tso Chuan*.⁴

Given such definitions of the factors for victory, the inclusion of political and administrative affairs in the commander’s tasks was fully understandable. Wu Tzu wrote that ‘the best commander of an army is one in whom civil and martial [virtues] are perfectly combined [*tsung wen wu che chun chih chiang yeh⁵*]’.⁵ Among the many judgements attributed to Confucius, we find also this: military preparations are indispensable to civil administration, and civil preparations are equally essential in the military sphere (*yu wen shih che pi yu wen pei, yu shih che pi yu wen pei⁶*). In such circumstances, it became the ideal, accepted even in modern times, to combine the elements of *wen* and *wu* in all organisations.⁷ Under such conditions, the separation of military functions from the civil ones was simply impossi-

¹ Wu Tzu, ch. 1, sect. 4, tr. Griffith (1), p. 159, mod. auct.
² Meng Tzu, I, (t), v, 3 & 6; tr. Legge (3), pp. 15, 13.
³ Lun Yu, IX, 25; tr. Legge (2), p. 88, mod. auct. A good collection of his statements relating to military affairs, and those of Mencius too, is contained in Li Yu-Jih (2), vol. 15, pp. iff. His explanations, however, are far from perfect.
⁴ For example: ‘According to what I have heard, military enterprises should be undertaken only when some prince has done evil. An enemy who cultivates, without changing, kindness in his virtue, justice in his punishments, the [right] ordering of his government, right regulations in different affairs, and in the statutes and laws of his State, is not to be contended with. It is not against such a one that we conduct punitive expeditions.’ *Tso Chuan*, Duke Hsuan year 12 (-596); tr. Legge (11), p. 317; Couvreur (1), vol. 1, p. 613.
⁵ Wu Tzu, ch. 4, sect. 1; tr. Griffith (1), p. 161, mod. auct.

¹ 禮 ² 義 ³ 總文武者軍之將 也 ⁴ 有文事者必有武備，有武事者必有文備
ble. Not until the twentieth century did the situation begin to change. In ancient India we come across a similar approach to command, and a very broad range of commander's duties, including administrative matters and international relations. There, the commander-in-chief, it seems, bore the title of Minister for War and Peace.

However it may be with Indian history, was it not a wonderful feat on the part of the Chinese that for two thousand years, by and large, they 'kept the soldiers down'? As Churchill said of the scientists during the Second World War, they were 'on tap but not on top'. The primacy of the civilian ethos throughout those twenty centuries is most impressive, with its peaceful (if not pacifist) emphasis dominating the scene; and the socially approved despising of military men was precisely part of the sociological mechanism by which it was done. Of course from time to time the system broke down, as in the case of the chih tu shih provincial governors at the end of the Thang; but the classical evaluations always inevitably returned, as soldiers found themselves kings or emperors, and came quickly to depend upon the civilian bureaucrats, who inevitably brought back their own way of thinking into power. Already long ago we heard Lu Chia saying to the first Han emperor 'Yes, sire, you conquered the empire on horseback, but it is not on horseback that you will be able to govern it.'

What a contrast all this presented with the European situation! The Roman State made some effort to keep the generals under control, but the Augustan emperors evaded that and it never returned. In the Middle Ages kings themselves personally led armies into battle. In more recent times generals have often been the most important figures in their respective countries, and some, like Napoleon, have risen to wield imperial power. And nearer our own period there have been army conspiracies, military juntas and militaristic Führers and Caudillos without end. All this may be just another way of saying that military-aristocratic feudalism was characteristic of Europe, while China on the other hand, had bureaucratic feudalism, a form of society which seemed to be weaker, but was actually much stronger, than that of Europe, perhaps in part because more rational.

It may well be true, in the famous saying of Mao Tsé-Tung, that political power grows only 'out of the barrel of a gun', but for him everything depended on who aimed it, and that had to be the Party. Oliver Cromwell would have fully agreed, only in his case it was Parliament and not the King, hence the New Model Army and the Eastern Counties Association. But as soon as the fighting was over, and the Revolution safe, civilian forces took control, and once again more effectively in China than ever in Europe.

* Sharma (1), p. 15.
* Vol. 1, p. 103.
* Cf. Bullard (1).
(3) THE GREAT POPULARITY OF MILITARY THOUGHT AMONG THE PEOPLE

(i) Epics and operas

The classical theory of war not only became an integral part of the 'official culture' of China's political thought, exerting a tangible influence on the actual activities of the administrators and diplomats; it was also assimilated by the people, to become a part of ordinary popular culture.a

It may seem more difficult to explain this, but a few things can be said at the outset. Ordinary people, often illiterate, could not know the war treatises directly. These entered social consciousness and plebeian culture through the medium of tales on historical subjects, through the theatre which made use of some of the themes, and through the popular New Year's images, nien hua1. The thematic cycles spun by itinerant story-tellers gave rise to great epics, the most popular of which, perhaps, were 'The Romance of the Three Kingdoms' (San Kuo Chih Yen I'), 'Stories of the River Banks' (Shui Hu Chuan'), 'The Complete History of Yo Fei' (Shuo Yo Chhiian Chuan'), and the 'Pilgrimage to the West' (Hsi Yu Chi').d A majority of these, like the popular epics of other nations, told stories of wars and battles, but pride of place was held by the 'Romance of the Three Kingdoms', a re-telling of the events of the San Kuo period (+ 3rd century). First, one of its leading characters was Chu·ko Liang, the great military strategist and theoretician, Captain-General of the State of Shu in the West, while another was Tsao Tshao, prince of Wei in the North, the strategist and commentator on the Sun Tzu treatise. In effect, the 'Romance', composed of many episodes, is a description of the classical strategic and tactical solutions which were part of the ancient theory of war, one could even call the 'Romance' a popular lecture on classical theory. Secondly, its popularity exceeded that of all the other works. Although the epic as we know it today was shaped at the turn of the Yuan and Ming epochs, its threads had already been extremely popular much earlier. This is confirmed by Su Tung-Plh', who died in + 1101.

Wang Phêng' once told me that when children are naughty and their families cannot stand them, they toss them some money and make them sit in a group to listen to old

a At least this was true from the Sung onwards. Plebeian interests before that time need further investigation.
b See e.g. the recent translation by Moss Roberts (1).
c Tr. Buck (1); Jackson (1). It is the well-known novel All Men are Brothers.
d Tr. Waley (17), also, more recently Yu (1).
e Lo Kuan-Chung', its author, most probably lived in the years +1330 to +1400, according to the estimate made by Lu Hsun (1), p. 99, (2). The fullest analysis to date of the epic-forming process has been made by Riftin (1), p. 182, who accepts these dates.
30. MISSILES AND SIEGES

When tales of the Three Kingdoms are told and the children hear of Liu Pei's defeat, they frown or even weep, but when they hear of Tshao Tshao's defeat they cry out for joy.

According to Alekseev, stage adaptations of fragments of the 'Romance of the Three Kingdoms' accounted for about 70 per cent of China's extremely popular theatrical repertoire at the beginning of this century, being the most frequently staged of all plays. On the basis of his direct observations Alekseev wrote:

I think that China can be called a 'theatre-land' without fear of overstatement. The huge number of theatre troupes in China, downright inconceivable by European standards, is evidence of an equally incredible popularity of the theatre [...] There is not the remotest backwoods imaginable which a theatre troupe would not visit a few times a year. Arguably, there is no other country in the world where fondness for theatrical performance is so organic to the whole life of the populace [...] A ragamuffin beggar singing Chu-ko Liang's aria from the 'Empty Stronghold Stratagem' opera, and acting out his part right there in the street, is a normal sight. While travelling in China in 1907 I kept hearing drivers, boatmen and itinerant pedlars singing operatic arias.

He also pointed to close links between the epics, the theatre, and the very popular New Year pictures often presenting scenes from plays based on the 'Romance'. In effect, the 'Romance' became a folk manual of waging war from which leaders of peasant rebellions and guerrillas derived instruction for centuries. It also shaped the generals' ideas of war even as late as the 1920s, and it was the 'Romance' from which Mao Tse-Tung himself learnt the classical theory of war.

(ii) The promotions of the Martial Genii

Another extremely popular military epic was the Fêng Shên Yen (Stories of the Promotions of the Martial Genii), commonly known as Fêng Shên Pang (Pass-Lists of the Deified Heroes); attributed to Hsü Chung-Lin but actually put together by Lu Hsi-Hsing in the Ming about the middle of the 16th century. Since it had a less certain historical background than those already mentioned, and since it con-

* Alekseev (2), p. 76.
* See note by Rifin (1).
* Alekseev (2), pp. 60-1. I myself had exactly the same experience during the war years 1942-6. And wherever you went someone was playing the airs on the khushin* violin.
* Alekseev (2), p. 72.
* Young revolutionary students at the turn of this century were also attracted to the heroes of the 'romance' as well as to its exposition of military theory; see Rankin (1), p. 39.
* This is quite evident from the memoirs of Soviet advisers to Chinese armies in the 1920s. See, for example, Primakov (1), pp. 66-7, 147; Blagodatov (1), p. 44.
* This has been shown in a monograph by Liu Tshun-Jên (6). There is a translation by Grube (1).
tained a good deal of science-fiction wish-fulfilment material, it needs a separate entry – but the idea of warfare was fully present. We have mentioned it already, \(^8\) though in the context of possible Iranian-Chinese cultural exchange.

The central theme is the overthrow of Chou Hsin\(^1\) the wicked last Shang\(^2\) emperor, by Wu Wang\(^3\), the champion of the house of Chou\(^4\). Lu Hsi-Hsing, who was a Taoist and a Tantric Buddhist, gave full rein to his imagination in describing the magical means whereby the spirit-supporters of the Chou destroy the monsters which come to the aid of the Shang. There is much talk of ‘thousand-league eyes’ (chhien li yen\(^5\)) and ‘wind-borne ears’ (shun feng erh\(^6\)), foreshadowing television and radio respectively, as bringers of intelligence. There are plenty of magical fire-weapons and whirling fire-wheels,\(^b\) based no doubt upon the gunpowder armaments of the time, like Wei Hu’s ‘cudgel’(kun)\(^8\).\(^c\) There were rays of light that killed, like laser beams; and even chemical and bacteriological warfare was not forgotten, for Chhên Chhi\(^9\) blew forth from his nostrils a yellow gas which slew the enemy,\(^d\) and elsewhere there is talk of the dissemination of ‘plague-carrying seeds’.\(^e\) On occasion it could rain blood, and battlements could split apart. No wonder the novel remained so popular for so long.

But finally Chou Hsin perishes in the flames, after which Wu Wang rewards the spiritual beings and loyal ministers who have helped him by endowing them with titles, ranks and fiefs. All this material was not new with Lu Hsi-Hsing, many ideas going back to pre-Han Taoist and post-Han Buddhist legends. Its immediate predecessor was an older novel entitled Wu Wang Fa Chou Phing Hua\(^10\) (The Story of King Wu’s Expedition against Chou), bearing no author’s name, but published c. +1321. Another book, now only preserved in Japan, the Lieh Kuo Chih Chuan\(^11\) (Records of Famous Countries), was probably also one of the forerunners of the Feng Shen Ten I.

(iii) The deification of Kuan Yu and Yo Fei

The powerful rôle played by all these tales in shaping popular ideas of belligerency is also indicated indirectly by the deification of Kuan Yu\(^12\) (d. +219), one of

\(^b\) Liu Tshun-Jên (6), pp. 237–8. The ‘fiery-pointed spear’ may well have been taken from the fire-lance (Vol. 5, pt 7, pp. 220ff.).
\(^c\) As we shall see in Vol. 5, pt 7, one of the guns or proto-guns was called a ‘cudgel’, p. 247.
\(^d\) Liu Tshun-Jên (6), p. 182.
\(^e\) Ibid., p. vi.

\(^1\) 封演
\(^2\) 商
\(^3\) 武王
\(^4\) 周
\(^5\) 千里眼
\(^6\) 順風耳
\(^7\) 韋護
\(^8\) 榔
\(^9\) 陳奇
\(^10\) 武王伐封所話
\(^11\) 列國志傳
\(^12\) 關羽
30. MISSILES AND SIEGES

Fig. 12. A 'New Year Picture', from an early 20th-century collection; Kuan Yii, God of War and Peace.

Fig. 13. 'New Year Picture' illustrating Chu-ko Liang's famous 'stratagem of the empty stronghold'.
their protagonists, as the god of war or, more precisely, a god of war and peace - the most favoured guardian of towns, villages and family homes in old-time China. Another character out of the Romance, Chang Fei (d. + 221), exercised a similar function, but he enjoyed much less respect and was incomparably less popular. Sometimes Yo Fei (1103–41) also appears as a god of war. The folk cult of Kuan Yu demonstrates clearly the previously mentioned broad range of functions of commanders, who were not treated as 'military men' in the narrow European sense. This is how C. K. Yang describes the cult.

He was worshipped by merchants as a god of wealth and fidelity in business contracts, by the common people as a curer of disease, by soldiers as their patron deity, and by many local communities as the chief spirit protecting against calamities and destruction. For many social organisations, such as brotherhoods and secret societies, he was the overseer of fraternal ties and the god who blessed the cause of mutual interest and justice.

* This second appellation was already reflected in one of his earlier titles: Chuang Mu Wu An Wang (King of War and Peace Fortifying Concord) - conferred on him in + 1128. The Kuan Yu cult, born shortly after his death, was supported by the authorities, and ranked among the officially sanctioned forms of religion. The hero received increasingly magnificent titles, to earn the highest one after the Thaiping uprising: Kuan Fu Tzu - Great Teacher Kuan, a title which made him the peer of Confucius (Dořé (1), vol. vi, pp. 54ff.). Early in the 20th century the most popular title among the populace was Kuan Shèng Ti Chün - Divine Lord Sage Kuan. Nevertheless, he assumed the position of the god of war only in relatively late times. In the Han period Chihh Yu was worshipped as the Patron of War (Ping Chu). After the beginning of the Thang dynasty Thai-kung Wang was worshipped as a great military sage in the capital, and local Temples of Martial Life (Wu Miao) paralleled the Confucian Temples of Culture (Wen Miao). The Ch'in dynasty replaced him with Kuan Ti who had long been especially popular among the masses. The Chinese Republic added another hero to Kuan Ti, Yo Fei (+ 1103 to + 1141), the commander in many battles against the Jurchen Chin; they were equal in rank and worshipped together in the Wu Miao. For further details see Wei Ju-Lin, Liu Chung-Phing (1), pp. 139–56. On the cult of Yo Fei see an interesting study by Wilhelm (15). No doubt the best discussion of Kuan Yu's deification in a Western language is that of Dinsinger (1).

* For the forms of the Kuan Yu cult see Day (1), p. 59. Estimates of his great popularity are available, though with some differences. Gamble (2), p. 401, analysed the temples in one district of northern China and reported that in 1928 those of Kuan Yu accounted for 75 per cent of all which were officially recognised, and 17 per cent of all the temples and shrines in the area. From an analysis of the local gazetteer material covering eight districts, C. K. Yang (3), p. 441, supplies much lower figures for 1946; these amount only to 72 per cent of the official temples and 5.4 per cent of all temples. The differences could be due both to the change of time and to different local traditions and ways of classification. In any calculations concerning temples, one should take the cardinal deities as the basis, but because of Kuan Yu's tremendous popularity, his statuettes or portraits were found in various temples, homes and shops. Thus the figures given above do not completely reflect the power of his cult. In mainland China since the Second World War it has distinctly waned, but it still flourishes in Taiwan and in South East Asian Chinese centres.

* A certain idea of the place held by these persons among the gods is provided by the characterisation of the Chinese pantheon prepared by Hsü Lang-Kuang (3) on the basis of his observations and interviews in Yunnan between 1941 and 1943. Supreme Heaven was headed by the Jade Emperor, under whom were various ministers, the most important being Kuan Yu and Chang Fei. Somewhere under the Jade Emperor, too, were the founders of the 'three religions', Confucius, the Buddha and Lao Tzu, but these were not very active, unlike the two ministers and other lower official gods. Kuan Kung, the god of war, was the most outstanding of all, most active at all religious gatherings, and the most respected, revered and feared. He was a historical character, and his sworn brother, General Chang Fei, was regarded as holding equal rank with him; but according to those interviewed, Kuan was far above Chang. See Hsü Lang-Kuang (3), pp. 139, 142.

* The worship of Yo Fei, hero of the battles against the Jurchen Chin Tartars, was much less popular, although it also enjoyed official support. See a very interesting study by Wilhelm (15).
There was, however, a more specific ethical and political aspect to his cult which caused it to be universally fostered in all parts of China by both the government and the gentry. This was the symbolisation of the civic values of loyalty, righteousness, and devoted support for the legitimate political power. It may be added that Kuan Yu was also regarded as a devil-controller, a diviner of future events, a god of literature, a guardian of Buddhist temples, and even as a god of the theatre; his cult, though supported by the State, was distinctly popular in character, and so quite different from that of Confucius. The temple tales and local legends about his assistance to people were laced with threads of stories from the ‘The Romance of the Three Kingdoms’, which made him the leading representative of mass imagination in China during the past dozen or so centuries. In the worship of Kuan Yu military values and virtues clearly mingle with civil ones, the wen elements with the wu.

It is precisely this fusion that seems to provide the key to understanding the popularity of the worship of Kuan Yu and the other military deities. The Chinese justified even the use of violence against people – malefactors, wrongdoers and devils – if the need arose to restore or defend the principles of justice, virtues, social and moral order, peace and harmony – all recognised as absolute values in themselves. The worship of heroes appears to contradict Confucianism and Bud-

a It may be added that the moral virtues of loyalty and fraternity were regarded as essential for the ‘ideal warrior’ in China. According to Shih Yu-Ching (2), p. 290, Kuan Yu became deified as the god of war primarily because of these moral qualities.

b Day (1), p. 54; Gamble (1), p. 418.

c Lou Tzu-Khuang (1), p. 27.

e Sometimes in the temples dedicated to him one comes across two statues, one – Kuan Yu the military man – clad in armour and wielding a sword, and the other – Kuan Yu the civil servant – in an official’s attire with a brush and books.

f For example, consider the Mên Shen — ‘Door Gods’, identified with two generals of the Thang epoch (though the worship of gate spirits as such is much earlier); Sa Tu Thien Chiang — the Four Great Heavenly Generals; Yen Kung Yuan-Shu — Generalissimo Duke Yen; Tshao Ta Chiang-Chin — General Tshao (protecting health); Pao Thung Chiang-Chin — General Protecting Children, Chung Khuei — Controller of Evil Demons, etc.

g Having analysed many contemporary texts, Eberhard concluded that killing in defence of the State, or the ruler, or one’s parents, was considered as justified or even honourable. Killing in revenge for injustice was a small sin, but killing for trivial reasons, momentary emotions or for any profit was much more serious. (29), p. 66. It is worth noting in this context: that plain (not cruel) killing was regarded in China as a light offence, Eberhard (29), p. 63. On the basis of sociological studies, Olga Lang has explained how the ideals of patriotism and opposition to oppression, inspired by popular literature, really functioned in motivations to join the army, and especially the Communist Army. She was writing ten years before their final victory, and her title ‘The Good Iron of the New Chinese Army’ needs a little explanation. There is an age-old proverb in Chinese: ‘háo tián bù tā tāng; hología pù tāng jūng’ (Good iron is not used to make nails; good men do not become soldiers); Smith (1), p. 346; Scarborough & Allan (1), p. 341. But in fact the Red Army had a mission and high ideals, so the iron that joined it was good iron. Cf. Cell (1); Lary (1); Bullard (1).
dhism, but if one analyses its content in China – reflected in the titles conferred upon the figures worshipped, and the prayers to them – it turns out that the contradiction is only apparent. Just as the Mohists, who most severely condemned war in ancient China, preserved the most detailed instructions and descriptions of its conduct, so Confucian and popular thought of the later period were anti-militaristic, but not at all pacifist.

(iv) Knights-errant and combat-arts

Our analysis, however, is still incomplete. While Confucian writings and Chinese philosophy in general, wrote Eberhard, 'regard all military activity as undesirable, though sometimes necessary, the material written for the common man, and apparently also the material written by the common man, extols war, fighting and heroism.' As rightly pointed out by Bauer, the latter writings were sometimes in opposition to the official Confucian ideology, but he also made it clear that among the common people, insurgents and members of secret associations, a specific ideological mixture involving both religious and military elements was popular, as well as models of the military organisation of society, and military titles. No doubt, the various manifestations of the ideology of militarism, and the exaltation of fighting, savoured of something antagonistic to the Tao, and inspired both a shiver of terror and fascination. Says the Tao Te Ching:

Weapons are ill-omened things; a man of the Tao has no concern with them. Wherever armies have been quartered, thorns and brambles grow. He who takes pleasure in the slaughter of men will never get his way in the world.

But militarism was not in every case linked with an opposition to Confucianism. It seems that we are simply dealing here with still another current in Chinese culture, chiefly but not solely plebeian, a current that is still alive at the present

* Buddhism was, of course, pacifist by definition, as it were, yet it is interesting that the Buddhas and bodhisattvas had to be protected by so many military demigods, lokapalas, as at Mako-Khu, the cave-temples of Tun-Huang. Long ago we gave an illustration of one of these, wearing Persian-type armour, in Vol. 1, Fig. 23 opposite p.128. All Buddhist temples in China (and many Taoist ones too) are protected by two lokapalas of particularly ferocious mien, one on each side of the main gate. And indeed their uniforms provided Laufer (15) with material for a classical monograph on the history of defensive armour (cf. Vol. 5, pt 8). Cf. also Demiéville (12).

b The Chinese people were not unconscious of the horrors of war, as many a poem could testify, but they never at any time developed that terrible concept of the 'Holy War' (jihad) so characteristic of Islam. War was for them a regrettable necessity, needed at times to 'put things straight', never an activity designed to make forcible conversions to a religious doctrine. Here they were helped perhaps by their absence of religious fervour; for both Confucianism and Taoism were basically rational, and Buddhism, of its nature, pacifist. In other words, they might have applauded the Christian doctrine of the 'just war', though even that has now been outdated by the coming of weapons of mass destruction, like the nuclear bomb.

c On the history of pacifism in China see Tomkinson (1).

d (29), p.82.

e (4), pp. 119, 290.

f Ch'u Ta-Kao (2), pp. 41-3; Duyvendak (18), pp. 76-7.

* Many manifestations of Chinese military culture and the exaltation of fighting are described by J. J. Y. Liu (1). We find many songs glorifying war and describing fraternal feelings between soldiers in the Shihib Ching (e.g., I (11) viii, II (3) iii, III (3) ix, and IV (3) vi, tr. Legge (8), pp. 201-3, 281-4, 555-9, 643-7). Even though they often originated with the common people, they later had a place in the official culture of the higher strata.
day, as shown by the tremendous popularity of films depicting combats. A characteristic of the military-type hero given by Ruhlmann confirms this opinion;

The swordsman-hero's primary attribute is great bodily strength [...]. Good fighters have trained for years in 'military arts' [wu shu], i.e. boxing and wrestling, fencing and the use of various weapons. These arts remain their favourite pastime. They can also jump and climb high walls, walk on roofs and so on, with exceptional agility. Some know how to walk under water [...]. Not content to fight well and bravely, the true swordsmen-heroes add to their prowess the spice of an often humorous bravura, crowning serious action with an aura of playful art. [...]. Outspoken bluntness and a volcanic temper characterise most swordsmen-heroes in popular fiction. They are obtuse, guileless, child-like, belligerent, tempestuous, irascible, devoid of manners, and completely uninhibited. They boast and quarrel as a pastime, and occasionally kill by mistake [...]. Why are these raving bullies still so loved by their companions and by the devotees of fiction? First, because they are honest and straightforward in a world in which persons officially vested with authority prefer the devious approach. With them one knows where one stands. Their friendships, born in the street, in wineshops, or in other humble places, are disinterested, spontaneous alliances of congenial souls. They are totally indifferent to money and will not take a penny of what is not theirs. They do not fawn and flatter, and nothing can make them shift their loyalty [...]. They are resolute men, always ready to lay down their lives for their friends, never willing to surrender or to let themselves be curbed or humiliated. Muscle play brings them a natural exhilaration, their strength and courage lead to a careless self-confidence, their crude jokes reveal a robust sense of humour, and their whole manner exudes joie de vivre. They have all the companionable qualities that are subsumed in the phrase hao-han, 'good fellow'.

Heroes of this kind, shaping the popular image of the military man in China, would naturally fascinate the common people of any country. Moreover, all the types of Chinese military hero presented by Ruhlmann have one basic characteristic: their activity is directed to restoring order and justice, to fighting against evil persons and bad administration. Sometimes, in the sorry circumstances of a particular age, only robbers or rebels can behave like Confucian gentlemen and make an attempt to restore a moral order. This tradition, as he pointed out, began in

1 Ruhlmann (1), pp. 166–8.
2 武術
3 好漢
antiquity, with the popular heroes or hsiao1 'adventurers', and even Confucians might accept their behaviour as adequate for a time of political chaos. It was even easier, of course, in the case of heroes like Kuan Yü, embodying military, civil and scholarly virtues all at the same time.

More or less Confucianised and sometimes worshipped in China, all these military heroes popularised the classical theory of war, and this constitutes the main difference between their social functions and those fulfilled by similar European or West Asian heroes. Some parallels do exist, however; mediaeval knights-errant or folk-heroes like Robin Hood were known not only because of their bravery and military talents but above all because of their civil virtues, 'putting down the mighty from their seat, and exalting the humble and meek'.

4. MILITARY THOUGHT IN CIVIL LIFE

Here the widespread popularisation of the classical theory of war was a dominant factor, though not the only one. Alongside it we come across a completely opposite trend: the treatment of military knowledge as secret, and the transmission of its techniques only to select and trusted persons, with the safe-keeping of such works in manuscript form only. This was because the wide range of knowledge covered many magical and astrological matters, as well as professional secrets (related to the Wu shu and to strategy) which were never willingly revealed. But the shroud of mystery surrounding that knowledge was also, doubtless, connected with death, with identification with the Yin element, and with the negation of many officially recognised values. The State, too, made efforts to bar from mass circulation those

1. The popular name *yu hsiao* is often translated as 'knights-errant' or 'wandering knights'. In the Shih Chi a short chapter is devoted to them (ch. 124). Su-ma Ch'ien used this name for fighting commoners characterised in the following way: 'though their actions may not conform to perfect righteousness, yet they are always true to their word. What they undertake they always fulfil: what they promise they invariably carry out. Without thinking of themselves they hasten to the side of those who are in trouble, whether it means survival or destruction, life or death. Yet they never boast of their accomplishments, but rather consider it a disgrace to brag of what they have done for others.' Tr. Burton Watson (1), vol. ii, p. 453. In all this there was more than a touch of Mohism (Vol. 2, p. 165ff.).

3. It is for this reason that the previously mentioned text of the 'Thirty-Six Stratagems' (*San-shih-liu Chi?*) the 'Secret Military Book' (*Mi Pin Ping Fa?*) has been lost. For many years it circulated in the People's Republic only in typewritten duplicates, as was mentioned by Teng Tso (Ma Nan-Thun (1), p. 509). In Vietnam until the sixties one of the chief works of the theory of war in that country — 'A Summary of the Military Books' (*Binh Thu Luu Lane*) written by Tran Quoc Tuan (in between +1116 and +1900) — has never been published. The Library of the Committee for Social Sciences in Hanoi is in possession of the sole manuscript copy.

4. Sometimes the secret character of military books was stressed by the mysterious way in which they were said to have been received. One such example is the story of the *Thai Kung Ping Fa?* an antique text which was bestowed by a mysterious old man on a disciple who had shown suitable respect and willingness (Shih Chi, ch. 55, pp. 2034-5, tr. Burton Watson (1), vol. i, pp. 135-6, 150). That disciple was none other than Chang Liang. Another example is the story of how the *Yin Fu Ching?* was received by Huang Ti from a spirit. Later on, we shall see (Vol. 5, pt 7, pp. 20ff.) how the greatest of all the books on gunpowder weapons was transmitted by a mysterious old Taoist to Chiao Yü about +1360.

military texts that it regarded as ‘dangerous’ or ‘immoral’. In consequence such texts were read clandestinely, distributed illegally, and, even if used, were not referred to.

The sphere of influence of classical theory and its applications was extremely broad. It was applied in politics and diplomacy, also enjoying success with merchants as a theory of conducting business. It was recommended for use in everyday life and in every activity of society. However, even if its uses in political activity, which often assumes the character of a fight, or even in trade, can be explained with comparative ease, yet viewing social life as a form of struggle may seem surprising, especially in China. To determine the origins of this view would require some research, though it does seem that in China such a tradition goes back long before the influence of Western social Darwinism. Indeed, the easy assimilation (and dissemination) of the latter in China at the beginning of this century may well have been due to that tradition.

As early as the Chuang Tzu book we find the following fragment:

Great words are clear and limpid, little words are shrill and quarrelsome. In sleep, men’s spirits go visiting; in waking hours, their bodies hustle. In [human] relations and [human] unions ‘fighting’ between minds goes on every day, [it is] sometimes irresolute, sometimes sly, sometimes secret. Over little fears people are careful, but over great [fears] they are deliberate. Some bound off like an arrow or a crossbow bullet, certain that they are the arbiters of right and wrong. Others cling to their position as though they had sworn to be

a A ban on the study of military texts was enforced by the Manchu Dynasty in 1644. One year later, they eased that restriction and permitted the possession of certain kinds of arms, but upheld the ban on the possession of military books by private persons under penalty of death (Chhing Chhao Win Huen Tung Khoa, vol. 195, p. 6399.) In 1652 they issued the first prohibition concerning popular novels and tales, especially on military heroes, and this was repeated many times by imperial edicts down to the nineteenth century (Shih Yu-Chung (2), p. 286). Of course, the Manchu government from its outset regarded all the earlier, especially Ming, books on military techniques as essentially subversive; even the Wu Pei Chih was banned. Again, moral and political considerations must have been behind the decision maintained right down to the end of the seventies not to reissue the text of the Thirty-Six Stratagems.

b The detailed history of this would be an important part of the study of the elite as compared with plebeian attitudes on warfare.

c Quite popular in Hong Kong in the 1970s was, for example, Jén’s work (r) ‘How to use ‘Master Sun’s Art of War’ as a safe way to strengthen the economic position of the individual.’ It was published also under a simpler title: ‘Master Sun’s Art of War and Economics’. Similar works appeared in Japan, see Griffith (2), p. 176.

d Hsü Tung-Chê’s work (r) published in Hong Kong in the 1970s, is an example. See also Li Chan (r), p. 4.

e See a detailed analysis of this world-view expressed in the phrase ‘people-eat people’ by Solomon (1), pp. 99-104. Also Chiang Hsiug (r), on the first page of his work presenting the Canon of War in a popular form, says: ‘human life is always war’ (jen shéng tia shih chén chéng). This had originally been said by Thomas Hobbes of Malmesbury (+1588 to +1679); ‘The condition of man [. . .] is a condition of war of every one against every one’ (Leviathan, pt 1, ch. 4). He was a great pessimist, of course, living in the dawn of capitalist society, and however true his dictum may have been of antiquity and the more organic society of European feudalism, it was certainly exactly what Mao Tse-Tung and the communist armies he led were determined to replace by human cooperation and cooperativeness.

f On this see the book of Pusey (1). In 1902 an anonymous writer put it this way: ‘Europeans pretty-up imperialism with excuses based either on Nietzsche’s extremist individualism or on Darwin’s theory of evolution – but if we say it straight, imperialism is nothing but brigandism!’ (Chang Nan & Wang Jên-Chih (2), vol. 1a, p. 199).
in league with it; they defend for victory. Others fail like autumn and winter, such is the way they dwindle day by day. Others drown in what they do, you cannot make them turn back [...]. Joy, anger, grief, delight, worry, regret, fickleness, inflexibility, modesty, willfulness, candour, insolence—music from empty holes, mushrooms springing up in dampness, day and night replacing each other before us, and no one knows from where they sprout.a

In the Han Fei Tzu book there is an even more striking example:

The Yellow Emperor coined the saying ‘Superior and inferior wage a hundred battles a day.’ The inferior conceals his selfish intentions and tests the superior; the superior manipulates rules and measures in splitting the influences of inferiors. Therefore the institution of rules and measures is the sovereign’s treasure; the possession of partisans and adherents are not yet sufficient. When the superior loses one or two inches, the inferior will gain eight or sixteen feet.b

The categories mentioned here: a superior and an inferior, a weaker and a stronger party, may be used not only in officialdom, but also within the clan and in various social situations.c In the Shih Chi there is the following description of Pai Kuei1 (late — 4th century), regarded as a founder of the Chinese art of commerce:

He ate and drank the simplest fare, controlled his appetites and desires, economised on clothing, and shared the same hardships as his servants and slaves, but when he saw a good opportunity, he pounced on it like a fierce animal or a bird of prey. ‘As you see’, he said, ‘I manage my business affairs in the same way that [the statesmen] I Yin2 and Lü Shang3d made plans [mou4], Sun Tzu5 and Wu Chhi6 deployed troops [yung ping’7], and Shang Yang8 laid down laws [hsing fo9]. Therefore, if a man does not have wisdom enough to adjust to a situation, courage enough to make decisions, benevolence enough to know how to give and take, and strength enough to defend his position, then though he may wish to learn my methods, I will never teach them to him.’

According to Ssu-ma Chhien, he observed the laws of changes, rules of times and places, and used them for his business together with the theories mentioned above. The use of stratagems transformed into the popular chhêng yî10 for dealing with the various situations of everyday life, for other people’s actions, and for an analysis and planning of one’s own behaviour, is also an old tradition; it has been particularly frequent during the past millennium when battle epics and story cycles became so widespread.

b Han Fei Tzu, bk. 2 (ch. 9); tr. Liao (1), vol. 1, pp. 59–60, mod. auct.
c Mao Tse-Tung used these categories for describing his own family relations—their between his father and mother, his father and himself—when he discussed the origins of his military arts. See Snow (1), pp. 128–9. Lin Yutang, using military terminology for describing everyday life and Chinese ways of behaviour, even gave as an example the relationship between a customer and a waiter in a restaurant; (3), pp. 56–7.
d Also known as Chiang Tzu-Ya” and Thai-kung Wang”.
e Shih Chi, ch. 129 (p. 3259); tr. Burton Watson (1), vol. ii, p. 483, mod. auct.
Although stratagems could be used against relatives within a clan or a rural community, they were nevertheless chiefly employed against strangers. As Seyschab says, they belonged to the complex of norms called the 'way of deception' (kuei tao⁴), in opposition to the 'right way' (chêng tao²) based on Confucian ideology. From the viewpoint of the individual, society was divided into a group 'ego', the community of which he or she was a part, together with other groups in some way associated with it, as well as with other people less closely related due to social separatism. Though Confucianism in its classical form extended the influence of its ideals over the whole of society, later on a practice grew up in which the use of artifices and stratagems against 'strangers' was recognised as admissible. Nevertheless such behaviour was treated with some embarrassment and was not openly spoken about, though the consolidation of clan structures over the last thousand years seems to have accelerated the widening distance between the 'ego' and 'strangers'. It is worth recalling here that, until the Thaiping rebellion, little or no attempt had been made in China to promote a national ideology. The inhabitants of China (Chung-Kuo jên³) were, as they saw it, simply 'the inhabitants of this world below' (thien hsia⁴). The Chinese must have regarded the broad uses of kuei tao as justified until the mid-nineteenth century, when the Thaiping began to instil a pan-Sinic solidarity, partly because of religious ideology and partly to counteract the widespread practice of treating the members of another clan, the inhabitants of another village, commune, district, and province as 'enemies'. Such ideas were regarded as justified in remote rural areas as late as the mid-twentieth century.

⁵ The most complete description of these concepts in the twentieth century has been given by Li Tsung-Wu (1), pp. 137-53. The ego was conceived of differently from the way it was thought of in the Western world; it was less separated from society and more strongly tied to social environment. This was due to the frequent occurrence of personality dependence and an individual's striving to fulfil his social duties rather than his private wishes or whims. The various aspects of the distinctive character of the ego in traditional Chinese culture are provided in an interesting way by Vasiliev (1), pp. 52-82. Many accurate observations on this subject are also given by Hsu Lang-Kuang (2).
⁶ See Lun Yu, XII, 5; XII, 19; tr. Legge (2), pp. 117, 135. The first of these passages has the immortal words: 'He who respects the dignity of man, and practises what love and courtesy require—for him all men within the four seas are brothers.' A comprehensive review of Confucius' moral concepts is provided by Perclomov (2), pp. 71-82.
⁷ Cf. the English rural expression current till late in the nineteenth century: 'Furriners from Devon'.
⁹ The reservation should be made that earlier on, in the Sung period, there appeared spontaneous ideas quite close to national and pan-Sinic patriotism (Traumzettel (1), pp. 199-213). See also the voluminous work on the Chinese concept of nationhood by Kiyukov and others (1).
¹¹ In a famous statement, Sun Yat-Sen wrote: '... the Chinese people have only family and clan solidarity; they do not have national spirit. Therefore, even though we have four hundred million people gathered together in one China, in reality they are just a heap of loose sand.' Sun Chung-Shan (2), vol. ii, p. 593; tr. de Bary (8), vol. ii, p. 107.
¹² 經道
¹³ 道道
¹⁴ 中國人
¹⁵ 天下
¹⁶ 原道醒世訓
It may be added that the principles of human behaviour laid down in the theory of war conformed to widespread philosophical concepts. They also corresponded with East Asian social structures, and generally accepted rules of action. Many other elements of culture which seem quite closely related to the theory of war and which propagated its basic principles, such as the popular game *weiqi*, or the different techniques of individual combat, could, however, be shaped independently of that theory, for after all they were products of the same civilization.

Thus not only could the theory of war provide the civilian with useful patterns of action but, conversely, tricks developed in working techniques, or even observed in animal behaviour, were easily transformed into military art. This idea, quite common as a natural attitude of soldiers to the outside world, was well expressed by one Japanese author.

The good commanders of ancient times observed the activity of fishermen, woodcutters, and farmers, immediately learned them, and created a new art from them, which they often used in their campaigns. If a man continually focuses his awareness on it, he will recognise that everything which he sees or hears contributes to the art of [military] planning.\(^a\)

\(\sum\) The Place of the Military Element (\(wu^2\)) in the Chinese World Order

To conclude these general deliberations upon war and the art of war, mention should be made of the place they occupied in the social world order created by the Chinese. As we have said, ever since the Han epoch, and probably much earlier, war, the *wu* factor, was treated as a manifestation of the dark, negative, female element *Yin*, whereas the factor of culture, *wen*, was identified with *Yang*, with civilisation, virtue and rites (*li*), with the canonical books, with proper upbring­ing, with the civil administration and the assurance of affluence and happiness.\(^b\)

The *wu* factor was identified with the use of force\(^c\) and violence, with punishment

\(^a\) Chozan Shissai*, *Tengu Geijutsu Ron* (Discourse on the Arts of the Mountain Demons), first published in +1729. Cf. Kammer (1), p. 91. The word ‘military’ is added because the problem of strategic planning and military subterfuges was discussed here.

\(^b\) For an analysis of the *wu* concept in Confucian thought, see Perelomov (2), pp. 76-8; Lisевич (1), pp. 75-77.

\(^c\) When you think of it, the question ‘are you a member of the Forces?’ is a strange bit of English. It was of course assumed, even in the most flagrant acts of imperialism, that ‘the Forces of the Queen’ were acting in the interests of justice and righteousness. But the word still carries a pejorative undertone. I remember my old friend Dr Arthur Peck of Christ’s College, saying that if you wanted to draft some document so that it would arouse little or no opposition, you should avoid the use of the word ‘forced’, preferring ‘obliged’ – if X is done to Y we shall be obliged to do so and so in response.

\(^*\) 田狗藝術論, *武* 3 文, *禮* 5 *武*
and thus with law (jia\(^4\)), with torture,\(^a\) destruction and killing, with the production of misfortunes, and hence with savagery.\(^b\) According to the Five-Element concept, wu\(^5\) was attributed to the Yin season when everything withers away and dies down, that is, to autumn and to the element Metal. This theory established war's ties with Fire, Earth and Water, correspondence with the numerals (9, 6 and 5), with directions (mainly western), and with certain animals.\(^c\) Wen\(^9\) on the other hand, was identified with Yang and corresponded to Heaven; wu\(^4\), identified with Yin, must therefore belong to Earth. From an astrological aspect, Thai Po (the planet Venus) was assumed to be the heavenly body in charge of war, while the Moon presided over punishment in the narrower sense.\(^d\) The principles determining these magic counterparts changed and were not always free from contradictions; some relationships appeared obvious, but others were of a speculative character.\(^e\)

At the end of the Warring States period the full or broken lines of the trigrams were considered as corresponding to the Yang and Yin forces. Thus there came about an intimate connection between the Eight Trigrams theory and military thought; moreover, the concept of correspondence between Heaven, Earth and Man was born. According to this, the Way of Heaven was based on the Yang and Yin forces, the Way of Earth on Hardness (kang\(^5\)) and Softness (jou\(^6\)), and the Way of Man on the virtues of human-heartedness (jên\(^7\)) and righteousness (i\(^8\)).\(^f\) Therefore Wen\(^9\) corresponded to Softness and Righteousness; a Softness (also often understood as Flexibility, Weakness or Gentleness) which was expected to overcome Hardness (i.e. Rigidity, Strength, Arrogant Violence).\(^g\) Consequently Soft-

\(^a\) Cf. Vol. 2, p. 325. From +1520 onwards the early Portuguese travellers had been deeply impressed by the justice of the Chinese magistrates, who 'take all possible means to avoid condemning anyone to death'. The evil conditions of prisons, and the use of judicial torture, they were accustomed to in their own country, so they did not remark on it. Just the same testimony was borne by a Timurid ambassador from Persia in +1420. Yet when the British and other European sailors reached China in 1820 the punishments of China seemed perfectly barbarous, and the customs of the country highly backward. What had happened was the growth of humanitarianism in Europe, this was certainly not due to capitalism, but it may well have been due to the rise of modern science, with its corollaries of modern plumbing and the appearance of a certain 'squeamishness' about blood and excreta. The rise of anaesthesia had also increased sensitivity to pain whether in oneself or in others. Hence perhaps the rise of forms of torture in our own time which avoid too obvious subsequent signs of its having taken place. We shall return to this subject of the growth of humanitarianism pari passu with the development of modern science, in Vol. 7. Foucault (1), it is true, maintains that the substitution of more subtle forms for the more ritualised and bloody tortures of earlier centuries has not necessarily led to greater humanitarianism.

\(^b\) Cf. Chiien Han Shu, ch. 22, pp. 1031-2; ch. 25, pp. 1079-81; ch. 26, pp. 1280-92.

\(^c\) Particularly the cock and the monkey; cf. Vol. 2, p. 262.

\(^d\) Chiieh Han Shu, ch. 26, p. 1291; Thao Po Yin Ching, ch. 84, sect. 5. Cf. Li Yih-Jih (2), vol. v, p. 209.

\(^e\) For example, the correspondence of Metal and wu\(^8\) with the liver seems natural because this organ was commonly accepted as seat of the animal soul, producing anger and courage. Warriors were often presented as 'hairy men', which corresponded to the 'hairy animals' attributed to Metal. Other correspondences, with hemp, with an acrid taste, the colour white, the White Tiger, with given hours, notes, stems, etc., were connected with the whole Five-Element system. On these 'symbolic correspondences' see Vol. 2, pp. 261 ff.

\(^g\) See Tao Te Ching, chs. 36, 78, tr. Duyvendak (18); Ch'ü Ta-Kao (2); San Lieh, ch. 1.
ness contained a real strength within (*jou chung yu kang*), indeed it constituted the only real strength, and was able to change into strength; whereas strength as such was considered a potential weakness. These concepts were reflected in the name of individual fighting-techniques which belonged to the 'Art of Softness' (*jou shu*).

According to these concepts and the old practice of administration, the *wên* factor was associated with China, the centre of the world, whereas the *wu* factor was related to the territories which played a defensive rôle, and the wild lands inhabited by outer barbarians. Hence the apotheosis of harmony (*ho*), concord (*ho*) and peace (*an*) consolidated by Confucianism was due, as if by nature, to the central regions of the world inhabited by the Chinese, the land which gave birth to the sages and to civilisation.

The use of *wu*, of violence and punishment against transgressors and rebels inside the Middle Kingdom, and against the wild tribes living at the fringes of the known world, was justified only if it served to check vice and restore the principles of justice. Because of these concepts, *wu* was treated only as a relative counterpart of *wên*. From at least the Han period onwards the character *wu* was interpreted as abrogating the use of weapons (by show of superior force, by demonstration of military strength, or even by manifestation of *wên* values only), though *wu* was also identified with weapons, soldiers, violence, the fighting spirit, etc.; so it is not a straightforward equivalent for the concept 'military' in European thought. As Matthews quite correctly stated, in Chinese 'to stop the use of weapons and avoid war is truly military'. With such an approach, war was treated as the 'punishment of transgressors', which applied equally to a peasant rebellion, invasion or revolt by neighbouring tribes, attempts to topple a ruling dynasty because of its 'moral decline', and to the restoration of moral order.

Beginning with the Han period, the firmly entrenched belief was that the *wên* and *wu* factors alternated in dominance, not only in step with the natural rhythm of the seasons, but also in the form of the great cycles of history - necessary stages in the formation of the State. In the Chhien Han Shu, we read:

* Cf. the description of the different parts of the Chinese Empire in Chhien Han Shu, ch. 28B, pp. 1640-71. This concept, based on real political experience, found reflection in the famous pattern of division into concentric zones of the State (cf. Hsin Shu-Chih (3); Gawlikowski (4), pp. 48-60), and in the later divisions of the Han epoch into external circular districts which supplied soldiers and internal circular districts which recommended officials. It is also reflected in the idea of the land of the Middle Kingdom, surrounded by barbarian lands swept by war; cf. Krol (1), pp. 18-20, Fairbank (3), pp. 20-33, and Yang Li-ti-Shêng (16). On the concentric-zone geography of the Yü Kung chapter of the Shu Ching, see Vol. 3, p. 502. It is also interesting to note that real practice was sometimes in surprising accord with these concepts. Loewe, after an analysis of the careers of Han Wu Ti's generals, wrote (11), p. 87, that: 'Of twenty-six men four appointments may have been due to their relationship with imperial consorts, seven were natives of the northern commanderies, four were men whose rise followed considerable service in the field, and one from the metropolis. This was a factor, and the most of these were in one way or another connected with the *jun* factor (imperial female relatives, origins in the border area, fighters and criminals).

* Cf. Hui-ti Tzu, ch. 4, tr. Erkes (1).

* See the meanings of *wu* given by Chang Chhi-Yün (5), vol. 3, pp. 7592-3.

The dynasties of Yin and Chou pacified the world with the help of arms. When the world had been pacified, the shields and axes were put away, and the teaching of culture and virtue [chiao i wen tê] began.a

The same idea had been expressed earlier by Lu Chia2 in his famous colloquy with Liu Pang, the founder of the Han dynasty.

You could conquer the world on horseback, but you cannot rule it from there. By force [defiance] Thang and Wu Wang conquered it, but they defended it by gentleness. The use of both wen and wu is an art ensuring viability [of the ruler of the established order].b

The metaphor about the need to ‘dismount from one’s horse’ was later repeated again and again throughout Chinese history.c But experience of many revolutionary changes in the history of the world shows that a revision of the methods of conduct by the newly established authorities – the renunciation of war and terror within the country – has always been difficult, and failure to accomplish it has sometimes led to great tragedies. Those who win power by the sword, are often tempted to try to rule by the sword. Such a limpid formulation of this fundamental truth is certainly a major achievement of Chinese thought.d

The concept of cyclical declines of the State, of periods of war and chaos alternating with re-unification and the re-establishment of order and peace, gradually came to be regarded as something absolute, a natural rhythm of the whole universe. In China the formation of a new political order by force, followed by a period of peaceful change, was both theoretical concept as well as historical reality.e The pattern can still be observed even in modern history.

Thus the element of war was made part of the space-and-time order of the world. It dominated certain periods and specific regions in a natural way. It was even treated as an inseparable part of any political order; only in periods of stability, which were the chief concern of Confucian thought, were there instructions to place virtue and rites before violence, to concentrate on education, on instilling good conduct and improving administration, and show restraint in applying punishment.f

According to Confucius, even the harmony of the human personality required a fusion of what is natural and spontaneous, what is untamed and wild, with education and culture (wen). Confucius did not recognise erudition alone as an ideal.g Accordingly, he taught the six arts, which included archery and chariot-driving, and he believed that in order to last, the State needs military force as well as

a Chihhen Han Shu, ch. 23, p. 2b p. 1081, tr. Hulsewé (1).
b Shih Chi, ch. 97, p. 2699.
c Cf. Hsin YuanShih, ch. 127, p. 275.
d It is presented, of course, in the popular epic San Kuo Chih Yen I (see p. 80 above).
e See Eberhard (21), pp.89–106. Classical Mediterranean culture and that of Mauryan India must also have had something to say on these changes.
f See Chihhen Han Shu, ch. 22, pp. 1031, 1033–4, tr. Hulsewé (1).
g Lun Yu, VI, 16; Legge (2), p. 54. See also an interesting analysis of this passage by Konrad (3), p. 416.

教以文德 1 陳賛
economic affluence and the people's confidence in the authorities. Therefore the most widespread view in China was that the use of violence and war was not merely a simple negation of \textit{wén}; they served to restore and reinforce it while, at the same time, relying on \textit{wén} for their moral support. To achieve a military victory one should act in conformity with the Tao, and implement all the virtues. Though war relied on deception, on \textit{kuei tao}\(^1\) as opposed to \textit{chéng tao}\(^2\), yet it combined both these elements. And again, as in matters of administration, it was recognised that in order to attain political aims which, in the final reckoning, were served by military action, the proper way was to reduce as much as possible the use of violence and fighting with arms, though still waging war. Therefore the instruction continuously repeated was that the best commander does not array armed forces for battle; he does not need to fight, but if forced to, he does not inflict defeat, and if a defeat occurs he does not annihilate the conquered State.\(^b\)

This is in full harmony with the instruction to give priority in the inter-State rivalry to political and diplomatic means, even to the activity of intelligence agents, rather than to fighting. Wu Tzu wrote:

To win victory is easy, to preserve its fruits, difficult. Therefore it is said that when \textit{Thien hsia} [All-Under-Heaven] is at war, one who gains five victories suffers calamity; one who gains four is exhausted; one who gains three becomes Lord Hegemon; one who gains two becomes a King, and one who gains one, the Emperor. Thus he who by countless victories has gained the empire is indeed unique, while those who have perished thereby are many.\(^c\)

The belief that war brings calamity to all, victors and vanquished alike, and that it spells boundless suffering to the common people, became widespread as early as the Warring States period. The \textit{Tao Té Ching} says:

Weapons are instruments of evil omen; hateful (it may be said) to all creatures. Therefore one who has the Tao does not employ them ... Weapons are not the instruments of a gentleman; he uses them only by the compulsion of necessity. Calm and repose are what he prizes, [victory] does not give him greatness; his glory is not to rejoice in the loss of human life. He who finds joy in killing people will never get support in the world [...]. On joyful occasions the left is the place of honour; on sad occasions it is the right. When they return, the second-in-command is placed on the left, the commander-in-chief is posted on the right, which means that they take their places according to funeral practices. The slaughter of multitudes of men is bewailed with sorrow and lamentation. Therefore, even after victory in war, the commanders are placed according to mourning rites.\(^d\)

In the \textit{Wei Liao Tzu} treatise it is even said that the commander is the envoy of death, while war is contrary to virtue (\textit{tè}).\(^e\) The Mohists (\textit{Mo Chia}\(^3\)) denounced

\(^{1}\text{Ibid., X1.7; Legge (2), p. 118.}\)
\(^{2}\text{Chhién Han Shu, ch. 23, p. 1088, tr. Hulsewé (1), pp. 361–2.}\)
\(^{3}\text{Wu Tzu, ch. 1, sect. 4, tr. Griffith (1), pp. 152–3, mod. auct.}\)
\(^{4}\text{Tao Té Ching, ch. 31; tr. auct. adjuv. Legge (3), pp. 73–4; Duyvendak (18), p. 77; Chü Ta-Kao (2), p. 42; Wu Ching-Hsiung (1), p. 31. On left–right symbolism cf. McDermott (1), Demiéville (13), Granet (10).}\)
\(^{5}\text{Wei Liao Tzu, ch. 8, pp. 47–8. Or, as the Duke of Wellington put it, in eighteenth-century style, 'the only thing more melancholy than a battle lost, is a battle won'.}\)
war no less firmly. In the Mo Tzu book, for example, we come across one of the most beautiful fragments in world literature denouncing war of aggression, the drive to acquire benefits for oneself or one's State by shedding human blood.

If a man enters an orchard and steals the peaches and plums, everyone who hears about it will condemn him, and if those above who administer the government catch him they will punish him. Why is this? Because he injures others to benefit himself. When it comes to carrying off dogs, swine, chickens, and piglets, the deed is even more unrighteous than entering an orchard to steal peaches and plums. Why so? Because the loss to the other is greater [...] And when it comes to murdering an innocent man, stripping him of his clothing, and appropriating his spear and sword, the deed is even more unrighteous than breaking into a stable and seizing someone's horses and cows. Why? Because the injury to others is even greater, and if the injury is greater, it shows a greater lack of benevolence and is a more serious crime [...] If someone kills a man, he is condemned as unrighteous and must pay for his crime with his own life. According to this reasoning, if someone kills ten men, then he is ten times as unrighteous and should pay for his crime with ten lives [...] Now all the gentlemen in the world know enough to condemn such crimes, and brand them as unrighteous; yet when it comes to other States, they do not know enough to condemn it. On the contrary, they praise it and call it righteous. Truly they do not know what unrighteousness is. So they make a record of their wars to be handed down to posterity [...] Now if there were a man who, on seeing a lot of black, called it white, we would conclude that he could not tell the difference between black and white.8

Such were the concepts which shaped the real policy of the Chinese states. Indeed, one of the best characteristic statements of this way of thinking in Imperial China was given by Hucker.

When hostilities erupted, whether on the frontiers or in the interior, the government traditionally considered two possible responses: either a straightforward military solution, called 'extermination' (chiao1 or mieh2); or an indirect politico-economic solution, called 'pacification' (chao an3, chao fu4, or similar terms suggesting 'summoning and appeasing'), supported by real, but muted, threats of military action. In their pragmatic way, Chinese officials seem normally to have considered direct military solutions suitable only in the last resort, when the nation's vital interests were at stake and pacification was impossible or would yield unacceptable results. Except in the cases of notoriously bellicose Chinese leaders, pacification seems to have been greatly preferred as the normal means of coping with the disaffected.5

And he added one interesting remark which explains psychologically this traditional negative attitude to war, fighting and pugnacious behaviour generally.

The preference no doubt reflects Chinese inclinations within the family and local community to 'keep things going' at almost any cost, by mediating, compromising, and saving face all around.6

10 Ibid.
11 剌
12 滅
13 招安
14 招撫
'Anti-militaristic' education started very early; in traditional families children were always punished for fighting or quarrelling; to 'be a man' was quite different in China from what it was in Western society. The pre-eminence of harmony and the condemnation of conflict became one of the basic tendencies in Chinese philosophy.

The identification of war with Yin, with the death factor, and the consequent rational drive to restrain its use, was in full accord with this negative attitude to war, the disdainful treatment of martial virtues, of military service and soldiering and, indeed, of anything related to combat. Such trends, particularly evident for the last thousand years, are evident in the proverbial saying already mentioned, 'good iron is not used to make nails and decent men do not join the army' (hao thieh pu ta ping, hao jen pu tang ping). A change in this attitude only began with the reforms of the nineteenth century, and the transformation of the army into a revolutionary and patriotic force in the twentieth. Some might say it was a change for the worse.

The negation of war was due, however, not only to the philosophical and psychological factors already discussed, but also to the suffering of the common people, and to the civil character of the ruling stratum which regarded the military with suspicion as a likely challenge to their authority and condemned armed revolts by the population. This was why they 'kept the soldiers down'. It was also due to some extent to religious beliefs and the veneration of ancestors. Yet another factor, perhaps the most important of all, was the way Chinese culture had formed from many varying local cultures, and so built its identity around the civil values—wên—making them fundamental.

The occasional efforts to promote martial virtues and values which were launched, for example, by the Legalists, centred on the State of Chhin, did not produce any lasting effects. They were only incidental. Life itself may be a war, and aggressiveness natural to the human being, but the Chinese showed all the more persistence in restraining these tendencies and imposing norms of behaviour and values that ensured social harmony. Confucian ideology gradually renounced even the limited recognition it had originally given to the wu element. The politi-
cal system of a civilian bureaucratic State was not adapted to the conduct of predatory wars or the conquest of new territories. It could engage in such operations only on a limited scale. Wars were not 'a State industry' as in Rome, nor any system of founding economically profitable colonies. Thus objective interests did not erode Confucian ideology, but rather formed a harmonious whole with it. Together they ensured the survival of China, with a degree of ethnic and cultural stability quite unknown to other peoples. They provided specific conditions for the development of military thought in China and a philosophy or art of war, as well as the techniques of war; but as rightly pointed out by one of the analysts of the contemporary Chinese army, given the latter's multifarious social functions, weapons were not its main aspect.

Many thinkers have pondered on these great differences between Chinese culture and that of Europe. How far could it be innate, and how far could it be due to the different historical experiences of the Chinese and European peoples? Perhaps it is too soon to attempt an answer to these questions, yet it is well to raise them. The schizophrenia and restlessness of Europe was a characteristic that went back to the Greek and Roman civilisations, and the crusading experience later on provided a good excuse for imperialistic expansion when the time came. Perhaps it was true that Western society had an inbuilt penchant for warfare; if so, the coming of modern science in that society, and in that alone, with its atomic weapons, has brought us to the brink of the precipice. In 1937 Arnold Toynbee wrote:

... The secret of the West's superiority to the rest of the world in the art of war from the seventeenth century onwards is not to be found just in the civilian technology that supplied the military equipment. It cannot be understood without also taking into account the whole mind and soul of the Western society of the day; and the truth is that the Western art of war has always been one facet of the Western way of life [...]. Any civilisation, any way of life, is an indivisible whole in which all the parts hang together and are interdependent.

There is truth in this, but was it wise to brush aside so cavalierly the whole of economic history? Capitalism also originated in Europe, and in Europe alone, so that the 'expansion of Europe' from the early +17th century onwards can hardly be understood save in the light of the great economic change that ended medieaval Europe and brought modern Europe into being. Many otherwise reputable books

* It is rather striking that the Chinese never took over the neighbouring States of Korea and Vietnam, though both had been in part commanderies under the Han, and though there was intermittent fighting through the centuries. Tibet only fell to China (as a rather awkward possessor) because the first Mongol emperors in the late +13th and early +14th centuries were also protectors of Lamain Buddhism. On the other hand, sparsely populated lands on the edge of the Chinese *zikoumene* could fairly easily be absorbed into the Chinese empire, as happened with Sinkiang in the Han period. And quite early on, the Chinese filled up their *zikoumene* which had clear physical-geographic boundaries; cf. the interesting book of Wiens (3).

d Foreexample McNelly (1).

also ignore this economic revolution, yet it is indissolubly bound up with European imperialism and European domination of the Asian cultures.

The only remark which needs to be added, in conclusion, is that it would be a great mistake to think of the Chinese non-military way of life as 'Asian' or typical of Asia. Belligerency was an important component of the nomadic cultures of the steppes, and martial values were highly esteemed there. We find an even greater apotheosis of war in the Japanese culture of the *samurai*; and the *daimyō*; and to some extent also in the farmers' and fishermen's Vietnam, in spite of its civil bureaucratic State character, borrowed from China. Indeed it does seem that the military-aristocratic feudal structure of traditional Japan, so similar to that of medieval Europe, helped to bring it into the modern world of the counting-house, the factory and the computer, more easily than could ever be the case in China, with its age-old system of bureaucratic feudalism. There seems to be something about a military orientation which facilitates the passage to industrialisation, but perhaps this is mainly because the former is so illogical that the merchants accumulating capital, and the entrepreneurs that follow them, find it relatively easy to substitute commercial for military values, when the time is ripe.

Of course, the radically competitive element is common to both military and commercial cultures. But we must not follow these ideas further here, for they will be the subject of Vol. 7 of the present work.

* E.g. Cipolla (1, 2) on guns, sails and clocks, where the word 'capitalism' is not even in the index.
* It is primarily to bureaucratic feudalism, too, that we must attribute the retardation of the growth of modern science in Chinese culture; see Needham (59).
* Cf. p. 89 above.
Once during the Second World War, when resting by the roadside among the pleasant rice-fields of Szechuan, somewhere between Chhêng-Tu and Mien-Yang, I met a group of blue-gowned countrymen with 4-ft. bows and quiverfuls of arrows. The contrast with the metallurgical microscopes in my lorry was rather startling, but it was good to see that archery still survived as a recreation in the land of Chu-ko Liang. The bow, the crossbow, and the artillery pieces which derived from them, are now the next items on our agenda, not indeed to be underestimated in view of their cardinal importance as military weapons throughout the history of Asia. Besides, the early mastery of the technique of applying an elastic force to a desired purpose is important in itself for the history of technology.

In his Ming Chhi Pi than (Dream Pool Essays) of -1086 Shen Kua said that the bow has six advantages (kung-yu liu shan). These were (1) that it was light yet powerful, (2) harmonious yet strong, (3) its strength remains the same, though often used, (4) and whether the weather is hot or cold, (5) the twang of its bow-string is clear and sharp, and (6) once let go, the arrow flies straight to its target. That there is more in this than appears on the surface is the contention of Li Tzu-Yao and Wen-Jên Chhiun, who believe that this saying originated from the I Ching (Book of Changes), especially the explanations of the kua Khun and Liu, and has reference to the phases of the moon, which after its rising resembles a bow. This might well take archery back to the beginning of the — 1st millennium — but that would not be at all surprising.

In a certain sense it may be admitted that the art of the bowyer reached its maximal height in the eotechnic ages, and dealing as it did with the properties of primitive materials such as wood and horn contributed less to modern technology than the art of the smith. Yet such a judgement would have been more acceptable in the last century than it is today, when a vast plastics industry threatens in many directions the supremacy of metals. The glue to which the ancient and mediaeval
bowyers devoted so much empirical study, and the lacquer which they used to protect their handiwork, were both forerunners of the great range of artificial chemical plastic 'setting' substances at our disposal today. Nor would those engaged in modern forest products research lightly dismiss the selection of woods by the old Asian bow-makers.

The first question to be asked is the position of the typical Chinese bow in a general classification of bows. The foundations of such a classification were laid over a hundred years ago by General Pitt-Rivers in the catalogue of his anthropological collection, published in 1877. Balfour (3) investigated further the structure and affinities of the composite bow in a classical paper of 1889. The bows of all peoples may be divided into types differing according to several criteria. The bow made of one single material throughout (such as the English longbow) is termed a 'self-bow'. When several layers or spliced pieces of the same or a related material are used, it may be called 'reinforced' or 'compound'. When a number of pieces of quite different materials are joined together to form the body of the bow, it is then called a 'composite' bow. But besides the material used, there are also differences of shape, for the bow may simply follow the circumference of a greater or smaller circle or ellipse, in which case it is termed 'regular', or it may change its direction of curvature, in which case it will be 'semi-reflex' or 'reflex'.

The Chinese bow, from the earliest times to which we can trace it back, was a composite reflex bow. Fig. 14 shows the outlines of an actual military bow of the late Chhing dynasty. Although a beautiful object, put together with consummate skill, there was by then nothing very new in its artistry, since bows of composite structure are known from Assyria and Babylonia as far back as the end of the bronze age that.

See also Leroi-Gourhan (1), vol. 2, p. 64; S. L. Rogers (1); and the popular account of Balfour's work by Walrond et al. is still readable.

It is often said that splicing and glueing originated in some region where inadequate wood was available for self-bows; if so, this must have been in very ancient times.

Complicated curvatures are known for self-bows, some of which may be semi-reflex (as in the Andaman islands) or even reflex (carved to shape, as in West Siberia and Central Asia). We shall shortly see a compelling reason for this tendency.

The earliest arrows so far discovered were found in Shuo county, Shansi, in 1963. They date back to approximately 26,000. (Chia Lan-Pho et al. (7), pp. 51–2; Yang Hung (8), p. 190). Yang Hung argues that bows had probably appeared by 28,000, but no remains for bows survive from those early times, and he further suggests that initially palaeolithic and neolithic bows were constructed from simple pieces of wood bent into a curved shape, a design still used by national minority tribespeople today. It was only later in the neolithic and the bronze age that composite reflex bows were developed.

The degree of reflex curvature was doubtless always very variable, but in China, at least in the Chhing period, probably never attained the degree known among the Turkish peoples, where the ends of the unstrung bow might even cross over. Harold Lamb (1) himself saw, among the test bows used by candidates for the Peking guard regiments of the +18th century, bows of 136 lb pull. They were over five feet in length. Such draw weights were not unusual, but bows as heavy as these were used mainly for exercise, or trials of strength for military examinations, and not for ordinary shooting. The complete set of eight test bows of the Chhien-Lung period held at the Field Museum in Chicago range from 4 li to 12 li (53.32 lb to 159.96 lb) Elmy (4). The Chhing Hsüan bow shop in Chhêng-Tu, Szechuan, listed two heavy bows in their range of products, one of 8 li (106.64 lbs.) and one of 14 li (186.62 lbs.); Than Tan-Chhiung (2).

1
—2nd millennium. They remained characteristically Asian, with some influence on Greece and more on the Persians, Arabs and Turks; and it would not be surprising if the bows used by the Shang people in China were of the same type.

Balfour (4) described an Assyrian bow of about —670 found in an Egyptian tomb of the XXVIth dynasty. Longman (1) described another Mesopotamian one dating from about —1250, recovered from an Egyptian tomb of the XIXth dynasty. McLeod (1) has described a further Egyptian bow of the type, and has argued convincingly (McLeod (2)), that such bows were manufactured in Egypt and were not necessarily imports. Further reference may be made to the bows recovered from the tomb of Tut’ankhamun, McLeod (3).

Balfour (5) showed that the bows described in Iliad, iv, and Odyssey, xxvi, were composite reflex bows somewhat like those of the Scythians. In this he had been preceded by Dubois-Reymond (2) who was dealing with the Chinese bow.

On the Arab bow there is a valuable book by Faris & Elmer (1). A rather more extensive treatment of the subject, Latham & Paterson (1) based upon a translation of a +14th century Mameluk manuscript adds still further to knowledge of the subject. Payne-Gallwey (2) wrote with practical knowledge on the Turkish bow, and Klopfsteig (1) has given to it the combined expertise of an archer and a working physical chemist. His predecessors Hein (1); von Hammer-Purgstall (2) remain worthy of study, however. Acker (1) has written on the Japanese bow and Boots (1) and McEwen (3) on the Korean. Following the Korean war many American archery magazines published articles on Korean archery as now practised in Seoul, without, however, going very deeply into the structure and manufacture of the weapon, but cf. Lake & Wright (1) for an extensive bibliography. In the +12th century a Chinese embassy found the Korean bows good for range but deficient in penetrating power (Hsüan-Ho Téng-Shih Kao Li Thu Chéng, ch. 12, p. 1a). On Japanese arrows see Elmy (3).
The structure can readily be understood from Fig. 15. The horn component was always applied to the central wood, bamboo or cane stave (often made of five or more lengths spliced together) on the belly or compression side.\(^a\) The carefully treated sinew, soaked in glue and laid in glue, was always applied to the back, and often protected by a layer of flexible tree-bark such as birch. The whole 'leaf-spring' assembly was then lacquered or painted externally for protection against the weather.\(^b\) Primitive forms of this system of course there were, such as the

\(^a\) Note that the terminology of back and belly is taken from the bow in its unstrung condition.

\(^b\) The diagrams in Fig. 15 are taken from two actual specimens of Chhing dynasty bows, McEwen (2), and may be taken as giving the general principles of construction of all composite bows.
sinew-girded (not glued) bows of the Eskimo, and the wooden or horn/antler bows of the Amerindian peoples which were backed with sinew laid in glue, but these might be regarded as vestigial remnants of the bowyer’s technique on fringes of cultural regions. We may note here one analogy of some scientific interest; the glue was essentially a solution of gelatin and therefore a partial breakdown product of the elastic collagen fibres of the sinew tissue itself. Its fibrous micro-structure therefore bore a relationship to the sinew in some sense analogous to that between the micro-layers of hard cementite and soft ferrite in wootz steel, and the welded sandwiches of hard and soft steels which the smiths jointed together in hammering their blades. We have already noted the fact that both these techniques, the one based on plant and animal materials, the other on metals, arose and flourished especially in Asia.

The antiquity of the reflex shape of the Chinese bow is strikingly shown in the character which has always served to denote it, kung (K/901). Among certain hidden derivatives, shē (K/807), to shoot, added to the pictograph an arrow and the hand of the archer. The design of the composite bow changed and developed over the course of centuries. Perhaps this was a result of an early ‘arms race’ between the nomadic peoples of the steppes north of the Great Wall and the Han people themselves.

The advantage in Chhin and Han probably lay with the crossbow which out-ranged the double curved ‘Scythian’ type of bow then in use. This type of bow had a long history and continued in use across Asia, even penetrating into Europe in the hands of Scythian auxiliaries who made their first appearance in the Athenian army in −530. Although Rausing supposed that the type was confined to Europe and Western Asia, its depiction on bronze vessels as early as the Shang is clear evidence for its early use in China.

It is impossible to say with any degree of certainty just when the change occurred, but by about 200 bows were being stiffened by plates of bone or antler both in the handle section and, more importantly, at the ends of the limbs. These stiffened ends were acutely reflexed and formed ‘ears’, a term used nowadays by students of archery history. The reflexing of the ears gave additional leverage resulting in a longer draw and an increased power output for the same draw weight (input) of the bow. Apart from bone plates recovered from a number of burials, in 1934 Sven Hedin excavated one of these bows intact from a burial near

\(^{a}\) Hamilton (1), pp. 9 and 93, traces the development of the Amerindian composite bow and considers its invention to be linked with the ‘use of the horse in hunting and fighting …’, a theory which might be applied with equal force to Central Asia.

\(^{b}\) Cf. p. 123.

\(^{c}\) Vos (1), p. 88.

\(^{d}\) Rausing (1), p. 140.

\(^{e}\) Weber (1), p. 84.
the mouth of the Qum-Darya river in Sinkiang. Unfortunately, the bow was severely damaged in transit and reconstruction is not possible. However, a further complete bow, also from Sinkiang, has been found and this was published in 1975 although no detailed description was given (Fig. 16). The construction is clear from the photograph and although the bow is distorted due to having been interred in a braced state ready for shooting, it can readily be equated with bows depicted in art from the Thang to the Yuan periods.

Subsequent developments involved the replacement of antler or bone plates by

* Anon. (1965).
* Examples are too numerous to list here but for some examples cf. Rorex & Wen (1).
additional wood. The handle reflex diminished somewhat so that at brace height the bowstring loop-knots rested at the base of each ear. To provide extra stability a bridge of antler or wood was provided for the knots to rest on (Fig. 14F).

This style of bow predominated in the Chhing but the older ‘Scythian’ type was
not entirely superseded. By the Ming period it had acquired short ears coupled with a long ridged section on the arms below each ear (Fig. 17) which gave improved efficiency. In this form it resembled the ‘Krim Tatar’ style of bow so much favoured by the Ottoman Turks, judging by the large numbers collected at the end of the last siege of Vienna in +1683 and even now impressively displayed in that city’s museums.\(^a\)

The encyclopaedias continued to illustrate the two basic types: one a short bow with short ears (hsiao shao kung\(^1\)) and a longer bow with long ears (ta shao kung\(^2\)) (Figs. 18 and 19). According to the Wu Pei Chih the short-eared bow was used by civilians and the long-eared bow was more suitable for military use.\(^b\) The short-eared bow was said to be more liable to become distorted, and indeed bows of the type illustrated in the Wu Pei Chih having acutely set-back handle sections do have this difficulty. The type survived in Korea where it is still made and used as a

\(^a\) Cf. Hein (i).

\(^b\) Ch. 102, pp. 1a (4013)ff. esp. 7b.

1 小彎弓 2 大彎弓
sporting weapon. European archers have often been amazed at the difficulty experienced in bracing and adjusting them before they are ready for use, although the Koreans themselves appear to have no great problem and are excellent archers using them.\footnote{Eliot (1).}

When we turn to the ancient texts for information, we find that the Chou Li (Record of the Rites of Chou), compiled in the Former Han dynasty probably about the 2nd century, has a long section on the bow simple in the Khao Kung Chi (Artificers' Record) chapter. With the exception of that devoted to the chariot-makers, it is the longest of all.\footnote{Ch. 44, pp. 16ff. (ch. 12, pp. 24ff.); tr. Biot (1), vol. 2, pp. 58ff.} The bow's composite character appears at once in a phrase which the writer might have borrowed verbatim from one of the old artisans:

Wood for range, horn for speed, sinew for penetration, glue for union, silk binding for firmness, lacquer for guard against frost and dew. The bowyers collect the six materials, each in their proper season, and then they are combined together by men of skill.\footnote{Tr. auct. The order of the two sentences is inverted in the original.}

And he goes on to say that the wood is cut and trimmed in winter, the horn is soaked and glued in the spring, the sinew is prepared in the summer, and the three combined in the autumn.\footnote{P. 27a; Biot, p. 587. We are fortunate that at a late period (1942) at least one Chinese bowmaker was following the craft and his methods and materials were recorded (Than Tan-Chhing (2)). No reference is made in this report to soaking the horn. We are originally unclear whether the reference in the Chou Li was to soaking the horn in glue or in water, but on a recent visit to Outer Mongolia Edward McEwen had the opportunity to discuss bowmaking with a Mongol bowyer. Apparently they do soak the horn in water, the purpose being temporarily to increase the flexibility and softness of the horn so that it will conform more closely to the shape of the core during the gluing process.} From this text we know also the technical terms for the different parts of the bow, stabilised at that time and used throughout subsequent centuries.\footnote{P. 27a; Biot, p. 587.} Thus there was the back (see Fig. 20), \(\text{pi}^1\), with its backing of glued sinew bound with silk \(\text{ju}^2\), the arm \(\text{fu}^3\), the hollow belly \(\text{wei}^4\), the shoulder...
(kan\(^1\)), so called because no more horn was affixed at that part, and finally the inflexible extremity or ear (hsiao\(^2\,3\)). The central grip (pa\(^4\)) of the early Han bow was situated at the point (d) where there was a prominent set-back, so it was called the 'corner' (chiao\(^3\), or the character may be read chieh and mean the angle of the grip section). The point where the horn ended (f) towards the shoulder was called chiao chieh\(^6\). Other texts of course have variant terms; the Shih Ming dictionary (ca. +100) calls the ear mi\(^7\), the arm fu\(^8\) and the shoulder yuan\(^9\).

The Chou Li also gives a list of the woods most suitable for bows.\(^8\) Its order of preference starts with a hard wood known as the silkworm thorn,\(^b\) and ends with the bamboos,\(^c\) passing through privet of a certain kind,\(^d\) the wild mulberry,\(^e\) orange wood,\(^f\) quince\(^g\) and thorn\(^h\) in descending value.\(^i\) It does not mention sandalwood,\(^i\) used ceremonially and recommended later on in Taoist books,\(^k\) perhaps because endowed, like the peach, with magical powers. Sinew (chin\(^10\)) from the Achilles tendon of the elk or moose\(^l\) was especially valued, but those of many quadrupeds were used.\(^m\) Horn (chiao\(^11\)) came from the water-buffalo and from the long-horned cattle of the western borders (Hsi hsia chu niu\(^12\)).\(^n\) As for the cutting of the wood according to the grain, the application of the pieces of horn to just the right extent on each side of the grip, and the preparation of bows for different purposes and for different human psycho-physical types, many details will be found in the Chou Li.\(^o\) The pride of the bowyers of Chou and Han is nicely shown

\(^{1}\) E.g. the Tan Chia Khai Shan Thu,\(^n\) probably part ofTT/\(^{2}\) or 866; cit. TPIL, ch. 347, p. 76.

\(^{1}2\) Ching mi\(^2\), Alces machlis, R/365. Later bowmakers used tendon from the backs of cattle; TKKW (p. 262 Sun & Sun tr.), Than Tan-Chhiung (2). McEwen (1) speculates on the reasons for this.

\(^{1}3\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.

\(^{1}4\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.

\(^{1}5\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.

\(^{1}6\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.

\(^{1}7\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.

\(^{1}8\) E.g. the Tan Chia Khai Shan Thu,\(^n\) probably part ofTT/\(^{2}\) or 866; cit. TPIL, ch. 347, p. 76.

\(^{1}9\) Ching mi\(^2\), Alces machlis, R/365. Later bowmakers used tendon from the backs of cattle; TKKW (p. 262 Sun & Sun tr.), Than Tan-Chhiung (2). McEwen (1) speculates on the reasons for this.

\(^{1}10\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.

\(^{1}11\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.

\(^{1}12\) E.g. the Tan Chia Khai Shan Thu,\(^n\) probably part ofTT/\(^{2}\) or 866; cit. TPIL, ch. 347, p. 76.

\(^{1}13\) Ching mi\(^2\), Alces machlis, R/365. Later bowmakers used tendon from the backs of cattle; TKKW (p. 262 Sun & Sun tr.), Than Tan-Chhiung (2). McEwen (1) speculates on the reasons for this.

\(^{1}14\) Chiang than\(^m\), the Santalium album of the Li Chi, R/390, B/11, 350. Or perhaps Cetis sinensis, B/11, 531, or Dalbergia huprea, R/381, also varieties of than.
in a story from the *Lieh-Nü Chuan*¹ (Lives of Celebrated Women):²

Duke Phing of Chin³ asked a certain artisan to make a bow, but he took three years to complete it, and even then it would not send an arrow through one scale of armour. The Duke was extremely angry and menaced the artisan with death, but his wife happened to be the daughter of an official (*fan jên*⁴). So she went to the Duke and said: ‘My husband has worked most industriously on this bow. The wood of it grew on Thai Shan, and in a single day was thrice exposed to the Yin and thrice to the Yang. The horn of it came from the oxen of Yen⁵, and it was bound up with the sinews of the elk of Ching⁶, and glued with the glue of the fish of the River. These four things are the most select in the whole world. If then the bow will not send an arrow through one scale of armour, it can only be because you do not really know how to shoot. And yet you now desire to kill my husband. How could that be right? From what I have heard of the Tao of shooting, the left hand should be as if pushing away a stone, and the right hand as if leaning on a branch; when the right hand releases [the arrow] the left hand should not know – this is the Tao of archery.’⁷ The Duke followed her advice and immediately shot an arrow through seven plates of armour at one time. And so, liberating the craftsman, he sent him away with three measures of gold.⁸

This story is of course not offered as a historical narrative of a -6th-century event, but rather to illustrate the assurance of the Han technicians in their art. The satirical note that the Duke was open to argument only because the bowyer’s wife was the daughter of an official, is quite in the style of Chuang Tzu.

Let us now take a closer look at glue (*chiao*⁹), the ancestor of the plastics industries. It is nothing more nor less than the protein gelatin, prepared in varying degrees of purity, and this is a direct derivative of another protein, collagen. Collagen forms one of the most important constituents of all connective tissue in animal bodies, of tendons especially, and of skin. The electron microscope of the present day has enabled us to see it in its native form of highly elongated fibrils, looking like thick cables or corrugated garden hoses under highest magnification. The molecules of gelatin are certainly smaller and shorter, but in concentrated aqueous solution they form tough jellies, from which indeed the term gel, so fundamental in colloid chemistry, is derived. Since the surfaces to be joined are wetted

¹ Attributed to Liu Hsiang⁴ very doubtfully, but perhaps with a Han nucleus.
² R. 556/539.
³ In view of the importance of temperature and humidity for the different processes of seasoning and combining the parts, this length of time was not at all exaggerated.
⁴ One can easily see what connections could arise between the technique of archery and Taoist bodily control and gymnastics. Cf. the story about Po-Hun Wu-Jên*¹⁷ and Lieh Tzu in *Chuang Tzu*, ch. 21 (*Legge* (5), vol. 2, p. 53). This association still continues in Zen Buddhism, as a German initiate, Herrigel, has described in a record of personal experience (1).
⁵ Tr. aet. from *TPY*, ch. 347, p. 8b.
⁶ It was not the only ancestor concerned in bow-making, for the hydrophobe lacquer applied externally falls into the same category, but that must be left for Sect. 42.
⁷ See the recent symposium edited by Randall & Jackson (1).

¹ 列女傳
² 繁人
³ 燕
⁴ 剌
⁵ 膠
⁶ 劉向
⁷ 伯昏無人
by the adhesive, and the loss of water from the system leads to a great shrinkage (synaeresis) and hardening, the boundary forces give a tight join. The method of preparing glue has always been to boil hides and other animal tissues with water, sometimes made slightly alkaline with lime, and then to filter, concentrate and let gel. We have an account of the process in the +5th century Chhi Min Yao Shu (Important Arts for the People's Welfare), but that is not very venerable compared with the specimens of ancient fine glued wood-work from Egypt, which go back to nearly —3000. Still, the description (like that in the Chou Li) shows how great a variety of skins were used, from the camel and the donkey to the rat. It had probably been known also from very early times that the purest gelatins and glues are to be obtained from the tissues of fish, especially the palatal endothelium and the swim-bladder (phao). Mixing these with glue from mammals lengthens the time of jelling; Turkish bowyers used a mixture of isinglass and sinew glue for their bows but probably from the point of view of economy rather than anything else. Turkish bows made with sinew glue only were not suited to the use of long arrows and had an inferior cast (i.e. speed and range). Chinese bowyers of recent years are reported to have used isinglass for the important, i.e. stressed, parts of a bow and hide glue as a cheaper substitute for unimportant areas such as the bark covering, and for arrow making. Glue made from cattle tendons attains a strength of 12,000 lbs/sq. inch, or from three to four times the shearing strength of most woods.

There is no doubt that in ancient and mediaeval times the Chinese made a judicious use of fish glues and they almost certainly got them from the barbarian peoples of the north-eastern Siberian coast. Hence the interest of the reference to Yü I Kuo, the Country of the Malodorous Barbarians, in the Shih I Chi (Memoirs on Neglected Matters), written by Wang Chia about +370. According to him, it was a foggy place, remarkable chiefly for the marvellous glue (shên chiao) which it sent to China. By the time of the Ming, this northern land had taken shape from

* On the chemistry and technology of gelatin and glue Bogue (1) and Drew (1), among other sources, may be consulted.
* Ch. 90.
* Cf. Aldred (1), pp. 69;ff.
* Ch. 12, p. 26a.
* The latter are known technically as 'sours' and give the substance known as 'isinglass', from Dutch 'huisenblas'. The importance of the purer gelatins as clarifying agents in brewing, and as sizes for paper, should not be forgotten, and will be referred to elsewhere.
* Klopsteg (1), p. 41.
* Than Tan-Chhiung (2).
* Cf. TKKIV, ch. 15, p. 2a.
* First noticed by Schlegel (70).
* Ch. 10, p. 2a.
* The story (ch. 8, p. 2b) actually concerns Sun Chhuan, the Wu emperor just now referred to, and the Lady Chao, famous for her ability in textile technology, especially gauze making, in which the glue was used.

1 韓
2 韓夷國
3 神膠
the mists of legend as Manchuria and the Liao River, which produced a valuable fish glue called *ho chiao*. The reference was no doubt to this when the +4th or +5th century *Hai Nei Shih Chou Chi* (Record of the Ten Sea Islands) spoke of the wonderful adhesive of Feng Lin Chou, a place in the western ocean fifteen hundred li across, surrounded by ‘weak water’, and containing abundant drug plants and many *hsien*. As one should not disdain to learn from legend, here is the account of this glue stronger than wood.

From the bill of the phoenix and the horn of the unicorn a glue is made which is called ‘bow-repairing glue’ (*hsü hsien chiao*). Another name for it is the ‘metal-joining mud’ (*lien chin*). This glue can make joins in the broken curves of bows and crossbows, and even cement the metal of broken sabres and swords. If these things are again pulled violently [or struck], they will not break at the joins but somewhere else.

In the 2nd year of the Thien-Han reign-period [*—99*], when the emperor [Han Wu Ti] went to worship the spirits of the Northern Sea and of Hêng-Shan, the ambassador of this country [Fêng Lin Chou] came and presented four ounces of this glue, together with some bright auspicious coats of fur. Wu Ti accepted these things, but not knowing their mysterious virtues, just had them sent to the store-houses. He thought that such native tribute was so unimportant that he did not even give the envoy leave to return.

One day the emperor visited the Hua-Lin park, and in shooting a tiger broke his crossbow. As the ambassador happened to be present he offered another sample of the glue, one *fen* in weight, advising the emperor to moisten the joint with spittle (and apply the glue, which mended it immediately). The emperor was quite startled, and got his mighty men of war to pull on it in different directions a whole day long— but they could never break it. This glue is blue-green, coloured like caerulean jade. The fur coats, however, were yellow, and came from some sort of magic horses; they could float in the water for months without sinking, and pass through fire without getting scorched. Thus the emperor was delighted and dismissed the envoy with many presents.

Good glue mixtures were certainly the reality behind this pleasant tale.

Some investigation of the mechanical properties of the Asian composite bow has been made by Klopsteg, who studied the efficiency of different types of bows in the transference of energy from the drawn state to the moving arrow. If curves are
drawn on a graph relating the draw in inches to the force in pounds required to perform it, different bow types show very different properties. A short straight self-bow becomes much stiffer towards the end of the drawing process, and a six-foot one may give nearly a straight line. A self-bow with inflexible ears so arranged as to be aligned with the string when taut, begins to show the property of initial stiffness followed by easier drawing towards the end, while the most extreme form of this behaviour is that of all Asian composite bows. Since the area under the curve is a measure of the energy stored in the bow at full draw, it follows that they are the most efficiently designed. They are also easier to hold at full draw, and the arrow gets the greatest push just before the beginning of its free travel. The pull of Chinese bows was tested\(^a\) by weighing on steelyards, as we see in Fig. 22 from the *Thien Kung Khai Wu*. Since the standard weights differed so much in different ages, great arguments arose among antiquarians as to the drawstrengths of bows customary at different times. We shall notice a passage later on\(^b\)

\(^a\) Some few technical terms for other forms of test have come down to us. Thus the bowyers had a frame for checking and adjusting the curvature of bows; this was called "pāi ching"\(^2\) (*Shu Hsi Chh Nan*, ch. 19, p. 3a). See plate 1, fig. 11 of Than Tan-Chhiung (2). Hsün Chhing referred to it in the -3rd century in his discourse on human nature, which he thought needed training like the indifferent materials which the bowyers used (*Hsün Tzu*, ch. 23, p. 15b; Dubs (8), p. 516).

\(^b\) See p. 155.
about crossbows in this connection. In Sung Ying-Hsing’s time (the beginning of
the +17th century), the strengths of powerful bows were of 120 chin (catties)
and upwards, medium ones 90–100, and weak ones 60.

Modern anthropologists have speculated much concerning the origin of the
bow; Cushing, for example, has thought to derive it from the throwing-stick or
atlatl. The Chinese tradition was that it came from the pellet-bow (lan kung), some
simple form of catapult using the springiness of bamboo to shoot clay pellets.
In an interesting text which we shall quote later in full, we are given a conver-
sation between the King of Yiieh, Kou Chien, and a famous archer in his service,
Chhên Yin. In the course of this, the latter says:

a *TKKW*, ch. 15, p. 2b.
b Cf. below, p. 116.
c Pronounced tan, the character means the pellet itself; than is the verb for shooting it.

Fig. 22. Testing the pull of a bow with a steelyard. From the *Thien Kung Khi Wu* (+1637)
of Sung Ying-Hsing; ch. 15, p. 9b.
Your servant has heard that the crossbow originated from the bow, and the bow from the pellet-bow. This was invented by some filial son [...] The people of old were simple in their habits, taking birds and animals to eat when they were hungry, and drinking the dew when they were dry. If any one of them died, his body was wrapped in white [mourning] grass, and thrown out into the wilderness. Filial sons who could not bear to see the corpses of their parents being eaten, kept off the wild beasts with pellet-bows. Therefore the song goes – We cut the bamboo and join it, [Send the] clay [pellets] flying, Drive away harmful creatures.

The pellet-bow was something very simple, no doubt also used for scaring birds away from crops, and certainly not the slur-bow (i.e. the crossbow fitted with a tube for bullets). A classical reference to it exists for -606, when Duke Ling of Chin behaved in an unworthy manner by shooting at passers-by with a pellet-bow from his terrace. The term occurs four times in Chuang Tzu, always in connection with fowling. It did not mean the sling, for which rather the word pêng was reserved. Some of its ancient pictographic forms show a bow with a pellet, and the phonetic is derived from a form tan (K/147b) which Karlgren lists as of unknown significance, but which looks remarkably like the pellet-drum still used by pedlars and Taoists in China to announce their presence. Modern pellet-bows from China and the Chinese culture-area have either a double string with a little cradle to hold the pellet in place, or a small bone cup inserted in the liana string.

Given the antiquity of arrows in the Chinese culture-area and the lack of evidence of a similar antiquity for pellets, it is unlikely that the pellet-bow preceded the bow used with arrows in China and it occupied a minor place throughout Chinese history. In the Warring States period, the logician Hui Tzu found that he had to take illustrations or examples (pi), proceeding from the known to the unknown in defining, and when the king of Liang tested him on this, the example which came under discussion was the pellet-bow. In the Sung, the pellet-bow is listed among the recreations of the people of Hangchow in the early +13th century.
century, and even the names of half a dozen archers renowned for its use at that time have come down to us. On arrows as such we need not long delay. So ancient a tool naturally left its mark on the written language, and shih (K/560e) was a plain pictogram. It entered into other words also, such as pet (distorted to fu), a quiver, and indeed the picture of a quiver (K/984). Some assert that even so abstract a word as chih, to reach or to arrive (K/413), shows an arrow hitting its target. There is an old list of arrow types in the Chou Li, not indeed in the Khao Kung Chü, but elsewhere, under the entry concerning the Ssu Kung Shih, the official in charge of archers' gear. Such terms as hou shih, arrows with bronze or iron heads, and chieh shih, incendiary arrows, might detain us for a moment. In Han times a special kind of wood, the arrow-thorn, hu, was used. Among arrow inventions, the use of paper for feathering war arrows by Lang Chi in the +6th century may be mentioned. Among famous arrow-smiths, there was Chang Hui of the +1st. Inventions which permitted the use of arrows much shorter and lighter than the length between the two hands of the archer will be described presently.

As for the technique of archery, apart from what has already been said, the participation of the Chinese in one of the four great methods of shooting, the so-called 'Mongol' release, which necessitates a thumb-ring (chueh), is noteworthy. It was Morse (1), in a paper published in 1885, who first investigated the different methods of drawing the bow. His classification was definitive and has been accepted as the standard for all subsequent research. Morse described the method employed throughout the oriental world as the 'Mongolian release' although it may just as well have been named after the Turks, Manchus, Tibetans, Koreans or Chinese, for they all used this release employing different shapes of thumb-ring. The Japanese too used the method, but in place of a thumb-ring they utilised a shooting glove with a specially re-inforced and grooved thumb.
The thumb-rings associated with China in the Chhing period, the usual type to be found in museum collections today, are cylindrical. Such widely separated countries as Korea and Turkey, however, favoured a lipped ring thought by some to be less clumsy and more effective than the cylindrical. There is, in fact, no inherent superiority in either, although a slightly different technique has to be employed with each, the bowstring being positioned in the distal crease of the thumb in the case of the lipped ring whilst the cylindrical ring holds the bowstring in the crease at the base of the thumb. Either ring will enable the full strength of the archer to be used and will give a sharp and smooth release.

The cylindrical ring seems not to have been universally popular in China before the Manchu conquest, for the older works illustrate variations of the lipped ring. Curiously, the earliest evidence for the use of the 'Mongolian release' anywhere in the world comes from excavations of Chou dynasty graves. Actual specimens of thumb-rings have been recovered but they are not cylindrical rings, rather lipped ones of jade or antler (Figs. 23, 24, 25). One feature distinguishes these rings from those of Korea and Turkey. They have a square projection to one side of the back of the ring with, in the jade examples at least, a small hole bored through the ring from side to side. These features have never been satisfactorily explained.

The release and draw employing a thumb-ring is ideally suited to the short composite bow in which the angle of the bowstring at the point of draw becomes acute when full draw is reached. With the 'Mediterranean release' employing two or three fingers, pinching occurs with the short composite bow although the method functions efficiently enough when a simple longbow is used; a simple longbow develops a far less acute angle in the bowstring at full draw.

All the military treatises give instructions, but in the Han there were special books on the subject by the famous general Li Kuang, by Fêng Mêng, and by Yin Thung-Chhêng, which have not survived.

Of distinct technological interest are the arrows which were recoverable because attached to a fine cord which unrolled as the missile travelled; we have already noted the possible significance of these in connection with the early history of suspension-bridges. The tethered arrow was a primitive tribal technique lost in the mists of time, but Hsü Chung-Shu has pursued it through the wanderings of the words têng, tsêng, and cho. The first of these undoubtedly occurs in Shang bone and bronze inscriptions, but we cannot follow Hsü in his theory that it was...
Fig. 23. Archer’s thumb-rings, jade, from an Eastern Chou tomb, from Anon (20).

Fig. 24. Archer’s thumb-rings, bone, from an Eastern Chou tomb, from Anon (20).

Fig. 25. The ‘Mongolian release’, after E. S. Morse (1).
originally a pictogram of a crossbow. The shooting of arrows with cords attached to them is seen in several famous inscribed scenes of Warring States time. The name for a certain kind of barbarian, *lǔ*, derives, it will be remembered, from a picture of an arrow with something wound round its shaft. The natives of South Formosa were noted for this art as late as the +13th century – they cannot bear, said Chao Ju-Kua, to lose the metal of the arrow-heads. Probably this was its original motive. There is even a book on the technique in the *Chhien Han Shu* bibliography, by one Phu Chi Tzu the Rush-and-Hemp Master, which seems a suitable name for a fowler). And in the +2nd century Chang Hêng the astronomer wrote in his ode on the delights of returning to the country (*Kuei Thien Fu*):

The dragon sings in the great marsh,
The tiger roars on the mountain;
Above I let fly the thin silk thread
Below I angle in the ever-flowing stream . . .

(2) **THE CROSSBOW**

The aiming process in shooting is affected not so much by the strain of the bow as by the less than rigid hold between the hand grasping the bow handle and that drawing and holding the string. This is where aiming and releasing inaccuracies occur. It should be borne in mind that the ordinary archer uses a bow suited to his own strength. The crossbow’s advantage lies in the possibility of using a bow far beyond the strength of the archer by reason of the mechanical release and holding of the drawn bowstring, and the fixed relationship between the bow and the latch due to the rigid stock. This last is what makes it accurate. It was therefore a great step forward when means were devised for the mechanisation of triggering, and this could only be done when some bar or framework was introduced to which the trigger could be fixed. The obvious method was to attach a longitudinal stock at right angles to the bow-stave, and to place the trigger at the end nearest the archer. Thus ‘lock’ and ‘stock’ came into existence, and even the ‘barrel’ may have existed in its crossbow form (as the slur-bow) before it came into its own after the invention of an explosive propellant. Such were the principles which led to the development of the crossbow, but it is not necessary to believe that they were consciously in the minds of their earliest users; more probably the crossbow arose from the devising of traps which could be set in motion by the approaching animal.

a E.g. a bronze bowl in the Freer Gallery and a bronze vase in the Pillsbury Collection, both reproduced by Yetts (13). And as we shall see below, the *Ms Tzu* book, in its detailed description of the arcuballista, directs that the arrows shall be tethered and recoverable.

b See Hirth & Rockhill (1), p. 165.

c Ch. 30, p. 40b.

d *CSHK*, Hou Han sect., ch. 53, p. 9b; tr. Hightower (2), p. 215.

e Cf. below, p. 163.
The crossbow, termed *wu* from the beginning in China, is essentially a weapon of Eurasia, and more Asian than European; it had little spread in India until it was introduced in Islamic times prior to which it was probably limited to use as a trap. It was unknown in all other continents except for late introductions to Africa and the Americas. The Chinese early brought it to its greatest perfection, and the triggers of bronze which they made for it remain among the greatest triumphs of ancient metallurgical and engineering practice in any civilisation.

In reading the *Wu Ching Tsung Tao* of +1044 it is well not to be insensitive to the practical soldierly quality of much of the text. To open the crossbowman's mystery, therefore, we can hardly do better than listen to Tseng Kung-Liang discussing the matter at the beginning of the +11th century.

The crossbow is the strongest weapon of China and what the four kinds of barbarians most fear and obey. In former times we had the 'yellow multiple [bolts]' [*huang lien*] [type], the 'hundred-bamboo' [*pai chu*] [type], the 'eight tan' [*pa tan*] [type], the 'double bow' [*shuang kung*] and others besides. The differences consisted in [whether or not there was a] winch [*chiao chhe*], or [whether it was for use] on horseback, and so on. Nowadays we have the 'three bows coupled' [*san kung ho shan*], the hand-crossbow [*shou she*], and the 'little yellow' [*hsiao huang*]; they are all developed from the traditional methods.

Now for piercing through hard things and shooting a long distance, and when struggling to defend mountain-passes, where much noise and impetuous strength must be stemmed, there is nothing like the crossbow for success. However, as the drawing [i.e. the arming] is slow, it is difficult to cope with sudden attacks. A crossbow can only be shot off [by a single man] three times before it comes to hand-to-hand weapons. Some have therefore thought crossbows inconvenient for fighting, but truly the inconvenience lay not

8 See below, p. 135.

b Since the character combines the bow radical (no. 57) with an ancient pictogram of a woman and a hand, meaning 'slave' (K/942), some authors, such as Horwitz (13) have been tempted to give it semantic significance, suggesting that the Chinese derived it from tribal barbarians (slaves), or even that it was armed by the help of slaves. This is surely nonsense; the phonetic is here just a phonetic.

c Cf. Williamson (1) for an interesting account of the tiger trap employing the crossbow principle in Bengal.

d The crossbow was taken into South and Central America by the Spanish and Portuguese but seems only to have survived there as a child's toy, cf. Heath & Chiara (1). The Cherokee Indians are reported by Laubin & Laubin (1) to have used the crossbow, but the evidence is lacking in specific detail.

f Ch. 2, p. 37a; tr. auct.

A crossbow of ordinary standard infantry type.

2 *See* below, p. 135.

3 Since the character combines the bow radical (no. 57) with an ancient pictogram of a woman and a hand, meaning 'slave' (K/942), some authors, such as Horwitz (13) have been tempted to give it semantic significance, suggesting that the Chinese derived it from tribal barbarians (slaves), or even that it was armed by the help of slaves. This is surely nonsense; the phonetic is here just a phonetic.

c Cf. Williamson (1) for an interesting account of the tiger trap employing the crossbow principle in Bengal.

d The crossbow was taken into South and Central America by the Spanish and Portuguese but seems only to have survived there as a child's toy, cf. Heath & Chiara (1). The Cherokee Indians are reported by Laubin & Laubin (1) to have used the crossbow, but the evidence is lacking in specific detail.

f Ch. 2, p. 37a; tr. auct.

A crossbow of ordinary standard infantry type.

2 *See* below, p. 135.

3 Since the character combines the bow radical (no. 57) with an ancient pictogram of a woman and a hand, meaning 'slave' (K/942), some authors, such as Horwitz (13) have been tempted to give it semantic significance, suggesting that the Chinese derived it from tribal barbarians (slaves), or even that it was armed by the help of slaves. This is surely nonsense; the phonetic is here just a phonetic.

c Cf. Williamson (1) for an interesting account of the tiger trap employing the crossbow principle in Bengal.

d The crossbow was taken into South and Central America by the Spanish and Portuguese but seems only to have survived there as a child's toy, cf. Heath & Chiara (1). The Cherokee Indians are reported by Laubin & Laubin (1) to have used the crossbow, but the evidence is lacking in specific detail.

f Ch. 2, p. 37a; tr. auct.

A crossbow of ordinary standard infantry type.

2 *See* below, p. 135.

b Since the character combines the bow radical (no. 57) with an ancient pictogram of a woman and a hand, meaning 'slave' (K/942), some authors, such as Horwitz (13) have been tempted to give it semantic significance, suggesting that the Chinese derived it from tribal barbarians (slaves), or even that it was armed by the help of slaves. This is surely nonsense; the phonetic is here just a phonetic.

c Cf. Williamson (1) for an interesting account of the tiger trap employing the crossbow principle in Bengal.

d The crossbow was taken into South and Central America by the Spanish and Portuguese but seems only to have survived there as a child's toy, cf. Heath & Chiara (1). The Cherokee Indians are reported by Laubin & Laubin (1) to have used the crossbow, but the evidence is lacking in specific detail.

f Ch. 2, p. 37a; tr. auct.

A crossbow of ordinary standard infantry type.

2 *See* below, p. 135.

b Since the character combines the bow radical (no. 57) with an ancient pictogram of a woman and a hand, meaning 'slave' (K/942), some authors, such as Horwitz (13) have been tempted to give it semantic significance, suggesting that the Chinese derived it from tribal barbarians (slaves), or even that it was armed by the help of slaves. This is surely nonsense; the phonetic is here just a phonetic.

c Cf. Williamson (1) for an interesting account of the tiger trap employing the crossbow principle in Bengal.

d The crossbow was taken into South and Central America by the Spanish and Portuguese but seems only to have survived there as a child's toy, cf. Heath & Chiara (1). The Cherokee Indians are reported by Laubin & Laubin (1) to have used the crossbow, but the evidence is lacking in specific detail.

f Ch. 2, p. 37a; tr. auct.

A crossbow of ordinary standard infantry type.
in the crossbow itself but in the commanders, who did not know how to make use of crossbows. All the military theorists of the Thang maintained that the crossbow had no advantage over hand-to-hand weapons, and they insisted on having long bills and great shields in the front line to repel the charge, and made the crossbowmen to carry sabres and long-hafted weapons. The result was that if the enemy adopted an open-order formation and attacked with hand-to-hand weapons, the soldiers would throw away their crossbows and have recourse to those also. A body of the rearguard was therefore detailed beforehand to go round and collect up the crossbows.

But now things are not at all like this. The crossbow is the most efficient weapon of any, even at distances as small as five feet. The crossbowmen are mustered in separate companies, and when they shoot, nothing can stand in front of them, no [enemy] formation can keep its order. If attacked by cavalry, the crossbowmen will be as solid as a mountain, shooting off such volleys that nothing can remain alive before them. Although the charge may be impetuous it will not reach them. Therefore the barbarians fear [the crossbow]. [Truly] for struggling around strategic points among mountains and rivers and defiles, overcoming men who do not lack bravery, the crossbow is indispensable.

Regarding the method of using the crossbow, it cannot be mixed up with hand-to-hand weapons, and it is beneficial when shot from high ground facing downwards. It only needs to be used so that the men within the formation are loading while the men in the front line of the formation are shooting. As they come forward they use shields to protect their flanks. Thus each in their turn they draw their crossbows and come up; then as soon as they have shot bolts they return again into the formation. Thus the sound of the crossbows is incessant and the enemy can hardly even flee. Therefore we have the following drill—

shooting rank
advancing rank
loading rank.

This passage throws a flood of light on the disciplined use which mediaeval Chinese troops made of the remarkably scientific weapon which their armourers had developed. But perhaps Tsêng Kung-Liâng was a little ungenerous to the military writers of the Thang, for in fact the latter part of his discourse is borrowed almost verbatim from the Shê Chêng or Chiao Shê Chêng¹ (Crossbowmen's Manual) written by Wang Chii², a distinguished technologist of the 8th century. Wang Chii also mentions the same kinds of crossbows as the Sung author, but he adds figures for their ranges. Thus the winch-armed crossbow (chiao chêhê nu³) would shoot a bolt as far as 1,160 yards and was used especially for attacking city ramparts and forts. The arm-drawn form (pi chang nu⁴), presumably the standard type, had a range of some 500 yards, and the horse-archer's crossbow (ma nu⁵) would shoot about 330 yards.⁶

¹ We know this because some of Wang Chii's book has been preserved in TPYL, ch. 348, p. 72 etc. Parallel passage in Thai Po Yin Chêng, ch. 70, p. 111, and in Thang Tien, ch. 149, p. 13a (reproduced in TSCC, Jung chêng tien, ch. 283, p. 1b), tr. Dubs (2), vol. 2, p. 159.
² He gives them in paces; they are converted at 5 ft. to the pace, for the Chinese unit was a double-pace.
³ Further on comparative ranges, see below, pp. 216-7.

¹ 教射經 ² 王題 ³ 繡車弩 ⁴ 簡張弩 ⁵ 馬弩
Another appraisal of the crossbow's significance, written about +1115, is also worth quoting. In the Lan Chên Tzu, the Taoist naturalist Ma Yung-Chhing wrote as follows:

Since ancient times we Chinese have fought against the barbarian tribes [the I and the Ti] and we have always made use of the crossbow. Long ago Chhao Tsho, in his memorial to the emperor said 'The strong crossbow [ching nu] and the [arcuballista shooting] javelins are effective at long range, and cannot be matched by the bows of the Huns.' As the Phing-Chhêng song goes:

Take heart, my lads, for we have got
The crossbow, and the Huns have not.

Then Li Ling shot the Shan-yü himself with an arcuballista [lien nu], and later [in the Chin time] Ma Lung captured Liang-Chou by using formations of crossbowmen [nu chin]. All these examples prove what the Chinese can do when they make use of their capacities. Of course, in mounted archery [using the short bow] the I and the Ti are skilful, but the Chinese are good at using nu chhe [mobile arcuballista, or pavises (shields) on wheels]. These carriages can be drawn up in the form of a laager which cannot be penetrated by cavalry. Moreover, the crossbows can shoot their bolts to a considerable range, and do more harm [lit. penetrate deeper] than those of the short bow. And again, if the crossbow bolts are picked up by the barbarians they have no way of making use of them. Recently the crossbow has unfortunately fallen into some neglect; we must carefully consider this.

Like the preceding passage, this teaches us much. It speaks of the great value which the crossbow always had in Chinese tactics, alludes to Chinese expertise in various forms of large crossbow catapults (arcuballista), and mentions the formation of 'squares' or strong points for withstanding hordes of nomadic horse-archers. One's curiosity is aroused by the reference to the memorial of Chhao Tsho, the great - 2nd-century bureaucrat, to the emperor. It is easy to find in the Chhien Han Shu, and since (in spite of its basic importance for the history of military technology) it seems not to have been translated in full before, we give it here.

The Chhien Han Shu records the memorial of -169 as follow. After some introductory sentences, Chhao Tsho continued:

Your servant has also heard that in military strategy and tactics three things are important. First there is the nature of the ground, second the training of the troops, and third the advantageous use of weapons.
According to the *Ping Fa*, where there are waterways fifteen feet wide, chariots cannot pass. Where rocks are piled up among the mountain forests, and rivers circulate between hills covered with woods and thickets; there the infantry arm comes into its own. Here two chariots or two horsemen do not equal one foot-soldier. Where there are rolling hills, wide open spaces and flat plains, there chariots and cavalry find their use; and ten foot-soldiers are not as good as one horseman. Flat places intersected with gorges, and abrupt declivities affording wide outlooks—commanding positions such as these should be held by archers and crossbowmen. Here a hundred men armed with hand-to-hand weapons are not equal to one archer. When two forces oppose one another on a plain covered with short grasses they are free to manoeuvre back and forth, and then the long bill (chhang chi) is the right weapon. Three men with swords and shields are not as effective as one so armed. Among reeds and rushes and thickets of bamboo, where the undergrowth is rich and abundant, pikes and short spears are needed. Two men with long bills are not as good there as one with a pike. But among winding ways and dangerous precipices the sword and shield are to be preferred, and three archers or crossbowmen will not do as well as one swordsman.

[Secondly] if soldiers are not carefully selected and trained, and their lives not well regulated, they cannot be mobilised quickly in emergency, and valuable opportunities [of attack] may be lost, or retreats improperly carried out. When the vanguard is fighting the rearguard may be collapsing, and the signals of gong and drum remain without response. This is all because the soldiers have been insufficiently trained and controlled, so that one of the enemy is more use than a hundred of them.

[Thirdly] if the weapon is not in perfect condition, the soldier might as well have empty hands. If the armour is not hard and its scales do not properly overlap, the soldier might as well be naked. If the crossbow cannot attain the limit of its range, one might as well use nothing but hand-to-hand weapons. If in shooting, the target cannot be hit, one might as well throw away all the arrows. If the target when hit cannot be penetrated, the arrows might as well have no heads. Such are the evils which spring from neglect of arms by commanders. This may give the enemy a five to one advantage. Therefore it is that the *Ping Fa* says that if the weapons are not good enough, one might as well hand over all one's soldiers to the enemy. In that case, the general might as well be handed over also. And for that matter why not the emperor too? An emperor who cannot select his generals judiciously almost surrenders his empire to the enemy. So these four [weapons, soldiers, generals, emperor] are the cardinal points of the military world.

Your servant has also heard that countries differ according to size, whether small or large; as to strength, whether powerful or weak; and as to geographical situation, whether mountainous or exposed. Living in modest subservience to a large country is natural for a small one, but if small countries combine they may become a formidable enemy. So the practice of China has always been to get barbarians to fight each other.

Now both the country and the tactics of the Huns are different from those of the Chinese. Their lands are nothing but mountain-slopes with ways going up and down and winding through gorges in and out; in such regions our Chinese horses cannot compete with theirs. Along the tracks at the edge of precipices still they ride and shoot; our Chinese horse-archers can hardly do the like. Rain and storm, exhaustion and fatigue, hunger and thirst, nothing do they fear; our Chinese soldiers can in these things hardly compare with them. Such are the merits of the Huns.

* Not *Sun Tzu*, at any rate as we now have him.

1 長戟
On the other hand, on plains light chariots can be used and cavalry charges made; in such conditions the Hunnish hordes are readily thrown into confusion. The strong crossbow (ching nu) and the [arcuballista shooting] javelins have a long range; something which the bows of the Huns can in no way equal. The use of sharp weapons with long and short handles by disciplined companies of armoured soldiers in various combinations, including the drill of crossbowmen alternately advancing [to shoot] and retiring [to load]; this is something which the Huns cannot even face. The troops with crossbows ride forward [ts'hai kwan ts'ou] and shoot off all their bolts in one direction; this is something which the leather armour and wooden shields of the Huns cannot resist. Then the [horse-archers] dismount and fight forward on foot with sword and bill; this is something which the Huns do not know how to do. Such are the merits of the Chinese.

Thus from all these considerations we see that the Huns have three merits and our Chinese [soldiers] have five. Yet Your Majesty has sent out troops numbering several hundred thousands to fight a horde of Huns numbering only several ten-thousands, so that we have a superiority of ten to one. But weapons are ill-omened things, and in all combat there is risk; in a moment everything may be overturned so that the greater becomes the smaller and the stronger the weaker. Trying to snatch victory from the jaws of death is hardly possible, and then it is too late for regrets. The Tao of imperial kingship is one of infinite perfection; it takes no chances. Now quite recently the Hu barbarians of the I-Chhiu tribe have surrendered, flocking to show their obedience, to the number of several thousands. Their usual diet and general merits are just the same as the Huns. Let them then have strong armour and quilted clothes, strong bows and sharp [-headed] arrows, mount them on good border horses, and appoint for them an intelligent general who can understand their customs and win their hearts [...]. Thus Your Majesty’s commander-in-chief will be able to affront both kinds of terrain with equal confidence, having two armies, one effective in the mountains, the other in the plains. This is one of the arts of infinite perfection [...]

We shall have to refer to this memorial later in more than one context. Here it is noteworthy for the firm statement that the crossbow was a weapon more effective than the short composite bows of the nomadic horse-archers, which it outranged. Its larger catapult forms were also evidently considered important. Of interest, too, is the information we are given about the proper tactical use of crossbowmen, and their three-rank drill, already developed in the Han. Lastly Chhao Tsho’s emphasis on weapon technology deserves particularly to be noted.
We proceed to a description of the crossbow in its first heyday as the standard weapon of the armies of the Han. Its appearance in use may be seen from Figs. 34 and 35. The bow-stave itself calls for little remark, as it was almost certainly constructed with horn, wood, sinew and glue, in the same way as the composite bow. The stock (pi1) was a plain piece of good wood into which the trigger-box was inset like tenon into mortice, and which carried upon its upper surface a groove (chii2) for the arrow or bolt — for of course the crossbow was held horizontally, with the projectile resting on the stock, not vertically like the bow simple. A few stocks have survived from the Han period, such as that illustrated in Fig. 26 found in the + 1st century tomb of Wang Kuang3 at Lolang in Korea by Oba & Kayamoto. Another, from the limes of Kansu, has been described and figured by Stein. There has been speculation concerning some highly decorated bronze finials excavated from chariot burials of the Eastern Chou period. The anonymous author who published them thought that they were fitted in pairs to the stock of a crossbow so as to hold the bow in place. Rawson (1) has followed this reconstruction but it is an unlikely one, for the tips would be a hindrance to arming the weapon whilst in a standing position, and the archer would always have to sit to perform the task. The weight of the fittings at the end of the stock would also make it unwieldy and there seems little practical reason for their use in this way. On the other hand, Liu Chan-Chheng (1) suggests that these were actually fitted to the chariot itself on the left side only and that they held the crossbow steady when it was being fired from the chariot (see Fig. 28). The manner of stringing the crossbow is seen in Fig. 27. One man sits on the ground with a bastard-string passing behind his waist, and bends back the bow, using the power of both legs with his feet pressed against the belly of the bow either side of the stock, until a comrade-in-arms can slip the string proper into place.

But it is the trigger-mechanism which is chiefly worthy of our study. To begin

30. MILITARY TECHNOLOGY

(i) The trigger-mechanism

4 The foundations of occidental knowledge of the Chinese crossbow were laid in two papers by Horwitz (13) and Wilbur (2). Yet much was missed, even in the valuable Chinese paper of Hsii Chung-Shu (4).

5 Certain other types of spring were used with the crossbow later; see p. 156 below. Strange to say, the steel spring so typical of the late European crossbow seems never to have been used in China.

7 Shu Hsi Chih-Neu, ch. 19, p. 34, alluding to Chiu Shu, ch. 55, p. 86. Hence the punning terms for the crossbow, khung chhsian (Chhien Han Shu, ch. 54, p. 13b) and khung chhian (ch. 62, p. 18a). Cf. Piao I Lu, ch. 7, p. 6b. Perhaps the last form of the word was the most probable original technical term for the arrow-groove.

8 This may remind us of the preference of the Chinese engineers for horizontal mountings (see Vol. 4, pt 2, pp. 546ff).

9 (4), vol. 2, pp. 758, 769 and Pl. LII.

10 Anon. (264), fig. 7.

11 See p. 143.

12 The method is essentially the same as that described for Europe by Payne-Gallwey (1), pp. 114, 184, although the crossbows he illustrates were too strong to be bent by human strength alone and mechanical methods were employed, viz. the windlass, crancquin and goat's foot lever. Hein (1) does describe the use of the bastard string in precisely the way illustrated in the 7SSC but by Turkish archers bracing heavy hand bows.
Fig. 26. Crossbow-stocks from the tomb of Wang Kuang, Lolang, Korea.

Fig. 27. The stringing of a crossbow. From TSSC 'Jung Chêng Thien' 284/hui khao 2, 11b.
with, its standardisation is extraordinary, for the Han specimens (of which many are known) are all closely similar. There must have been a pre-Han period of experimentation which has left us some few examples. Recent excavations, at Mount Li in Shensi province, of the terracotta armies of Chhin Shih Huang Ti have revealed that the Chhin crossbow was equipped with a similar mechanism to that of the Han but fitted directly into the stock instead of being contained in a housing (\textit{kuo}). Then the engineering skill shown is also extraordinary, for we are in the presence of a housing containing three moving pieces on two shafts, each of which gives the impression of a good casting accurately machined. Without this accuracy the release mechanism would not have worked at all, yet a metal-working lathe hardly existed, and the file must have taken the main burden of the fitting.

The operation of the mechanism can be understood best from a series of diagrams and photographs. Figs. 29 and 30 show the whole assembly and its component parts as depicted in the \textit{Wu Pei Chih} of +1628. Figs. 31a to 31d show a

* Cotterell (1), pp. 27, 49. Others have also noted that pre-Han crossbow-mechanisms did not have the housing, c.f. Elmy (1) and Mayer (1).

* Some sinologists have well appreciated this, e.g. Dubs (6), but all have found it difficult to give a workman-like and comprehensive account of the device.

* As one of our texts carefully points out, see p. 140 below.

* Ch. 85, pp. 3a, 4a, i.e. in the chapters on military training. Reproduced without change in \textit{TSCC}, \textit{Jung chêng tien}, ch. 284, pp. 2a, b.
Fig. 29. The trigger mechanism of a crossbow (assembled), from the Wu Pei Chh.

Fig. 30. The trigger mechanism of a crossbow (showing component parts), from the WPC.

bronzc trigger-mechanism in the author's possession,\(^1\) photographed from above (a), and from below (b), in the armed position, and also from above and below (c, d) in the released position. For comparison, Fig. 32 gives the engineering scale drawings made by Horwitz (13). We shall term that shaft or axle-pin which is nearest to the spring of the bowstave the forward shaft, and the other the after shaft. The trigger proper, which hangs down below the housing box, and is pulled backwards at the moment of release, is easily made out; its axis of rotation is of course the after shaft. As can be well seen in Fig. 31 b it has a ledge which engages with, and retains in position (when the bow is armed), a rocking lever with two prongs; this is the second moving component of the machine, and rotates around the forward shaft. Lying above these two components but engaging only with the latter, is the third moving piece, which in correspondence with western

\(^1\) Among the inscriptions which it bears is one which says 'Made by Wang Hui' on the 13th day of the 4th month of the 2nd year of the Chang-Ho reign-period', i.e. +88. Others say 'Chou Erh-Min shih-siu hao\(^2\)' which would mean 'Chou Erh-Min's troop, no. fourteen'; and 'sun la hao', i.e. 'mark 3, large size'. As it weighs 2 lbs 6 oz it would seem rather too heavy for an ordinary crossbow and more suited for an arcuballista. Length 5 inches, breadth just over 1.25 inches, height from bottom of trigger to top of lug 6.375 inches. Most specimens, such as those which I have examined with Dr Leroi-Gourhan at the Musée de l'Homme in Paris, are from 3 to 3.5 inches long, and correspondingly lighter. The one illustrated was sold to me in Peking, 1956, as a faithful Ming copy, and had belonged to a family of the name of Lo. But it may well be genuinely of the 4th century, and the inscription is written in a style closely resembling those on examples of certain authenticity, e.g. in Tuan Fang's collection. Perhaps it was one collected by Lo Chen-Yu.

\(^1\) 王恵 \(^2\) 周二民十四號 \(^3\) 三大號
terminology we may call the spool or nut. Its axis of rotation is the after shaft, but it moves quite independently of the trigger lever which nestles between its two plates. It is much the most complex of the three components and constitutes indeed a masterpiece of three-dimensional design. Its forward portion consists of two teeth which hold the drawn bowstring firmly behind them and disappear into the interior of the box when the trigger is released. They are continuous, right and left, with two plates, between which the rocking lever on the forward shaft is free to move just as the trigger can move at will on the after shaft. One of these plates, usually if not always the left one, is prolonged into a lug which stands up a convenient distance above the deck of the housing box. This forms a handle for returning the teeth of the nut to their correct set position to receive once again the stretched bowstring, but it was also useful in connection with sighting, a matter to
which we shall return.a The ingenuity of the nut’s construction, however, lay in the fact that the two plates were connected internally by a third plate, smaller and of quite different shape (something like a cam), which was cast in one single piece with them, and which engaged with the two-pronged rocking lever on the forward shaft. As the elevation in Fig. 32 shows, this gave a structure closely similar to the bearings of a modern crankshaft. The central plate is normally quite invisible from outside the box, underneath the central groove in which it moves, but the extreme forward end of it can be seen in Fig. 31d just above the lower prong of the rocking lever. Lastly, the shafts were each maintained in place either by a rivet-like flattening of one end or by the equivalent of a split pin.b

The action of the mechanism can now be appreciated. Starting from the armed position, a backward pressure on the trigger will release the lower prong of the rocking lever and allow it to fall, bringing with it the whole of the nut, the central plate of which has been maintained in heavy pressure against the lower prong of the rocking lever by the strain of the bowstring. Thus the teeth of the nut drop down and the crossbow is shot off. Conversely, a backward pressure on the lug of

a See p. 151.

b The split-pin or set-pin holes are shown in the diagram of the \textit{TSSC} but not in that of the \textit{Wu Pei Chih} (Fig. 33).
the nut will bring the teeth back into position, while at the same time its central plate raises the rocking lever by pressing against its upper prong until its lower one snaps into the ledge on the trigger. The re-setting process is thus in a certain sense automatic. Horwitz noted that for this to occur efficiently there should be a spring pull forward on the trigger, and such an arrangement would of course also be a safeguard against accidental trigger release. He therefore suggested that a stout sliver of bamboo was inserted into the lower surface of the stock and connected to the lower end of the trigger by a short piece of thin cord. For this purpose it would be convenient to have a small hole bored in the base of the trigger, and indeed this hole is visible in Fig. 32, the drawings of Horwitz's specimen, though not in the Wu Pei Chih drawings nor in our own specimen. It is, however, very frequently present in ancient trigger-mechanisms, appearing for example in four out of the representative group of seven Han examples published by Chhen Ching (1). No doubt it was an unessential feature, for the cord could easily have been secured by a collar.

Attention may here be drawn to a few other minor divergencies between the specimens selected for illustration. Thus (as will be seen from Fig. 31a, c) in our specimen the deck of the housing has two slots only, not three as in Horwitz, and the top of the left nut plate, which forms the floor of the bowstring notch, comes up flush with the deck when set. Secondly, the central nut plate in our specimen has been divided into two portions, a forward pin which engages very closely with the rocking lever, and an after part which extends as a roof over the top of the trigger. Thirdly, the left plate of the nut in our specimen is prolonged downwards as a spur (seen on the left of Fig. 31b), the use of which is uncertain, though if a vertical pin were to be inserted through the stock so as to come between this spur and the casing, one would have a safety catch which would absolutely prevent shooting even if the trigger were pulled backwards.

From the point of view of the history of technical terms we are fortunate to have an almost complete list of the names which the Han people gave to each part of the trigger-mechanism. The Shih Ming dictionary of + 100, punning, says:

The nu [crossbow] is so called because it spreads abroad an aura of rage [nu²]. Its stock is like the arm of a man, therefore it is called pi³. That which hooks the bowstring is called

* Probably also the trigger ledge was often given an upward bevel. McEwen (priv. comm.) has found from practical experience that the weight of the trigger is itself sufficient to make the locking automatic and he finds a spring totally unnecessary. He suggests that the hole in the trigger described was either for a decorative tassel or, more likely perhaps, to fix a trip-wire or string for use as a cross-bow trap. The stories of such traps being situated in tombs (e.g. that of Chhin Shih Huang Ti) bring this to mind.

* It is shown in his Fig. 10, a photograph of his reconstruction of a complete crossbow. See also Horwitz (6), p. 184.

* I do not know of any work on the typology of these crossbow trigger-mechanisms, differentiating them as to provenance and date, but such a research could be a valuable contribution to the history of ancient engineering.

* This is also seen in drawings of a specimen placed at our disposition by Dr PaulLévy of the Ecole Pratique des Hautes Études, Paris.

* Mayer (1) and Hulstwé (8) are helpful on the ancient history of the trigger-mechanism.

* Ch. 23, tr. auct. Cit. TPI, ch. 348, p. 1 and elsewhere.
30. MISSILES AND SIEGES

ya', for indeed it is like teeth. The part round about the teeth [i.e. the housing box] is called the 'outer wall' [kuo'], since it surrounds the lug [kuei'] of the teeth [i.e. the nut].

Within [and below] there is the 'hanging knife' [hsüan tao'] [i.e. the trigger] so called because it looks like one. The whole assembly is called chi', for it is just as ingenious as the loom.\^n

The only component missing from this is the rocking lever, and later generations doubted if it had ever had a special name. The list of terms given by Mao Yüan-I in the Wu Pei Chih at the end of the Ming,\^b however, refers to it as the tien chi', the wedge lever. The shafts are now called chien', lock-bolts. The bowstring notch, formerly (according to Mao) called kuei', is now the chao mén'.\^c But actually kuei must have meant rather the lug than the notch, for he also says that it was marked with graduations (wên') for taking sights on the near and the far. The ya', the teeth of the nut, are now known as the chi kou', the hooks of the machine. The housing has become the hsiā' and the trigger the po chi'.\^d Other new technical terms have appeared, such as chha khou' (fork mouth) for the space between the prongs of the rocking lever, and chu' (axle) for the central plate of the nut.

It will be agreed that Dubs (6) was justified in his impression that the arrangement of the parts of this mechanism was almost as complicated as that of a modern rifle bolt, and could be reproduced only by very competent mechanics. Removal of the shafts allowed the component pieces to drop out and although the mechanism was easy to re-assemble, it may have taken more ingenuity than the Huns possessed to reproduce the bronze-castings.\^e Later Western devices were often unnecessarily complicated and with so many moving parts must have been prone to disorder. The Chinese lock, on the other hand, was fool-proof in operation and it could not discharge itself because of wear on the bearing surfaces; its reliability was absolute.

All through history the Chinese were digging up ancient specimens of crossbow trigger-mechanisms,\^f studying them and trying to improve on them, though no fundamental advance seems to have been effected after Han times. For instance, about +1086 Shên Kua tells us\^g that:

someone excavating at Yün-Chou discovered a very large bronze crossbow trigger-mechanism of perfect workmanship. On the side of the housing the following words were

\^[a] Anciently, the trigger-mechanism was sometimes called chin chi', the metal machine, presumably in contrast with the wooden loom (cf. Chiang Hsieh's Chi Ming in Wên Hsüan ch. 35, p. 5b).
\^[b] Copied in TSCC, Jung chêng tien, ch. 284, p. 3a.
\^[c] Later still, this term was applied to the sighting-tube.
\^[d] The high degree of technological skill required for their manufacture was obviously a military advantage and this was recognized by the prohibition of their export from China, see p. 144.
\^[e] Barnard & Satō (1) analyze the development of trigger-mechanisms and give as well a full listing of such mechanisms unearthed by modern Chinese archaeologists down to the mid-nineteen-seventies.
\^[f] MCPT, ch. 19, Sect. 5.
inscribed ‘Pi shih Yu Shih, erh [i.e. mi] shih Chang Jou’. But the biographies in the official histories contain no such names among the hereditary guildsmen. We could never find out what dynasty this crossbow mechanism belonged to.

The words presumably mean ‘Stock by Yu Shih [one workman’s name] and bow by Chang Jou [another workman]’, but the dating remains as baffling as Shen Kua found it. Five centuries later the ancient crossbow triggers were still a live issue. Towards the end of the +16th century Chhêng Tsung-Yu², a crossbow expert, discovered an old one and tried to design an improved model. In about +1620 Mao Yüan-I found another at Sian, and this is the one illustrated in Fig. 33. He described and illustrated Chhêng’s improvements, which were partly an attempt to abandon the nuts of horn commonly used at the time and to return to bronze, but the chief difference was the provision of lugs on both sides of the nut, sights to be taken between them. Seven years later again, Wang Chêng,³ the collaborator of the Jesuit physicist John Terence, described in his own book, the Chhù Chhî Thu Shuo⁴ (Diagrams and Explanations of a Variety of Machines), an old bronze trigger mechanism which had been dug up, and which he had copied

¹ Presumably the same as Chhêng Chhung-Tou, see p. 157 below.
² WPC, ch. 85, p. 5a, reproduced in TSCG, Jung chêng ien, ch. 284, pp. 3b, 4b.
in iron according to his own modified designs. The basic principle was the same as the good old method but he had (less elegantly) three separate shafts, and the trigger had to be pressed forward, not backward, in order to release the rocking lever and the nut. The components were also endowed with new and fanciful names.

(ii) Origin and development of the crossbow

What was the origin of the crossbow in China? What relation had it to the simpler crossbows of the tribal peoples, and what account did the Chinese themselves give of its origins? These are the questions to which we must now turn. When they have been dealt with it will be natural to offer a sketch of the history and importance of the crossbow in the Chinese culture-area. We shall then be able to return to the technical side to consider the various ways in which the crossbow was armed, and the invention of testing and sighting devices. A continual urge was the increase of fire-power and as we shall see this took various forms, sometimes the development of crossbows and arcuballistae which would shoot off a number of bolts at one time, later on the brilliant invention of the repeating or magazine crossbow. Facts here to be presented will give us a transition to the real artillery of the Chinese middle ages. The consideration of the parallel history of the crossbow in Europe and the Islamic lands will then conclude our report.

Throughout southeastern Asia the crossbow is still used by primitive and tribal peoples both for hunting and war, from the Assamese mountains through Burma, Siam and to the confines of Indo-China. The peoples of northeastern Asia possess it also, both as weapon and toy, but use it mainly in the form of unattended traps; this is true of the Yakut, Tungus and Chukchi, even of the Ainu in the east. There seems no way of answering the question whether it first arose among the barbaric forefathers of these Asian peoples before the rise of Chinese culture in their midst, and then underwent its technical development only therein, or whether it spread outwards from China to all the environging peoples. The former seems the more probable hypothesis, given the further linguistic evidence in its support. In any case the crossbow of the tribes has been written of by many travellers, both Western and Chinese, for example Rock (1) from whose work we reproduce Fig. 34, the picture of a Li-su guard on a pass near Yung-Ning in Yunnan. A good deal of information about the crossbows of the tribes is contained in the works of Fan Chhêng-Ta and Chou Chhü-Fei, who were both writing about +1175. We are

1 P. 17ff.
3 The crossbows of the Miao are often depicted in those anthropological geographies of the Chhing period (cf. Sect. 22b above); one such illustration has been reproduced by Horwitz (15), Fig. 3.
4 Cf. also his Fig. 137 of a Na-khi tribesman with a crossbow. For a fine colour photograph of a Naga tribesman shooting a bolt, see Ripley (1), p. 251.
told that they were of a special type called *pien chia nu*, a term which almost certainly means that the bowstave was made of several pieces of bamboo or wood in leaf-spring form. The bolts were not feathered, and the range was remarkably small — under 20 yards — but the poison which was applied to them was so powerful that anyone hit by them died at once. A much earlier account of such weapons

a Kwei Hsi Yu Heng Chih, p. 12a; Ling Wai Tai Ta, ch. 6, p. 5b. We shall return below (p. 156) to the leaf-spring invention.

b The trigger-mechanisms were also much simpler. Chinese museums today contain, however, reproductions in bone of the typical Chinese mechanism, made in late times by tribesmen.

c Kwei Hsi Yu Heng Chih, p. 13b also cit. Shun Fu, ch. 56, p. 19b; Ling Wai Tai Ta, ch. 6, pp. 6b, 7a. As we shall see later (p. 162), the Chinese also adopted the poisoning of bolts, especially those shot from the magazine crossbow. This practice was fairly widespread in mediaeval Europe also (see Payne-Gallwey [1], pp. 13, 154); in Spain the white hellebore was known as the crossbowman’s plant. Feng Ta-Jan & Kilborn (1) identified aconite as the poison of the No-su and Hua Miao arrows. Other southeast Asian tribes, as Seligman (6) found in a classical research fifty years ago, used poisons related to digitalis. Cf. Bisset (1, 2).
occurs in the Po Wu Chih of about +290, where it is said that the bows of a people in Indo-China (Wên-Lang Kuo) were several feet high and shot poisoned arrows over 1 ft long, and that the poison was kept secret under a strange oath.

In the oldest Chinese discussion of the crossbow which we have, there is no hint that it was adopted from neighbouring barbarians; on the contrary a specific inventor is named, and he is placed, perhaps significantly, not very far back towards the age of legends. The text is contained in the Wu Yüeh Chhun Chhiu, but though therefore not necessarily older than the +2nd century, may well be considered to embody traditions going back to the Chhin or even the late Warring States period. We read that:

Fan Li also presented [to Kou Chien, d the king of Yüeh] a skilful archer from Chhu, whose name was Chhên Yin. The king discussed with him, saying, 'I have heard of your skill at shooting. Pray how did the Tao of it arise?' Chhên Yin answered that he was but a commoner of Chhu who had learned the technique but was not a master of its Tao. The king said, 'Still, tell me a few things about it.'

[Chhên Yin then speaks of the pellet-bow as the origin of the bow used with arrows, in words the translation of which has already been given, p. 116 above.]

'... So Shen Nung and Huang Ti 'took string and wood to make bows, and sharpened wood for arrows'. And thus the power of archery overawed the whole world. After Huang Ti there came, in Chhu, Hu Fu, who was born parentless at Ching-Shan. He learnt his shooting when young, and never missed a target. From him Yi got his art, and passed it on to Féng Mêng, who taught in his turn Mr Chhin of Chhu. Mr Chhin considered, however, that the bow and arrows were no longer sufficient to keep the world in obedience, for in his time all the feudal lords were fighting against one another with weapons, and could not be controlled by [ordinary] archery. He therefore added at right angles to the bow a stock [héng kung cho pi] and established a [trigger-J mechanism within a box [or housing] [shih chi shê kung], thus increasing its strength. In this way all the feudal lords could be subdued. Mr Chhin transmitted his invention to the Three Lords of Chhu [...]

- Ch. 2, p. 5a: see H. Maspero (18).
- Ch. 9, tr. aut. In TPL ch. 348, p. 3b, the text is so much abridged as to be sometimes unintelligible, but that version preserves some better readings.
- The statesman interested in agronomy and pisciculture.
- Reigned -496/-470.
- Quotation from TCChing, 'Ta Chuan', pt 2, ch. 2; R. Wilhelm (Baynes) tr., vol. 1, p. 358.
- Presumably a local technical deity of Chhu.
- If not legendary, he would be of the 7th cent. We saw above (p. 118) a work on archery current in the Han which went under his name.
- Some editions have shi here instead of kung, but the latter is presumably intended. Cf. p. 169 below.
- i.e. thus increasing the power of the bow that could be used, since there was no necessity for the archer to use only one hand in pulling the bow and holding it as he aimed the weapon. While the crossbow did not have the speed of shooting of the ordinary hand bow, it did exceed it in range and accuracy.
- A curious statement – just the opposite happened.
and it was from them that Ling Wang8 got it.8 As he himself said, before their time the men of Chhu had for several generations guarded their frontiers only with bows of peachwood and arrows of thorn. Since then [those who speak of] the Tao of archery have divided into a hundred schools, and even capable men do not know which to follow. Five generations of my forebears learnt their methods in Chhu. Although I do not know the Tao [of archery], I would invite you to try [my weapon].9

Then the king said, ‘Upon what is the shape of the crossbow modelled?’ Chhên Yin answered: ‘The housing [kùo7] is like a square [-walled] city; it signifies the garrison commander who receives his orders from the prince. The nut [yá7] is like the carrying out of the order; it signifies the sergeants and the soldiers. The niú8 is like9 the general in charge of the inner defences. The kuan9 is like9 the guards who inspect those who come and go. The rack for hanging up the crossbows [i6] is like the servant who awaits his master’s call. The stock [pì7] is like the highway, running in whatever direction you desire. The bowstave [kùng8] is like the commander-in-chief who controls all the weight and force. The string [hsien9] is like an officer in charge of soldiers of a garrison. The arrows are like “flying guests” who carry out their orders. The arrow-heads are penetrating enemies; when they are on the move they do not stop. The wei10 is like10 an ambassador’s secretary, making straight the way and deciding whether orders can be executed or not. The phia11 [lit. cavalry commander]11 is like the assistant ministers governing to left and right. [Where the crossbow comes] birds can fly no more, and animals no longer run; in whatever direction it points there is nothing but death. That is as much as can be said by an ignorant man like me.’

The king said ‘What an excellent account of the crossbow you have given. I would like, nevertheless, to hear more of the Tao of accurate shooting.’ Chhên Yin said ‘Your servant has heard that this Tao, though manifold, is subtle and minute. The sages of old, when they aimed their crossbows, predicted their shots; I could not compete with them. I would only like to refer to a few points. When shooting, the body should be as steady as a board, and the head mobile like an egg [on a table]; the left foot [forward] and the right foot perpendicular to it; the left hand as if leaning against a branch, the right hand as if embracing a child. Then grip the crossbow and take a sight on the enemy, hold the breath and swallow, then breathe out as soon as you have released [the arrow]; in this way you will be unperturbable. Thus after deep concentration, the two things separate, the [arrow] going, and the [bow] staying. When the right hand moves the trigger [in releasing the arrow] the left hand should not know it. One body, yet different functions [of parts], like a man and a girl well matched; such is the Tao of holding the crossbow and shooting accurately.’

Then the king said ‘Tell me the Tao of aiming flying arrows at the enemy by means of a graduated device [wang ti i piao thou fèn fèi shìh]?’ Chhên Yin replied: ‘Following the

8 Reigned –539—527.

9 This technical term is obscure; perhaps it referred to the third and inner-most of the three rocking levers, which, with its two prongs, might have been fancifully compared to an animal with legs, as here the ox.

10 This technical term is also obscure; we suggest the space between the two teeth of the nut, which would receive the nock end of the bolt.

11 Term also unknown; perhaps the feathers on the bolt.

12 For this term’s meaning we can only suggest the two cars of the bowstave.
Missiles and sieges

'graduation, while aiming at the enemy, you get the triple grids [tshan lien] into agreement. Now some crossbows are as light as a lou², some as heavy as a tan³; some arrows are light while others are heavy. A one-tan crossbow needs an one-ounce arrow; these numbers agree together. As for the range, far or near, high or low, all depends on the slightest differences of weight. Herein lies the Tao; beyond this there is nothing to be said.²

The king exclaimed 'Magnificent! Now you have told me all your Tao. But I would still like you to teach it to my people.' Chhên Yin answered 'The Tao comes from Heaven, but the management of things depends on man. Whatever men learn, there is nothing which cannot be brought to perfection.' Thus the king commissioned Chhên Yin to train the soldiers [of Yüeh] in military exercises outside the north gate of the capital. After three months they were all skilled in the use of bow and crossbow. When Chhên Yin died the king was very sad and buried him in the west, naming the place of his tomb 'Chhên Yin's Mountain'.³

Thus apart from legendary figures, the Han people traced the crossbow back to a man called Chhin, who would have lived in Chhu in the century preceding Confucius, and seems to give the impression of a real person.⁴ Perhaps what he really invented was the metal trigger-mechanism. In the paragraph on the crossbow's parts we find a few new technical terms, and the speech of Chhên Yin on the technique of shooting is one of the best of all ancient statements. To his words on sighting we shall shortly return.

But first we must enquire into the oldest surviving text which makes mention of the crossbow.⁵ If the Sun Tzu Ping Fa really dates from -498 or a little earlier, then it must have this honour,⁶ for it says⁷ that 'energy may be likened to the bending of a crossbow, decision to the releasing of the trigger'.⁸ Nor is this the only mention in it,⁹ so they can hardly be interpolations. But from the -4th century the evidence is a good deal more copious. In one of its accounts of the battle of Ma Ling¹⁰, the Shih Chi relates¹¹ how the troops of Chhi, commanded by Sun Pin¹² (the descendant of Sun Tzu), ambushed the troops of Wei under Phang Chüan¹³, killing him and inflicting a great defeat on them. In this action Sun Pin employed wán nu', which we may reasonably translate as 'a very strong body of cross-

² Actually there is quite a lot more to be said; cf. p. 146 below. Chhên Yin was not too informative on sighting devices.
³ Parts of this passage were often quoted in later ages, in the Sung, in Shih Wu Chi T'uan, ch. 9, p. 39b.
⁴ There does seem to have been a connection between the State of Chhu and the crossbow, for in the Fang Yen, ch. 3, for example, we are told that the usual name for soldier in Chhu was crossbowman (mu fa).¹⁴
⁵ Important epigraphic evidence exists in the shape of crossbows depicted in hunting scenes on inlaid bronze vessels of the late Chou period. These have been the subject of an interesting discussion by Hsu Chung-Shu (f).
⁶ The crossbows are undoubtedly there, but the dating of the objects can only be approximate, and probably none are earlier than the -4th century.
⁷ On the dating and authenticity of this work see pp. 16ff. above.
⁸ Ch. 5; tr. L. Giles (11), p. 38.
⁹ 'Chih ju k'ul mu; chih ju a chi.'¹⁰
¹⁰ In a list of army equipment, ch. 2, tr. Giles (11), p. 14.
¹¹ Ch. 65, p. 44. The other account is in ch. 44, tr. Chavannes (1), vol. 5, p. 156.
bowmen. Then in the Han chapter in the "Chan Kuo Tshè" there is an interesting conversation in which Su Chhin (d. - 317) is trying to persuade the prince of Han to join one of his alliances between the feudal states. This would have occurred about -336, and the text, though not earlier than the Chhin time, may be a rather accurate record of what transpired. The prince seems quite satisfied with the strength of his country; he points out the proximity of the great iron-making centres of Wan and Jang, and boasts that he has 10,000 suits of armour and the strongest bows and crossbows in the world (Thien hsia chih chhiang kung ching nu) all made in Han and kept at the arsenal (shao ju) of Chhi Tzu (-Yang). This personage seems to be a semi-legendary artisan like Kan Chiang. Lastly there are the fortification chapters in the Mo Tzu book, which on numerous occasions speak not only of ordinary crossbows, but also of large multiple-bolt arcuballistae. Though these might date from the mid -4th century when the Mohists were developing, under the influence of Chhin Ku-Li, their school of fortification engineering, it is more probable that they are of the -3rd.

In that century mentions begin to become abundant. The "Han Fei Tzu" book, as well as the "Li Shih Chhun Chhiu," mentions 'strong crossbows', but the latter has another passage showing close practical acquaintance with the device which we described in detail above. 'If the mechanism of a crossbow-trigger is out of alignment by no more than the size of a rice-grain, it will not work.' The references to crossbows in "Chuang Tzu" have often been misunderstood. One says: 'The knowledge shown in the [making of] bows, crossbows, hand-nets, stringed arrows, and the movements of trigger-mechanisms is profound, but it causes great trouble to the birds above.' Legge, and Wieger, mistaking the technical meaning of chi here, made it 'contrivances with springs', yet in fact a spring is a component of the trigger so minor as to be almost unessential. Another refers to the pressing of the trigger. The "Chou Li" is reticent on the subject of crossbows, partly perhaps because of its conscious archaism. They appear, not in the "Khoa Kung Chi" chapters

8 It was hardly fair to render it, as did L. Giles (11), p. 49, in his paraphrased account of the battle, as 'a strong body of archers'. This is almost like confusing fermentation and distillation (cf. vol. 1, p. 7). Parallel cases of the use of massed crossbowmen are given in the "Wei Lueh", ch. 1, p. 15a.
9 Ch. 8, p. 66.
10 At or near modern Nan-Yang.
11 The name Chhi Tzu afterwards became attached to a particular type of crossbow; cf. "Piao I Lu", ch. 7, p. 1a.
12 E.g., ch. 52, p. 7a; nearly all of ch. 53; ch. 58, p. 17a; ch. 62, pp. 19a, 20a, 21a. Unfortunately the text of the description of the arcuballista is extremely corrupt; see p. 189 below. Translations and descriptions by Forke (7), p. 108; (3).
13 Ch. 47, p. 4b.
14 Ch. 32 (vol. 1, p. 66), tr. R. Wilhelm (3), p. 84.
16 The analogy is with the careful staff-work required for victorious battles
17 Ch. 10.
18 (3), vol. 1, p. 288.

"恩穀" "天下之強弓勁弩" "少府" "錐子陽"
among the bowyers’ work, but under the headings of the Ssu Kung Shih (Superintendent of Archery Equipment), Shan Jen (Master-Archers and Crossbowmen attending upon the Emperor), and Kao Jen (Master-Bowyers or Foremen of Workshops, who choose and season wood). Here four types of crossbow are mentioned, two light and of short range, for the attack and defence of walls, and two heavy and capable of shooting far. One of the most interesting reports of this period concerns the crossbows mounted as traps in the tomb of the first emperor Chhin Shih Huang Ti in -210, to protect its contents from any plunderers. There is no reason to doubt this story, which Ssu-ma Chhien tells in all circumstantial detail. By the time we come to Huai Nan Tsu (c. -120), the crossbow is a commonplace. In one chapter he mentions it in a passage dealing with the importance of high army morale, quite parallel to that of Hsun Tsu already noticed. In another place, he warns against trying to use crossbows in marshy ground, where there is no hard surface on which to arm them with the foot; in a third, he talks of fowling like Chuang Chou, in a list of delights. If anything further were needed to assure oneself of the ubiquity of the crossbow during the Han period, it would be the numerous representations of minatory crossbowmen (usually arming their weapon) on stone reliefs, carvings and moulded bricks in the subterranean tombs of the time (cf. Fig. 35). The intention was certainly apotropaic, protecting against tomb-robbers.

A commonplace the crossbow might be, but we have still to show that it was something of much greater historical importance, nothing less than the standard weapon of the Han armies. Nor did it lose this leading position in later centuries. Knowledge of Han military organisation and equipment owes a great deal to the finds of large numbers of documents, written on slips (chien) of wood or bamboo, along the limes, or line of frontier defences, protecting the Old Silk Road in Kansu and Sinkiang. Preserved by the exceptional dryness of the Gobi desert climate, they include the equivalents of battalion orders, armoury inventories, adjutant’s memoranda, medical prescriptions and personal letters. The slips classified by Stein (4) as ordnance records contain 30 mentions of crossbows, and only two of ordinary bows, the reference being in both cases to bows belonging to barbarians.

30. MISSILES AND SIEGES

2 They seem to have been classified according to the number of bowstaves which would be needed to form a complete circle; but it is not quite clear whether this applies to crossbows as well as bows.
3 Shih Chi, ch. 6, p. 31a; tr. Chavannes (1), vol. 2, p. 194; cf. TH, p. 225. Such traps figure also not infrequently in occidental legend, and it was interesting to see one at work in the cinema-film of Jean Cocteau, La Belle et la Bete.
4 Ch. 15, pp. 192, 193.
5 See p. 65 above.
6 Ch. 15, p. 159a (Morgan (1), p. 215).
7 Ch. 1, p. 16b.
8 Like the automatic crossbowmen in the tomb of Chhin Shih Huang Ti (cf. p. 132). The subject can be followed in the paper of Rudolph (16) and the book of Chou Wei (1).
9 See especially vol. 2, pp. 753ff.
The crossbows, it is clear, were held in special stores under sergeant-armourers, and classified according to the weights required to draw them (3 to 10 tan). One slip records that a crossbow of 6 tan had fallen in strength to 4 tan. From others we know that silk and hempen fibre were provided for the strings. Chavannes (12a) instances one which reads as follows:

issued: crossbows, six-tan, one [...]
bow-arrow-resisting cuirasses, three;
gadfly-type arrows, 50
(of which 4 broken and 46 in good order)
quiver, one [...]

* The Han tan was about 120 lbs. See Wu Chhêng-Le (2) for weights and measures in different dynasties.
* No. 554.
* No. 682.
This was found among other fragments dated +153. Similar documents have been studied by Lao Kan (1); all in all, those which have come down to us cover a period running from about -105 to about +160, and all tell the same story. Another fortunate circumstance is that it was customary for makers of bronze crossbow-triggers to inscribe and date them. This has for long been the gratification of Chinese antiquaries. In 1821, when Fêng Yün-Phêng (1) published the first collection of rubbings of Han tomb-shrine reliefs, he was able to include four examples of dated crossbow-triggers. Many dated specimens are recorded and illustrated in collections published since then, as in the Thao Chai Chi Chin Lu of Tuan Fang (1). In other cases, the dating has been established by the presence of other inscribed objects in the same find, for example a trigger-mechanism in the tomb of Yu Wang (-228) at Shou-Chou (Karlbeck (1)).

Literary references to crossbows and crossbowmen are so numerous in Chhin and Han that we can only instance one or two of them. In -209 Erh Shih, the second Chhin emperor, concentrated his crossbow regiments (50,000 men) at Hsien-Yang. A similar troop movement under the Han emperor Wên Ti took place in -177. Twenty years later his son, the prince Hsiao Liang, was in charge of arsenals containing several hundred thousand crossbows. The forces led by Chhou Ya-Fu against the Huns in -174 were notable for their strength in crossbowmen. These figured prominently again in the daring raid on the stronghold of a rebellious vassal prince (Pan Chhiu) in Sinkiang, carried out by the Protector-General, Tuan Hui-Tsung, about -10. And they were still in the front line on the occasion of the similar attack made in +73 upon the Hun camp in the Shanshan kingdom by the greatest of all Governor-Generals of Central Asia, Pan Chhao. In many of these texts the crossbowmen go by a special name, ts'ai kuan, which was applied however to all troops with particular skills or training. The commentaries always explain that these soldiers were men of exceptional strength, who could draw the stiff crossbow by treading on them with their feet, then bending down and pulling with their arms. One of them, Shên-thu Chia, who afterwards rose to the position of minister of state under Han Wên Ti, had carried his crossbow for Kao Tsu at the beginning of the Han dynasty around

1 Lao Kan (1)
2 Fêng Yün-Phêng (1)
3 Tuan Fang (1)
4 Karlbeck (1)
5 Erh Shih
6 Ts'ai kuan
7 Chhin Chi, ch. 77, p. 26b; cf. TH, p. 344
8 Chhien Han Shu, ch. 77, p. 23a
9 Hou Han Shu, ch. 77, pp. 26b; cf. McGoogan (1), p. 265
10 For example, besides those references already given, Shih Chi, ch. 57, p. 1a.
— 205, and this strength of his youth was remarked upon in his biography. Many units of *ts'ai kuan* were mounted.

In the light of the foregoing facts it will not be surprising that Han literature contained a number of manuals of crossbow archery. Unfortunately only the titles have survived. Thus the bibliography of the *Chhiên Han Shu* records* a title *Chhiên Nu Chhiên Wang Wei Shê Fa* (Manual of Archery, by Wang Wei, General of Crossbowmen). Another, the *Hu Chhiên Shih Shih Wang Ho Shê Shu* (Book on Shooting, by Wang Ho, Officer commanding Archery Training of Defence Formations), was probably also concerned chiefly with the crossbow.

Nor is it surprising to find that in the early Han period there was for a time a prohibition on the export of trigger-mechanisms for horse-archer crossbows. Barriers to prevent their being taken out of the country (*ma shang nu chi kuan*³) were set up in Han Wu Ti’s time (about —125), according to Ying Shao (late +2nd century), commenting upon their discontinuance in —82 as reported in the *Chhiên Han Shu*. Nevertheless inevitably the crossbow and its release device spread outwards to most regions of the Chinese culture-area. It was in Korea, for instance, in —7, for a bronze one was found in a tomb of this date near that of Wang Hsi⁴ (Harada & Tazawa *f*)), while another was excavated from the tomb of Wang Kuang⁵ at Lolang⁶ (+1st or +2nd century; Umehara, Oba & Kayamoto *f*). This was still embedded in its wooden stock (Fig. 26). That it went as far west as Sogdiana is clear from the accounts of the expedition of Chhiên Thang⁷ in —36, when the Shanyü’s fort was stormed near the Talas River.⁸ Volleys of crossbow bolts were shot at the hundred Sogdian horsemen who charged the Chinese camp before the main attack, and later on their use from the rear of the Chinese lines drove the defenders off the ramparts.⁹ In the southern direction, the bronze triggers reached Indo-China before the Han period, for tombs there also have yielded

Shih Chi, ch. 96, p. 6a; *Chhiên Han Shu*, ch. 42, p. 6a. Cf. Chavannes (1), vol. 2, p. 469.

*Ch. 90, p. 40b.

*Ch. 7, p. 44; tr. Dubs (2), vol. 2, p. 159. Ying Shao’s contemporary, Meng Khang, adds in the same place that the prohibition extended to all crossbows of strength more than 10 laln. Here Dubs questioned whether crossbows for use by horse-archers were known in the early Han, but several of the expressions in the speech of Chhiao Tsho (p. 123 above) seem to show that they were. He also doubted whether mounted crossbowmen ever existed in Europe, but from Payne-Gallwey (f), pp. 36, 47, it is clear that they did, though only towards the end of the Middle Ages, some fifteen hundred years later. Barnard & Satô (t) also show on the basis of archaeological evidence that Chinese crossbows and their mechanisms were not exported until the post-Han period. See also van Caminan (t) and Wilbur (2).

*Vol. 2, Pl. LXXXII and Fig. 8. Cf. Sekino et al. (t), text vol. fig. 23; plate vol. pl. 333.

*Crossbow trigger-mechanisms surrounded by the remains of their wooden stocks are not excessively rare; Dr Chêng Ti-Khuén tells me that he had two, one of which he presented to the British Museum.

*See Vol. 1, p. 237.

*The description of the battle (which, it will be remembered, was that in which the Roman legionaries with their *retiule* shield formation were concerned) in *Chhiên Han Shu*, ch. 70, pp. 96ff., has been translated by Dubs (6) and de Groot (1), vol. 1, p. 234. See also Duyzendak (16), esp. p. 258. There is no evidence, however, that the crossbow and its trigger-mechanism remained in western central Asia as an adoption of any of the peoples living there.

*漢弩將軍王圍射法
王盱
王光
護軍射師王賀射書
樂浪
馬上弓機関
them, as at Liên-Hu’o’ng. Subsequently several further introductions of crossbows and arcuballistae (catapults of crossbow type) followed. About +315 a Chinese officer Nu Wên arrived in Champa (Lin-l) and under the king then reigning, Fan I, taught the Chams the arts of fortification and crossbow archery. The same kind of thing was happening many centuries later. In +990 an ambassador of Champa (Chan-Chhêng), Li Liang-Fu, took back with him, on returning home, five crossbows (perhaps prototypes). The Chinese court was reminded of this in a letter from the king of Champa, sent by another envoy five years later, no doubt with further presents of the same kind in view. In +1172 another Chinese officer, shipwrecked on the Cham coast, taught to the people of king Jaya Indravarman the technique of horse-archery, and introduced the latest forms of arcuballistae. His name was Chi Yang-Chuⁿ. We shall study presently some of the artillery of their time which was represented in that region in sculptured form.

All the later history of the crossbow in China must now be compressed into a paragraph. From the San Kuo period onwards, crossbowmen were always used as ‘curtain guards’ (hsien nu), soldiers who surrounded the carriages of officials, as if with Sten guns, when passing through the streets. In the +5th century it became fashionable to ornament the housings of crossbow-triggers with inlay of gold and silver; Liu Yû, prince of Tshang Wu was famous for this. The crossbow-making factories of the State went under different names, Kung Nu Shù in Sui, Nu Fang in Thang, and from +976 Kung Nu Yûn under the Sung. In +1162 the old general Chang Chûn was entrusted by the emperor with the formation of a special regiment of Crossbow Guards, which rendered great service against the Chin Tartars during the following years. About +1030, candidates in the civil service examinations had been asked how they would detect and punish people who kept privately armour and crossbows in their homes. The military weapon was thus naturally continuing as a State monopoly. But in its civilian forms, for fowling and sport, it seems to have gained wide popularity during the Sung, for

1 See also Aurousseau (2).
2 The name is curious. Perhaps it meant 'Wên the Slave'. He finally became king himself, as Fan Wên, and was followed on the throne by his son, having fallen in battle against the Chinese in +349.
3 Wu Hsien Thang Khao, ch. 331, pp. 15ff., tr. de St Denys (1), vol. 2, p. 426. See also G. Maspero (1) 1910, p. 337; Wales (3), p. 27.
4 Tung Hsi Yung Khao, ch. 1, p. 4a.
5 Wu Hsien Thang Khao, ch. 332, p. 21a, tr. de St Denys (1), vol. 2, p. 555. See also G. Maspero (1) 1911, p. 307; Wales (3), p. 102.
6 See p. 193 below.
7 Ku Chin Chu of Tshui Pao, ch. 1; Shih Wu Chi Yuan of Kao Chhêng, ch. 3, p. 1a.
8 Chin Lou Tsu, ch. 1, p. 25a.
9 Shih Wu Chi Yuan, ch. 7, p. 4a.
10 Szu Chhao Wên Chiên Lu, ch. 3, p. 6a.
11 Tu Hsieng Tso Chih, ch. 1, p. 5b.
several of the accounts of Hangchow in the early +13th century describe the recreation of shooting matches. The military men had their ‘Foot-Crossbow Club’ (*Tha Nu Shê*), and other clubs for crossbow shooting were formed by ‘romantic young people from rich families, and others who had nothing particular to do’.*\(^7\) Even the names of some of the crack shots among them have come down to us\(^b\) and they include one girl.\(^c\) The army weapon continued in use down to the time of the Opium Wars. From such glimpses, then, picked at random from the vast mass of literature, we can gain an idea of the perennial ubiquity of the crossbow.

(iii) **Arming, sighting and testing**

We are now free to deal with certain technical questions which have been conveniently left over till the present stage in the argument. First, the manner of drawing or ‘arming’ the crossbow. As we have just seen, the crossbow clubmen of Hangchow in the +13th century (forerunners of the companies of Bruges and Dresden in the +17th)\(^d\) armed their crossbows by treading upon them. Scattered through the preceding pages, moreover, there have been a number of hints that this was the usual practice. A text as early as the *Chan Kuo Tshê* says\(^e\) that the soldiers of the Han State in the Warring States period all leap on them with their feet and so shoot (*Han tsu chhao tsu erh shê*). The commentators say that this means to tread (*chih tha*) on their crossbows. So also those who explain the term *tshai kuan* (crossbowman) say that such men had to have enough strength to tread (*tha*) on their bows to draw them. For the arcuballistae they perhaps lay on their backs and used the strength of their legs (*chueh chang*).\(^f\) Now the simplest and oldest way of doing this was to place the feet on the stave itself and pull upwards with all the force of the back muscles, but this must have tended to injure the bow, and at some later date the improvement was made of having a stirrup attached to the stock (Figs. 36 and 37).\(^g\) That such stirrups had become standard in the Sung (by +1044) and possibly\(^h\) also in the Thang, we know from the discussion and illustra-
Fig. 36. Arming a European crossbow without stirrup, Payne-Gallwey (1), Fig. 24.

Fig. 37. Arming a European crossbow with stirrup, Payne-Gallwey (1), Fig. 25.

tions in the Wu Ching Tsung Yao (here two crossbows are reproduced from the Wu Pei Chih, Fig. 38). But one would very much like to know at what time they were introduced, and what connection they had with the riding stirrup. From the description by Anna Comnena, about +1130, of the crossbows used in the First Crusade, then regarded as a new and dreadful weapon, it is clear that the feet were placed on the bowstave and no stirrup was used. But the European military records of the +13th and +14th centuries show good evidence that stirrups were by then common. Thus they seem to appear rather earlier in China than in Europe. The illustrations in the Thu Shu Chi Chêng encyclopaedia show variants of these methods, e.g. stirrup-arming (leaf-spring crossbows and rope loops), and knee-arming (Figs. 39 and 40).

The next improvement was the attachment of a double-pronged claw to the crossbowman’s belt, so that he could stand and draw the string of his weapon by the muscular power of leg and back alone, leaving his hands free to hold it and

a Ch. 13, pp. 5a, 8a, 8b with discussion on pp. 9a–10.

b Ch. 103, p. 2b, ff.

c On this, see Vol. 5, par. 18, below.

d See the special study by Rose (1).

e Payne-Gallwey (1), p. 60.

f Jung Chêng Tien, ch. 284, pp. 15a, 20a.

g Jung Chêng Tien, ch. 284, p. 16a.

h Jung Chêng Tien, ch. 284, p. 17b; cf. Horwitz (13), p. 171.
manipulate the trigger catch. Late Chinese illustrations show this clawb (Fig. 41), but we have found no evidence which would throw light on the time at which the belt-hook (\textit{khai nu yao kou})c was introduced. In Europe it belongs to the +14th century and was combined with the stirrup, but in China it seems to have been an alternative to the stirrup. Mao Yuan-I distinctly says that the 'waist-arming' method \textit{(yao kai)}2 was more powerful than the 'treading' method \textit{(chueh chang)}3 – handling strengths of 10 \textit{tan} as against 2 or 3 \textit{tan} – but that although it had been relied upon in the time of Ma Lung (late +3rd cent.), it had not been handed down in the Sung.d The belt-claw (Fig. 42) was thus probably also Chinese in origin.

Another group of techniques for crossbow-arming which developed in the West all involved rotary motion. The simplest of these was a variant of the claw; instead of being hung directly on the end of its cord, it was attached to a small pulleyblock running on the cord, the end of which was taken up to a point on the after end of the stock and fixed by a ring and hook.e Double mechanical advantage was thus gained. This method was apparently little used after the end of the +13th century. Subsequent devices were much more powerful. Throughout the +15th century large European crossbows had bowstaves of steel, broad and thick, and these were armed first by winches (\textit{moulinets}) fixed each time to the after end of the stock. They were operated by a large crank-handle on each side, and drew up the string by means of rolling purchase tackle, also fitted on each side.f After about +1470

a Payne-Gallwey (1), pp. 76 ff.
b \textit{TSCC}, \textit{Jung cheng tien}, ch. 284, p. 27a. The crossbowman, however, is sitting on the ground to use it, not standing, as seems to have been more general in Europe; this is probably because his weapon has no stirrup. The claw itself; p. 25a.

c It is well seen on the crossbowman in ch. 584, p. 28a (Fig. 42).
d \textit{WPC}, ch. 193, p. 1b, reproduced \textit{TSCC}, \textit{Jung cheng tien}, ch. 283, p. 2a, b.

e Payne-Gallwey (1), pp. 73 ff.

f Payne-Gallwey (1), pp. 45, 90, 122 ff., 124.
Fig. 39. Stirrup-arming the Chinese crossbow, from TSCC, JCT 284, shi k'ao, ch. 2, 15a.

Fig. 40. Knee-arming the Chinese crossbow. From TSCC, JCT 284, shi k'ao, ch. 2, 16a.

Fig. 41. ‘Belt-claw’ arming of the Chinese crossbow. From TSCC, JCT 284, shi k'ao, ch. 2, 27a.

Fig. 42. The ‘belt-claw’ is clearly to be seen in this TSCC representation of a crossbowman firing.
this rather cumbrous mechanism was replaced by a rack and pinion device, the *cranequin* or *cric* (*arbaleste à cric*), and this lasted into the + 17th century.\(^a\) A quite different type of rotary motion was used in those crossbows which had a worm inserted through a tunnel in their stock, drawing back the string when turned by a screw-handle at the after end.\(^b\) One of these is illustrated by Valturio (+ 1472), and though not very prominent they may have been the predecessors of the cranequins.

Much interest attaches, therefore, to the evidence that in China also rotary arming motions were used. As we shall see presently,\(^c\) all the great arcuballistae or catapult types (*chhuang tzu nu\(^1\)) were winch-armed. But some of the individual types may have been also, for both in the *Wu Ching Tsung Tao* (+ 1044) and the *Chiao Shè Ching* (+ 8th century), arming by a winch (*chiao chhi\(^2\)) is mentioned.\(^d\) The ranges given by Wang Chü in the latter text (*TPYL*, ch. 348, p. 7a) agree exactly with the figures recorded in + 759 by Li Chhian,\(^e\) who also says that the winch-armed type was for attacking cities and fortified places.\(^f\) We have been able, however, to find very little information and hardly any illustrations of winch-armed hand crossbows.\(^g\) It is unlikely that the Chinese used at any time the running pulleyblock, and fairly certain that they never used the rack and pinion. Furthermore, the worm would have been entirely foreign to their technology, lacking as it did all screw motions. But wincharming was certainly early,\(^h\) and probably antedated the use of this technique in Europe, though we must postpone the evidence until the discussion of artillery.

The other greatly used European method was that of the ‘goatsfoot lever’ (*pied de chèvre*). This was a two-pronged fork of suitable curved shape, which fitted behind two pins on the side of the stock, and by means of double pivoted claws drew and armed the string when pulled backwards.\(^i\) Its chief period of European use was from about + 1350 to + 1450, and though it could not deal with the heavier bowstaves of steel, it was particularly convenient for mounted crossbowmen. We have not come across any evidence that it was used in China in this form,

\(^a\) Payne-Gallwey (1), pp. 131ff. The rack had a claw at one end which drew the string up, and the pinion was fitted with a long crank handle.

\(^b\) Payne-Gallwey (1), pp. 81ff.

\(^c\) Below, pp. 188ff.

\(^d\) As we saw above, p. 121. *WCTY*, CC, ch. 2, p. 37a; *TPYL*, ch. 348, p. 7a.

\(^e\) *Tai Po Yin Ching*, ch. 70, p. 11a.

\(^f\) In another passage (*TPYC*, ch. 36, p. 4a), he describes one of these weapons as having a bowstave of willow, silk-worm-thorn, and mulberry wood 12 feet long, 7 inches thick at the stock and 3 inches thick at the ends. It made a noise like thunder when let off.

\(^g\) The question of the use of the crank handle is of course raised but all one can say is that the Chinese illustrations of heavy arcuballistae always show winches with capstan arms. A ratchet action goes without saying.

\(^h\) Payne-Gallwey (1), pp. 84ff.

\(^i\) Pp. 157, 159 below.
but its principle was embodied in that most ingenious of all Asian crossbow inventions, the magazine crossbow, which we shall shortly describe.\(^a\)

The second technical question which presents itself is the manner of aiming or sighting the crossbow. The possibility of incorporating devices for doing this was of the essence of the invention of the weapon, and perhaps what made it a scientific weapon in a sense which the simple bow was not. Chinese archaeologists have for long been familiar with the fact that in many Han crossbow trigger mechanisms there is a graduated scale up the back of the lug of the nut.\(^b\) Fig. 43 shows a drawing of one of these taken from the collection of Tuan Fang (1).\(^c\) This scale was evidently intended to facilitate the precise adjustment of the elevation of the weapon, in accordance with the estimated distance of the target. Its disadvantage, however, was that it disappeared just at the moment of release, when the lug fell forward with the turning of the nut. One is not surprised, therefore, to find that from the Han onwards other sighting devices were introduced. What is perhaps surprising is that one of these appears to have been a grid-sight similar to those still seen on photographic cameras and anti-aircraft guns alike.\(^d\)

\(^a\) But _WCTY_ ch. 13, p. 11b, shows a hand-shot double crossbow (_shou shé nu‘u_) on a carriage, to be armed by winching. We reproduce the drawing in Fig. 68 on p. 199 below.

\(^c\) Photographs of specimens showing this have several times been reproduced; see e.g. Horwitz (13), Fig. 9.

\(^d\) Of course, as Horwitz (13, 16) pointed out, even the graduated scale on the lug was something very advanced in comparison with contemporary Europe. It is curious that the Alexandrian works dealing with artillery (cf. p. 186 below) are rather silent concerning sighting devices.

\(^1\) 手射弩
Its existence is revealed by the study of the ancient technical term *tshan lien* ('the triple connection'). The most important passage concerning it occurs in the *Hou Han Shu*. About + 173 a certain prince, of Taoist sympathies, Liu Chhung (Chhen Wang Chhung), was greatly renowned for his skill in crossbow archery, and it was said of him that he could hit the bulls-eye ten times out of ten. To this the commentaries have recorded a passage from the lost *Hou Han Shu* of Hua Chhiao (a Chin writer), which runs as follows:

When [Liu] Chhung shot, he had a secret method called 'Heaven covering and Earth supporting' [*thien fu ti tsai*], and a triple connection (*tshan lien*) to make an odd number of smaller divisions [*wei chhi*]. And also besides this there were three 'smalls' [*san wei*] and three 'littles' [*san hsiao*]; the three 'smalls' acted as horizontal coordinates [*ching*], and the three 'littles' as vertical coordinates [*wei*]. Getting the *ching* and the *wei* (of the two sights) to coincide [hsiang chiang] was the way to ten thousand victories, yet still of course the trigger-mechanism was most important.

![Diagram of the triple connection](image)

The simplest way of interpreting this is to suppose that Liu Chhung set up on the stock of his weapon a square grid of wire (or its equivalent), the upper crossbar being called 'Heaven' and the lower one 'Earth'. The two upright side pins were then connected by two wires making three divisions, and two further wires connected the upper and lower crossbars. The 'smalls' were then the spaces considered horizontally, and the 'littles' were the spaces considered vertically. Presumably two of these grid-sights were mounted, one at the forward end of the stock and one at the rear. They would certainly be of real value in shooting.

The 'triple connection' occurs quite often in texts of the Later Han period, so that Prince Chhung should probably not be regarded as its first inventor. It is

a This has been carefully made by Hsii Chung-Shu, but before we knew of his paper we had come to the same conclusion ourselves in quite a different connection (Sect. 22e above).

b Ch. 80, p. 2b.

c He was a direct descendant of Chhen Ching-Wang Hsien, one of the eight sons of Ming Ti (+ 58/+ 75).

d Cit. also *TPL* ch. 348, p. 5a.

e Tr. auth.

f Doubtless this is not the only possible interpretation. Each grid might have had three horizontal and three vertical crosswires, with perhaps a bead at the central cross, but this would seem rather complicated a system. Alternatively there might have been only one pair of crosswires, so that the 'Heaven' and the 'Earth' wires would both have been included in the coordinates, yet this seems to be gainsaid by the text. It was nevertheless the interpretation of Shên Kua in + 1086 (see Vol. 3, pp. 574–5).
mentioned in the *Liu Thao* (*Six Quivers*), which, though incorporating material as old as the -3rd century, did not reach its present form before the +2nd. We have noticed it already in the conversation between Chhê Yin and the King of Yieh, but again the *Wu Yieh Chhun Chhiu* is a +2nd century work. Of particular interest is its appearance in the *Chou Li*. The imperial tutor (Pao Shih¹) is in charge of the education of the princes, and one of the arts which he has to teach them is the 'five kinds of shooting' (*wu shê²*). Cheng Hsian (c. +180) quotes the opinion of Cheng Chung (c. +80) that these were the *pai shih³* (white arrows), the *tshan lien⁴* (the triple connection), the *yen chu⁵* (peering through sighting holes), the *hsiang chih⁶* (movable according to the graduated rule), and the *ching i⁷* (a device like the character *ching*). It seems evident that this was a list of sighting devices—though that was not the belief of later commentators. If so, the last of the five would be some variant form of the grid which is mentioned by name in the second place. The fourth would have something to do with the graduated scale on the nut-lug. In general, then, there seems every reason for believing that the grid-sight was an invention of the +1st century, while the lug scale would probably go back to the Chhin.

Another reference to sighting may be contained in one of the +3rd-century chapters of the *Shu Ching*. The text says: 'Just as the forester, with [his finger on the] trigger, and his bow drawn, aims at the target embraced in the graduations [of his sights], and so lets fly [...] [{Jo yü chi chang wâng hsíng kua yû tu tsê shih⁸}].'

¹ 'Chin yung' ch.; cit. *TPIL*, ch. 348, p. 6b; *TSCG*, *Jung chêng tien*, ch. 283, p. 1a.
² P. 139 above.
³ Ch. 13, p. 27ff. (ch. 4, p. 8b); tr. Biot (1), vol. 1, p. 297.
⁴ Their explanations of these terms were distinctly fantastic; doubtless they had no practical experience of crossbows. For example Chia Kung-Yen in the *Thang* wrote of *tshan lien* that it meant three arrows tied together and shot at a target already pierced by a previous arrow. It was also supposed that *hsiang* should be read *jang*, and thus meant yielding place to the prince when shooting. And the last term was thought to mean that four arrows were to be shot into the target so that they formed the four corners of a square.
⁵ Horwitz (13) illustrates a modern (18th or 19th century) pellet crossbow from China (fig. 40), which has a grid-sight forward with a bead strung across it, and a non-collapsible aperture-sight to the rear of the trigger. He assumed (p. 177) that this arrangement must indicate European influence, but in the light of the foregoing facts, there is really no reason for supposing that it was not a development from a tradition continuously handed down in China. It would of course be of great interest to find remains of grid-sights in archaeological find material.
This was not recognised by the classical translators. It was however understood in this sense by Shên Kua in the +11th century in that passage so important for the history of the Jacob’s Staff of the surveyors, which we gave in Sect. 22e above. He thought, however, rather improbably, that the ‘degrees’ referred to a graduation along the stock of a crossbow-like rangefinder such as he had discovered; it is more likely that they referred to the graduations on the back of the trigger lug. It will further be remembered that Shên Kua also discussed the description of the method of Prince Chhung. A reference back will show that he had a different interpretation of several points, especially the meaning of tshan lien itself, but he was quite clear that grid-sights were meant, and himself experimented with them.

The third technical question which requires a few words is that of the strengths of crossbows and their testing. For bows of all kinds, weighing was the method used throughout Chinese history; Fig. 22 shows the process going on. Here was a case where the quantitative spirit was very much at work. Towards the end of the +1st century Wang Chhung wrote as follows:

With strength sufficient to draw a bow, one may not be able to arm a powerful crossbow. If the strength of the crossbow is of 5 tan, but the pull available is only 3, then sinews will be rent and bones broken without any result. With force insufficient for so strong a pull, a catastrophe [might] ensue, such as breaking the spine.

In other words, rulers should employ adequate tools, men wise enough to meet particular situations. From the archaeological evidence of the bamboo slips we have already seen that the crossbows of the frontier troops were at that time from 3 to 10 tan in strength.

Chinese scholars in later ages discussed this subject knowing that the weights and measures of different dynasties had greatly varied. Though 120 catties (chin?)

a Medhurst (1), p. 147; Legge (1), p. 97. The Shu Ching Thu Shoo illustrates this passage with a very curious picture of crossbows on stands, which seems to be a garbled reminiscence of the magazine crossbow and has no relevance to the text.

b MCPT, ch. 19, Sect. 13.

c Vol. 3, p. 575.

d TKKW, ch. 15, p. 9b.

f Stein (4); Chavannes (12a), (12), p. 35.

g According to the estimates of Wu Chheng-Lo (1) and Swann (1) this would correspond to 195, 258, 323 and 3871lb adp.

斤 斤
generally made 1 picul (tan, anciently shih⁴), and 30 catties equalled 1 chün², the absolute weight of the catty changed from time to time, and we know that the Sung catty was about 2.3 times the weight of the Han catty. The smallness of this unit in the Han explains, wrote Shên Kua late in the +11th century, why people could then avoid getting drunk at a party where 1 picul of wine was provided. The chün and the tan, he went on, have always been used to measure the strength of bows and crossbows, armed by hand or foot. But the standard picul is now 92 1/2 catties, which corresponds to 341 catties on the Han scale. Some soldiers of today can draw a foot-armed crossbow as strong as 9 tan — a force which would correspond to 25 of the ancient tan. Thus one modern crossbowman equals more than two crossbowmen of the Wei dynasty. Others can draw a bow as strong as 3 tan, which would correspond to 34 chün of olden times. So one modern archer is the equal of more than five archers of the time of Yen Kao⁵. The reason for all this is that archers and crossbowmen now have very good training, including shooting from horseback, and know all the arts both of Chinese and barbarians. Moreover the armour and weapons have been developed to the fullest perfection of art, both old and new, so that former times saw nothing like them.

We need not stay to verify the exactness of the figures which Shên Kua gives, but it is well worth noting that he was convinced of the much greater strength of the crossbows of his time as compared with those of the Han, and that he attributed this to technical improvements. Another passage of similar interest is to be found in the +10th century Hua Shu, where the writer says that 'the release of an arcuballista of 1,000 chün depends upon a trigger-mechanism no more than an inch in length'.

(iv) Increasing fire-power; the multiple-bolt crossbow and the magazine crossbow

Generally speaking, in China as in Europe, the crossbow did not equal the bow in speed of shooting, and its superior range was not such an advantage as might at first appear, since when the stock was elevated at an angle to give maximum flight, it obscured the aim of the user. On the other hand, the ordinary bow could be aimed and shot with reasonable accuracy to its maximum range. The advantage

b Cf. Wu Chêng-Lo (1), p. 73.
c MCPT, ch. 3, Sect. 1.
d Nine Sung piculs would amount to some 1089 lbs. adp. This is not much less than the 1200 lb found by Payne-Gallwey (1), p. 14, to be the strength of the European siege crossbow of about +1400. The fact that the latter was winch-armed strengthens one's impression that the powerful Chinese weapons must also have been.

A famous archer of Lu, present at the siege of Yangchou in -501 (Tso Chuan, Duke Ting, 8th year; Couvreur (1), vol. 3, p. 537).

1 Tr. auct. Parallel derivative passage in Hsü Po W'Ü Chih, ch. 5, p. 6a.

2 P. 9b.

b But this strength would amount to just under 20 tons if the weights of the period are used, so it is probable that his words were not intended to be taken literally.
of the crossbow lay in the fact that it was much more accurate in aim, and that its bolts did more damage than arrows. Quite naturally therefore persistent efforts were made to give the crossbow an enhanced fire-power. The earliest plan was to arrange its stock so that several bolts could be shot off at once, but the greatest ingenuity was shown in providing it with a magazine of bolts dropping automatically into place, and so converting it into a veritable repeating or 'machine-gun' weapon.

The first of these systems was closely connected with the large-scale artillery arcuballistae on carriages which we shall examine below in a special sub-section. It may well be, indeed, that the arcuballistae came first (since there are numerous references to them in the Han) and that the hand-crossbows shooting several bolts at once were a later development. The question is complicated because in mediæval times a number of technical terms for crossbows were current, now difficult of identification; and also because the introduction of multiple-bolt hand-crossbows in the Sung seems to have been connected with another innovation, the use of the leaf-spring bowstave, apparently an adoption in improved form of a practice originally current among the aboriginal tribal peoples. To begin with, it may be said that the multiple-bolt crossbow is generally termed lien nu, while the leaf-spring form of it was often called the pien chia nu ("plaited frame crossbow").

Writing about +1083, Shên Kua tells us:

In the Hsi-Ning reign-period [+ 1068/+1077], Li Ting presented (to the imperial court) the plaited frame crossbow (pien chia nu) [his invention], which looked like a bow, but was armed by means of a stirrup placed against the ground. Its bolts could be shot to 300 paces [500 yards], and two thicknesses of armour scales could be penetrated. It was called Shên Pi Kung [Magic Stock Bow], and was considered the best of weapons. Li Ting had originally been the chief of the Tang-hsiang Chiang tribe, but became an officer of a defence corps after he had made his obedience to the emperor. Afterwards he died in office, and all his sons were famous on the western frontiers for their bravery.

We believe that the inventor's name was really Li Hung, for the same story was repeated about him early in the following century by Chu Pien, who gives more details of the materials used in the construction. This Li Hung may well be identical with a military officer and engineer whom we met with before in connection

a See pp. 184ff.
b But the commentary of the Liu Tao says that the Ta Huang, a Han type, shot three bolts at the same time.
c This interpretation depends upon the reading taken for the first word. Some of the texts which we shall mention write pan, but we have not been able to make sense of this, and we believe that pen was intended.
d MCPT, ch. 19, Sect. 6, tr. aucl.
e Chhi Wei Chiu Wen, ch. 9, p. 2b; cit. TSCC, Jung chêng tien, ch. 282, p. 21b.
f The wood of the bowstave was wild mulberry and sandalwood, the stirrup was iron and the trigger-mechanism bronze. Hemp and silk formed the string.
g Sect. 268 above. See also Kuo Khêng-Jo (r). Li Hung may have been confused with the Li Ting who was a much more important official at the same time, and also concerned with tribal affairs.

1 連弩
2 编架弩
3 李定
4 编架弩
5 神臂弓
6 黨項羌
7 李宏
8 大黃
9 偏
with the construction of the Mu-Lan dam in Fukien; if not the same person they were exactly contemporary. Later in the +12th century both Fan Ch'êng-Ta\(^a\) and Chou Chhii-Fei\(^b\) speak of the plaited frame crossbow of the southwestern tribal peoples, and liken it to the \textit{chhih t'au} used at that time in the capital. This is interesting because neither the Thang \textit{Thai Po Yin Ching} nor the early Sung \textit{Wu Ching Tsung Yao} has anything to say on multiple-bolt leaf-spring crossbows. The \textit{Wu Pei Chih} illustrates (Fig. 44) a \textit{Shen Pi Nu}\(^c\) with two arrow-grooves, but its leaf-springs are not obvious, as they are in Fig. 45 taken from the \textit{Thu Shu Chi Chhêng}\(^d\). The explanation on the following page is distinctly obscure\(^e\) but it seems to describe an arming process by some form of goatsfoot lever in three stages, and envisages the setting up of traps and ambushes as one of the chief functions of this type of multiple-bolt crossbow. This can be well seen in Figs. 46, 47 and 48, the former from the \textit{Wu Pei Chih}\(^f\) and the latter from the late Ming work\(^g\) \textit{Chhih Chang Hsin Fa}\(^h\) (Manual of Foot-Armed Crossbows) by Chhêng Chhung-Tou\(^i\) which has been studied by Horwitz (15).\(^h\) Perhaps the leaf-spring types were used for this purpose because of their greater weight and size – the illustrated ethnological albums depicting the Miao peoples sometimes show three of them exerting their strength on a single such weapon at the same time\(^i\) – but it will be noticed that many of the illustrations of ordinary crossbowmen above, show leaf-spring bow-staves. The multiple-bolt crossbows went also by other names, e.g. the \textit{Kho Ti K'ing}\(^j\) (Enemy-Conquering Bow).\(^j\) Their further examination must be postponed for the artillery sub-section.

The Chinese repeating or magazine crossbow as made in modern times has often been described.\(^k\) Its construction may be appreciated by Figs. 49 and 50,
Fig. 44. A multiple-arrow crossbow from *WPC*, ch. 105, p. 13b.

Fig. 45. Multiple-arrow crossbow from *TSCC/JCT 282/hukhao*, ch. 1, p. 13a.
first photograph showing the weapon at the beginning of the arming movement, and the second showing it immediately after the despatch of one arrow. Figs. 51 and 52, from the Wu Pei Chihb of 1628, show the parts both assembled and dissected. Figs. 53 and 54, from the Thien Kung Khai Wuc of 1637, show the arm in use by a fowler.d

The construction is beautifully simple. The usual trigger-mechanism is absent, and a lever (\textit{fa chien thieh chhieh} 1; reminiscent of the goatsfoot lever) is fixed permanently to the stock between the bowstave and the furthest rear position reached by the string when drawn. Pivoted to this lever is the magazine (\textit{tsang chien hsia} 2), now usually containing ten or twelve arrows, but formerly in some cases more,e the lowest one resting on the string above the arrow-groove (\textit{tshao} 3) which leads out through a short barrel at the front. Upon pushing the lever forward as far as possible, the string falls into a slot (\textit{hsien lu}) at the rear end of the longitudinal slit.

1 These are taken from a specimen in the Ethnological Museum of the University of Cambridge. It will be noticed that the bowstave is a leaf spring.
b Ch. 103, pp. 12a, 12b. Better illustrations are in \textit{TSCC}, \textit{Jung chêng tien}, ch. 289, \\textit{hui kiao} 1, pp. 11a, 11b.
c Ch. 15, p. 10b.
d There is a good illustration dating from about 1780 in Amiot (2). Suppl. pl. 26, fig. 113 and p. 371.
e Combining the principle of the \textit{tien lu}, bolts could be shot off successively in pairs or threes.

\begin{itemize}
\item \textit{fa chien thieh chhieh}
\item \textit{tsang chien hsia}
\item \textit{hsien lu}
\end{itemize}
along the base of the magazine, and remains caught therein while the lever is
drawn backwards almost to its fullest extent, thus arming the weapon. The arrow
has now dropped fully into the arrow-groove. Then comes in the automatic ele­
ment, for the trigger (ya¹) is nothing but a short vertical hardwood pin moving up
and down in the base of the magazine below the string slot; upon the conclusion of
the backward movement of the lever therefore, this pin is forced upwards by
contact with the stock and releases the string and the arrow. Thanks to this device
the whole contents of the magazine can be shot off in as short a time as it takes to
write these sentences. The whole arrangement is both simple and ingenious in the
highest degree.

The speed of fire of this crossbow is indeed great, and Payne-Gallwey* and

¹牙
Horwitz\(^a\) showed that by means of it 100 men could discharge 2000 arrows in as little as 15 seconds.\(^b\) Though its use is attested from as late as 1895 in battle against the Japanese,\(^c\) the texts do not generally regard it as an important military weapon.\(^d\) Mao Yuan-I says\(^e\) that it was a favourite with the people of the southeast, but that its strength was slight and its bolts not apt to injure anyone. Nevertheless Payne-Gallwey’s experiments gave it an extreme range of 200 yards, and an effective range of 80. No doubt much depended upon the bow fitted to the weapon. The Korean examples illustrated by Boot\(^f\) (Fig. 55) are fitted with composite bows and have longer draws than the Chinese leaf-sprung weapons. The Korean bows were very heavy and with their long draw would have at least doubled the effective range and probably the extreme range too. There seems little reason to doubt that the Chinese employed composite bows for their better examples of the

\(^{a} (1), \text{p. } 176.\)

\(^{b} \text{We agree with this from personal experience. If properly organised for re-loading, the effect of such concentrated fire must have been quite demoralising.}\)

\(^{c} \text{Wilbur } (2), \text{p. } 436.\)

\(^{d} \text{It reached Europe, and was copied there, in the latter part of the } + 18\text{th century, as a French example figured in Horwitz } (13). \text{Fig. 39 shows.}\)

\(^{e} \text{WuPei Chih, ch. } 103, \text{p. } 18; \text{cit. } TSCC, \text{Jungchêngüen, ch. } 283, \text{pp. } 2a, b.\)

\(^{f} \text{Boots } (1), \text{pl. } 7. \text{Similar bows detached from their stocks are illustrated in McEwen } (2), \text{p. } 35.\)
weapon, but cheapness of manufacture was perhaps a prime consideration. In any case there is no doubt that traditionally its bolts were poisoned, a small piece of silk steeped in poison being tied round the iron head. The same passage says that it was considered suitable for tiger shooting, and for timid men, and even women, defending fortified dwellings, as also in certain cases for horse-archers. Sung Ying-Hsing seems to underestimate its strength, saying that it is useful only against robbers.

a Cf. Bisset (1. 2).

b Of Mao Yuan-I.

c *TSCC, Jūng chéng tien*, ch. 283, pp. 10b, 11a, text 1b.

d *TCKH*, ch. 15, p. 5a.
The history of this extremely interesting mechanism is unfortunately quite obscure. We are safe in saying that it was well known and probably widely used about +1600 just before its description in these books of the late Ming. Then and thereafter it was known as the Chu-ko (Liang) nu⁴, being named after the famous general of Shu in the San Kuo period (+3rd century). But while it is true that Chu-ko Liang was personally concerned with multiple-bolt arcuballistae (see p. 192 below), there is nothing whatever to connect him with the magazine crossbow. In modern Peking, it was often called a than nu² or lien chu nu³ because in late times it was fitted for shooting pellets or bullets. There may be a clue here, since the magazine necessarily involved at least a short barrel, and the question of the existence of the slurbow (crossbow with barrel)⁵ in China is therefore relevant.

² Hsü Chung-Shu (4).
³ At the beginning of the present century a model repeating crossbow was still hung out as one of the traditional Peking shop signs (Forke (19)).
⁴ These did not become known widely in Europe until rather late (+16th century) and Payne-Gallwey (1), p. 129, even supposed that their barrels were modelled on the hand-guns. But in +1321 Marino Sanuto described composite-bow crossbows shooting lead or stone balls called muschetae (gadflies); text and translation in Schneider (1), pp. 48, 98. The word musket must surely derive from this.

⁵ 诸葛亮弩 ² 弹弩 ³ 连珠弩
We have come across but one passage which may refer to it. In +1232 a heroic Chin general was defending Lo-Yang against a besieging Mongol army.\footnote{Chin Shih, ch. 11, p. 12a; tr. auct. adjuv. St-Julien (8) who was translating from TCKM, Pt 3, ch. 19, pp. 48ff. Cf. also TH, p. 163.}

On the third day the Mongols surrounded the city on three sides. Chhiang Shêⁿ tore in pieces all his silk garments and had them made into banners which were placed on the ramparts, after which he led his men in the fighting stripped to the waist. Some hundred of them ran to and fro under orders from him shouting insults at the enemy, and calling them fools and madmen, to such good effect that one would have thought them as many as ten thousand. When the supplies were quite exhausted, coins were melted down to make arrow-heads. And every long Mongol arrow picked up was cut into four pieces and each one shot back again by means of a 'whip-tube' \[thung pien\].\footnote{The term is curious, and recalls a Sung method of launching incendiary bamboo tubes with throwing-sticks (see Sect. 34 below), but it may only mean here that the tubes or barrels used with the crossbows were no thicker than whip handles. This was the passage which misled Gaubil (12), pp. 68ff. into thinking that 'muskets' had been used. Reinaud & Favé (1), p. 188 corrected him. Cf. Romancki (1), vol. 1, p. 46.}

\footnote{Cf. also TH, p. 163.}
Fig. 55. Korean crossbows from Boots (1) plate 7, notable for their great weight and long range.
But after this there seems to be no further mention of such a device.

Whether or not the 'whip-tube' was a slurbow, we know of another kind of tube used in the shooting of arrows, though it was not in any sense a crossbow. From the Thang dynasty onwards one of the techniques of archery mentioned as figuring in the imperial examinations was that of 'tube-arrows' or rather 'arrow-tubes' (thung chien'). This is referred to, for instance, in the Tzu Chih Thung Chien for the year +877. In his exegetical work on this great history, Hu San-Hsing (+1230/ +1287) commented thus upon the passage:

Shih Chao (fl. +1090) in his Thung Chien Shih Wen says of 'thung' that it should be pronounced as 'tu' and 'hung', i.e. 'lung', and that it was the name of a particular kind of bamboo. But I think that the reference is to the 'shooting with tubes' (hung $hi6J which appeared in the military examination subjects during the Thang. This we have nowadays in the army. The arrows used in tube-shooting are only a little over a foot long. A piece of bamboo is cut in half (longitudinally), its length being about that of the arrows used with ordinary bows [i.e. at least 3 ft]. At [the rear] end two or three inches of the bamboo are left uncut, and there is a slit in which the string can run. The arrow is laid inside the trough and against the string. The tube [part] has a small hole in one side, with a light string to bind it to the wrist of the drawing hand. When the bow springs back the tube is pressed against the hand, and the arrow rushes forth towards the enemy. Anyone hit is pierced right through. This is what is called 'tube-shooting'.

From this description we can form a fair idea of what the device was. This was evidently identical to the Persian nāwak, also known by its Arabic name of majrā or mijral. An early reference is the use of it by the Sassanid Persians against the Arabs in +637 when it was termed qaṣ al-nāwakV'ah (the tube-bow). In the Islamic world extraordinary distances were shot with this device, and its accuracy was such that it was the tool of sharpshooters. In a further development only a relatively short piece of the half-tube was retained, at the grip end, rotated to form a true trough, and borne on the bowhand of the archer, which was protected by a
special shield. In Persia and India this was known as the *nāwak-i gabza*, literally 'the little tube of the bowgrip', while the Turks used the Persian word *sipar*, literally 'shield'. In all these devices a much shortened arrow was used. It was the Ottoman Turks who developed this art of 'flight-shooting' to perfection, and the extraordinary ranges recorded by Payne-Gallwey (2) were achieved. The Chinese 'arrow-tube', though it apparently did not survive into the Ming in China itself, did continue to be used in Korea where it was known as the *pyun chun*.

The bow was held in the ordinary manner, and the half-tube guide was positioned vertically with the open side towards the right (not as a trough supporting the projectile), while the bow-string travelled along the open side of the bamboo half-tube guide. This can only have been suggested by the ready availability of a natural trough, the half bamboo, in which could run an arrow less than one third the normal length. Since lightness would make for speed as well as range, its superior penetrating power would follow. The length of uncut tube at the rear end would assist the archer to balance the guide on his drawing hand, but more importantly, would firmly locate the arrow within the tube on the bowstring.

Boots (1), p.7, says that the arrows used were 'frequently poisoned' but this is doubtful since the use of the device is not without danger to the user who may, if sufficiently incautious, sustain injury to the bow hand.

It is of considerable interest that this device, so closely associated with Turkish technique, should have made its first Chinese appearance during the Thang when there were so many Turkish contacts. Some have suggested indeed that the *sipar* was the real origin of the crossbow stock. Although it is true that the *sipar* or the arrow-tube approximates to a crossbow held vertically, yet in view of the much more ancient occurrence of the latter at both ends of the Old World, and its long persistence as an arm used by primitive tribal peoples, this is most unlikely. It is perhaps more reasonable to suppose that the arrow-tube guide was an invention of the nomadic peoples designed to combat the greater range of the Chinese crossbow, and perhaps to shoot back its short bolts, which of course could not be done using an ordinary bow without the guide. What does seem significant is that the Chinese should have used quite naturally a tube or barrel when adopting this technique in the +9th century. Later on we shall see that at an early stage in the

b See Table 3 below.

c Boots (1), pp. 7–8, reports that it was a favourite Korean weapon at the time of the Japanese invasion under Hideyoshi in +1592. It was said to carry 300 yards while the Japanese arrows carried only 350 yards.

d It would of course make shooting more difficult on windy days. But we get the impression, both from the textual passage on which Hu San-Hsing was commenting, and from other places (e.g. *Hsin Thang Shu*, ch. 186, p. 5a), that, just as in the Islamic world, the arrow tube was specifically a sniper's weapon, used only by experts and against particular individuals at long ranges.

e Two members of the Society of Archer-Antiquaries, Lt. Comdr. W. F. Paterson and E. McEwen, have reported, in recent times, accidents in which guide darts have gone completely through the thumb.

f E.g. Kloos (1).

g Sect. 30 below.
development of explosive mixtures (gunpowder) they turned with similar simplicity to tubes of bamboo, first as incendiary canisters for delivering it, then as held flame-throwers, later as self-propelled canisters (rockets), and so finally the true barrel cannon or gun. Of this, therefore, the arrow-tube and the whip-tube may be collateral ancestors. And the former has an evident connection with the repeating crossbow, since it may be considered analogous to the base of the magazine, with the slit horizontal instead of vertical.

About thirty years after Chhiang Shên’s exploits (p. 218), however, we hear of two other mechanisms which seem closely related to the magazine crossbow.
According to the Sung Shih:

In the 1st year of the Khai-Chhing reign-period (+ 1259) there were made at Shou-Chhuti-Fu two new kinds of military weapons. One of these was the ‘box-and-tube wooden crossbow’ [kan thung nu nu], which differed from the ordinary crossbow with its visible trigger-mechanism, because the bolts were laid in a tube very safely. This weapon was especially convenient for shooting at night.

Presumably because the projectiles fell into place automatically. Then only a few years later, in + 1264, the Yüan Ching Shih Ta Tien Hsii Lu says that ‘there were the phao of the Western countries,’ and the “folded-in-layers” crossbow [chê tieh nu], neither of which had ever been heard of before. These references induce a rather strong suspicion that the origin of the magazine crossbow is to be sought in the Sung, perhaps as a complex Chinese development of a simple Turkish device which had been adopted in the Thang.

Certain still earlier terms deserve mention, however. One is chi nu, the ‘ piled-up’ crossbow (or crossbows). This is to be traced back as early as Huai Nan Tzu, where they are said to accompany the rearguard. Then in the Hou Han Shu about +25, Feng Yin was promoted to a generalship of crossbowmen (chi nu chiang-chiên), and similar titles continued through the Liang period. It seems hardly possible to determine whether this term implies a special type of crossbow (with magazine or otherwise) rather than a dense formation of archers. Meanwhile Hsii Chung-Shu (4) has made a determined attempt to show that the shu chi [‘pivot machine’] of Han times was in fact the magazine crossbow. But the term may merely have referred to the two shafts of the ordinary crossbow trigger-mechanism. This is surely its most probable meaning in texts such as the I Ching: ‘Words and deeds are the pivots and trigger of the chiin-luo – according to their movements come honour or disgrace [shu chi chih ja, jung ju chih sheng yeh].’ The Shih Ming adds to the passage about the trigger-mechanism already quoted the words: ‘It is also compared to the hinges on which doors are hung, for it has a rhythm of opening and closing [I yen ju men hu chih shu chi, khai ho ju chih yeh].’

a Ch. 197, p. 15b, tr. auct. Cf. Feng Chia-Sheng (1), p. 71; Moule (13), p. 15.
b Quoted by Su Thien-Chio in his Kuo Chiao Wen Lei, ch. 41, p. 61b. Cf. Goodrich & Feng Chia-Sheng (1), p. 119.
c I.e. counterweighted trebuchets (cf. p. 218 below).
d Ch. 15, p. 5b; tr. Morgan (1), p. 192.
e It is interesting that the 3rd-century commentator Kao Yu did take the term to be a technical one, and remarked that it was some kind of multiple-bolt arcuballista (lien nu).
 f Ch. 45, p. 2b, in the biography of Teng Yü the military geographer.
g As surely it did in the Wu Yuen Chuan Chiu passage quoted above, p. 197, if indeed it belongs there at all.
 i P. 132 above (ch. 23, cit. TYPY, ch. 348, p. 1a).
There is really nothing here that would not apply to the standard trigger-mechanism. On the whole, therefore, it does not seem likely that crossbows of magazine type were known in antiquity.

(v) The crossbow in East and West

When we survey the comparative distribution of the hand-crossbow in time and space, we find ourselves in the presence of a pattern of interchange rather different from any which have so far appeared. That this weapon was in common use from at least the — 4th century in China, and that it attained a high degree of perfection already in the — 1st, has been shown beyond doubt by the material summarised in the foregoing pages. In European antiquity, however, it does not appear early, and the evidence of its existence between the + 1st and + 5th centuries is sparse and curious. After that there is a complete gap until it reappears in the + 10th to + 11th century, and, indeed, it is still in use today. The possibility therefore arises of two separate introductions from East Asia, of which the former would perhaps have been direct, while the latter would no doubt have involved Arab intermediation.

What can be said of the ‘first crossbow period’ in Europe? Immediately we come upon the strange and isolated invention of a crossbow armed by the pressure of the body, not traction or tension, the *gastraphetes* (γαστράφητης) of Heron of Alexandria. This most ingenious device has been carefully studied and reconstructed by Schramm and Beck, and has often been figured. It consisted in having the stock of the crossbow in two longitudinal pieces which could slide upon one another, the sliding piece (which carried the arrow-groove) and a simple trigger being fixable at any point along the base by a catch and ratchet mechanism. Since, in the unarmed position, this sliding piece projected well beyond the bow-stave end of the stock, the archer had simply to lean with all his weight upon the other end of the stock in order to draw the string. As Horwitz says, the substitution of pressure for traction was brilliant, but unfortunately there is no evidence that the device was ever used in practice. Its strange isolation, moreover, can only be appreciated when one realises that nearly all the catapult artillery pieces of the Greeks and Romans were based not on the tension of a bowstave, but on the radial

* The estimate of Horwitz (t.4) in his comparative study, of the — 12th for China is, of course, very exaggerated.

b For example, there is no mention of it at all in the *Strategica* of Maurikios. + 600.

c The passages concerning this in his *Belopovka* have been translated by Diels & Schramm (t); Schneider (2) and Beck (3).

d (2), p. 227 and Fig. 64.

f E.g. by Denmin (t), p. 16; also Marsden (2), fig. 3, p. 47, corresponding to pp. 21-3 of the translation of Heron’s military texts. A photograph of a reconstructed full-scale model in operation is given by Feldhaus (2), p. 192. copied from Diels & Schramm (t).
movement of bars secured in upright twists of sinew, the torsion of which produced the elastic return.a

Nearly, but not all. Much though we may desire a clear picture of occidental developments for comparison with happenings at the eastern end of the Old World, we have to recognise that we cannot always obtain it, and unfortunately the early history of catapult artillery in ancient Mediterranean civilisation has problems still unsolved. One of the lesser-known writers on projectile-throwing engines in antiquity was named Biton, and his text, edited and translated by Rehm & Schramm (1), describes a number of arcuballistae (i.e. crossbow catapults set upon stands). There are two forms of a large single-spring crossbow for shooting small stone balls, mounted on a sloping frame capable of varied elevation; these machines are ascribed to Charon of Magnesia and Isidorus of Abydos. Another type, shooting off two arrows at one time, is attributed to Zopyrus of Tarentum, and this is strangely called a gastraphetes though it is not a hand-crossbow and not armed by a sliding stock. We must conclude, therefore, that at some time or other catapult artillery pieces (arcuballistae) of strictly crossbow type were used in the Graeco-Roman world.

The difficulty is to know exactly when. That important catapult (kalapelitek, καταπελτικόν) inventions were made by the engineers of Dionysius at Syracuse in preparation for the siege of -399 is distinctly stated by Diodorus Siculus, and no one has seen good reason for contradicting him. But he failed to reveal what they were. On one widely-held view, this was the moment of the invention of the torsion sinew-bundle types, true crossbow types having existed for at least a century earlier. Another opinion would remove the gastraphetes from Heron’s paternity and place it here at Syracuse. In any case, there may have been two Herons. For, as will be remembered, the floruit of the Alexandrian Heron of the Mechanica is now placed at +62 by Neugebauer (6), strongly supported by Drachmann (2, 3). Yet the title of the relevant treatise may be translated ‘The Artillery Manual of Ctesibius’ Heron’, suggesting that the latter was the son or pupil of the former, and must therefore have flourished about -230 to -210. Internal textual evidence is held to agree with this date. The dating of Biton and his text seems no less a puzzle. It cannot be earlier than -315, and well-informed opinion clings to the traditional time of about -235. Now on the orthodox views the arcuballistae

* Cf. Schramm (1, 2); Huuri (1); R. Schneider (1); Payne-Gallwey (1, 2).
* XIV, 42, 43.
* Schramm (2), p. 256; R. Schneider (5).
* Communicated to us by Dr E. D. Marsden of Liverpool.
* Heron showed that it was possible to determine the distance between Rome and Alexandria by observing the same lunar eclipse from both places, and Neugebauer pointed out that the only eclipse he could have used was that of this year. Drachmann added two examples of inventions of Heron concerned with press machinery both dated by Pliny in the +1st century (cf. Vol. 4, pt 2, p. 209).
* Dr Marsden notes that the writer mentions the calibration formulae which came in about -270 but not the standard size specifications which were current after -200. As to the former, cf. Drachmann (4).
* Personal communication from Dr Marsden.
which he describes were then entirely out of date,* yet the fact that he calls one of them a *gastraphetes when it is no such thing suggests that his text ought to be placed later than −200 or even later than +62. Moreover no crossbows or crossbow arcuballistae appear on the reliefs of the Trajan Columnb of +110 or on any other monument of these centuries – all are torsion-type pieces. At the present time there seems to be no assured solution to all these contradictions. The provisional view which we shall here adopt is that the Syracusan inventions were of torsion-type catapults, and that these remained the characteristic engines of both Greek and Roman armies. At the same time we would ascribe the *gastraphetes to perhaps the −1st century and the date of Biton’s text and machines (though not necessarily of the man himself) to a slightly later time.

The rest of the evidence for hand-crossbows in late European antiquity can be summarised in a few words. These weapons are seen quite clearly in two Gallo-cataapults, and that these remained the characteristic engines of both Greek and Roman armies.

One of the most extraordinary facts about the history of these devices is that the crossbow was primarily known in late European antiquity as a hunting weapon, and not the man himself. As reconstructed by Beck (3) and Schramm (1) the crossbow was fathered by some Alexandrian mechanicians. It was the *polybolon (καταπέλτης πολυβόλος) described by Philon of Byzantium (commonly placed in the −2nd century).

As reconstructed by Beck (3) and Schramm (1), it

* It is generally agreed that the crossbow-type arcuballistae would have been more robust and less tricky, and must have lasted longer than the more powerful torsion-types. But their greater simplicity does not prove that they were more primitive; it might indeed indicate the opposite.

b On Trajan’s column several studies are specially worth citing, namely Lepper (1), L. Rossi (1), and J. A. Richmond (1).

c Doubts about Biton’s text were voiced a good while ago by Schneider (5), col. 1902. It cannot be later than +230 when it was quoted by Athenaeus in his *Deipnosophistai, XIV, 34. But it may not be very much earlier, and if it was simply fathered on Biton by some late Hellenistic writer, a transmission of arcuballista technique from East Asia becomes quite conceivable.

d See Esperandieu (2), vol. 2, figs. 1679 and 1683; Daremberg-Saglio, vol. 1, p. 386, fig. 467. Blackmore (5), p. 174, fig. 72b, illustrates another from Poignac s/Loir, ca. +400.

e Esperandieu (1); Wilbur (2); Horwitz (14).

f De Re Militari. II, 15; III, 14; IV, 21, 22.

g Schramm (2), p. 228, concludes that the term *cheiroballista (χειροβάλλιστα) is late Byzantine, not classical Greek.

h R. Loeve (2) shows that Rabbi Aqiba mentions the crossbow. He died in +133, and the text concerned was edited before +260. Loeve also considers evidence in Jewish writings during the second crossbow period, from the +1st century onwards.

i Philon, *Mechonim, IV, 52–7, in Garlan (1). The invention is ascribed by him to a predecessor, Dionysos of Alexandria.

comprised an endless chain on each side of the stock, moving backwards and forwards round five-cornered cogs worked by winch handspikes. The string was drawn back by a claw attachment fixable at any point along the length of the chains without the necessity of unwinding a winch cable. Above the arrow-groove was a magazine of arrows, each of which fell successively and automatically into place upon each arming of the weapon, just as in the later Chinese pattern. The greatest difference was, however, that the polybolon was not strictly a crossbow at all, but derived its force from the usual vertical sinew-bundles. Horwitz (14) is indeed disposed to regard all the torsion types as originating from the crossbow, because of their possession of stocks and arrow-grooves, but it seems safer to maintain the view that the bow itself is a *sine qua non* of the crossbow, and to regard the torsion types as a separate and distinct line of inventions. Another divergence between the polybolon and the magazine crossbow of Chu-ko Liang is that in the former the magazine is stationary, while in the latter it moves back and forth with the lever. This is a case where the time difference is so great that it is hardly possible to regard the Chinese magazine crossbow as in any way derivative from the polybolon, all the less so in that the polybolon was purely experimental even if it ever left the drawing-board. Independent searches for increasing fire-power must be the explanation.

On the other hand, the complete absence of any ancient European records of crossbow trapping, and the fact that the +1st century was a time of comparatively close contact between China and the Roman Empire, point rather suggestively to a transmission of the hand-crossbow itself from East Asia to Europe at that time.

The history of the crossbow in later Europe is of course much better known. It appears once again in the +10th century, after a gap of five hundred years, mentioned without particular remark in the history of Richerus Remensis, finished in +995. Crossbowmen shooting from the ramparts caused the Belgian forces of King Louis IV to draw off from Senlis in +947, and similar play occurred at the siege of Verdun by Lothar III in +984. There are good reasons for thinking that crossbows were employed at the Battle of Hastings. Their second appearance must surely have been connected with the growth of body-armour and the consequent call for armour-piercing projectiles. That they may have reached the Western world by non-Byzantine channels is indicated by that celebrated passage in the *Alexiad* of the princess Anna Comnena, who wrote concern-

A very ingenious pin on the travelling claw rotated a trough at the base of the magazine by means of a spiral channel, thus permitting only one arrow to fall down into position.

b The evidence for this has been summarised in Sect. 7 above. The Old Silk Road was open from about –110 (vol. 1, p. 176). Kan Ying came as far west as Mesopotamia in +97 (p. 196). The An-Tun embassy was in +166 (p. 197), and the Roman-Syrian merchant, Chhin Lui, returned home from China in +226 (p. 198).

c Cf. Blackmore (5); pp. 174ff.

d *Historiae Liber IV*: cf. R. Schneider (1), p. 7; Payne-Gallwey (1), p. 44.

e Payne-Gallwey (1), p. 45. But they are not depicted on the Bayeux Tapestry.

f She was a younger contemporary of Shên Kua and Su Sung. Daughter of Alexios I, whose deeds she immortalised in her book, she was born in +1083 and died in +1148. It must have been finished by about +1118.
ing the equipment of the soldiers of the First Crusade (+1096/+1099):

The *laoggra* is a barbarian bow hitherto quite unknown to the Greeks. It is not a bow held in the left hand and then bent with the right, but it can only be spanned by the bearer stooping and placing both feet against it, while he strains at the cord with the full force of both arms. In the middle [of the stock] it has a semi-circular groove of the length of an arrow, and the missiles, short but thick, having been placed in this, are propelled from it by means of the released cord. They will pierce the stoutest metal armour, and sometimes wholly imbed themselves in a stone wall or other such obstacle when they strike it. In short, the *laoggra* is a diabolical and murderous instrument, which falls men to the ground with such a shock that they do not even know what hit them.b

This strong prejudice against the weapon, which recalls the later antagonism to gunpowder, was shared by Latin prelates in the following century, for the Second Lateran Council in +1139 condemned it under anathema—except for use against infidels.c It was widely employed, however, in that century, especially in the Third Crusade under Richard I (+1189/+1192). In the +13th and +14th it was a pre-eminent weapon, though shaken by the longbow at the end of the +13thd and gradually giving place to gunpowder during the +14th and +15th. Some comparative information on strengths and ranges is seen in Table 3. Still in +1521 Cortes relied upon a company of crossbowmen during the conquest of Mexico, and for hunting, because of its silence, their art could look forward to a hundred and fifty years or more of further existence.

The use of the hand-crossbow in Europe thus divides into two quite distinct periods, the first between about −100 and +450; the second beginning in the +10th century. Is it possible that both of these could have been initiated by transmissions from the Chinese culture-area where the weapon had so early been invented, and where it had reached so high a state of development? Some of the deepest students of these questions, such as Huuri, have been reluctant to admit this for the first period,ε though inclining to accept it for the second.但在 perhaps they have underestimated the closeness of the contact between China and the Roman Empire after the opening of the Old Silk Road about −110. The actual travel of one or two prototype crossbows is plausible enough, for they would have been just the thing to catch the attention of Roman Syrian merchants such as Chhin Lun, if fond of falconry, when in port at Kattigara (Hanoi) or elsewhere on the south China coast. Still more significant would have been any interest taken

a The word is derived from a root connected with boots and shoes, therefore 'foot-armed bow' (Huuri (1), p. 72).
b Reifferscheid ed., vol. 2, p. 83 (X. 8). Tr. Schiller in Rose (1); and Oman (1), p. 139, mod. The passage is curious, for crossbows of some kind are mentioned in the account of the Byzantine expedition to Crete in +950 by Constantine VII Porphyrogenitus, *De Ceremoniis*; cf. Huuri (1), p. 74.
c Can. 29 (Mansi, XXI, 534), renewed at the Fourth in +1215 (Cap. 18; Mansi, XXII, 1007); cf. Boeheim (1), p. 402; Demmin (1), p. 473.
d Abundant details have been collected by Payne-Gallwey (1).
e (1), p. 110
f (1), pp. 207ff.
g See vol. 1, p. 198. That was in the +3rd century, but direct maritime mercantile contacts had begun some time before.
by the envoys to China from Greek Bactria in the – 1st, or by Parthians who observed the Chinese army in Ferghana and Sogdiana early in that same century.

If the second appearance of the crossbow in Europe was also due to a transmission from its home in China, perhaps the sea route would again have been a probable line of communication. Many Arab merchants were frequenting Chinese coastal cities in the +9th century, and the rôle of Chhin Lun might well have been played by such a man as Sulaimān al-Ta‘jir, or his friends and informants, in the markets of Canton or Chhiian-Chou. Chronologically this contact would have come just at the right time.

But transmission to Europe need not have occurred through the Islamic peoples; there were also Persian and Russian channels, including the activities of intermediate peoples such as the Khazars. Something of this kind seems to be indicated by the fact that the Arabs appear to have remained in general rather averse to the use of the crossbow, and to have considered it always as an undesirable foreign arm. In later times it was called by the Arabs qaus al-rījī (the foot-drawn bow) or qaus al-zanjūrak (the bolt bow), but during the Crusades significantly qaus al-faranjīyah. In the +14th century the Spanish Muslim type was the same as the European, while the eastern Muslim type had a more complicated trigger-mechanism. There is not much doubt that the +11th- and +12th-century crossbows of Europe had composite, i.e. Asian, bowstaves, but that need not imply Arabic intermediation. Nor should we lay too much emphasis, perhaps, on isolated pieces of evidence such as the fact that the earliest crossbow-maker in England (+1205) was named Peter the Saracen. In any case one important correlation stands out, namely that the coming of the crossbow to Europe for the second time took place in close contemporaneity with the coming of that characteristically East Asian artillery piece, the trebuchet. The exact part played by Arabic and non-Arabic channels remains for further research.

Historical evidence being thus so sparse, it is well not to overlook whatever

a See vol. 1, p. 194.
b See vol. 1, pp. 234, 237. As Wilbur (2) found, however, the greater part of the Old World between China and Europe forms a blank at this time so far as the crossbow is concerned. No evidence for it is forthcoming from Achaemenid or Scyucid Persia nor from the Scythian and Sarmatian regions, nor anywhere in classical India.
c See vol. 1, p. 179.
d Cf. vol. 3, p. 575 and the interesting account of Dunlop (1).
e Cf. Huuri (1), p. 119. Some Arab sources considered the crossbow an accursed device, because cruciform (Faris & Elmer (1)).
f Huuri (1), p. 103. Most of those who have studied the crossbow among the Islamic peoples, such as Beveridge (1), give no references to texts earlier than the middle of the +15th century. But Huuri has shown that the crossbow was fully described a hundred years earlier in an anonymous Egyptian book Al-Hull al-Tawrah, and in another book by a Spanish Muslim Ibn Hudai; (1), p. 37. Further investigation of the history of the crossbow among the Arabs would be most desirable. But it seems that neither Beveridge nor Huuri (1), pp. 119f, clearly differentiated the qausal-nāwakīyah or arrow-guide from the true crossbow.
g So in the list of de Cosson;see Payne-Gallwey (1), p. 62.
h Explained immediately below, p. 186. The trebuchet appears perhaps a little earlier, in the +9th rather than the +10th.

1 It is curious that the crossbow was not a favourite weapon of the Mongols, and Plano Carpini says that they feared it (Huuri (1), p. 118).
Table 3. Comparative information on different types of bows and crossbows

<table>
<thead>
<tr>
<th>Type and Origin</th>
<th>approx. length of weapon</th>
<th>approx. wt. of weapon (lbs. adp)</th>
<th>wt. in lbs. adp reqd. to arm</th>
<th>number of shots per min.</th>
<th>range in yards average extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe: ordinary military crossbow of the +13th century (steel bow)</td>
<td>2'8"</td>
<td>15</td>
<td>ca. 400</td>
<td>1</td>
<td>370 390</td>
</tr>
<tr>
<td>Europe: siege crossbow, ca. +1400 (steel bow and winch-arming)</td>
<td>3'2"</td>
<td>18</td>
<td>1200</td>
<td><1</td>
<td>400 460</td>
</tr>
<tr>
<td>Europe: sporting crossbow of the +16th century</td>
<td>2'5"</td>
<td>12</td>
<td>200</td>
<td>2</td>
<td>270 300</td>
</tr>
<tr>
<td>Europe: longbow</td>
<td>6'6"</td>
<td>4</td>
<td>80</td>
<td>6 to 12</td>
<td>200 250</td>
</tr>
<tr>
<td>Asia: composite reflex bow with short light arrows: Chinese (+10th century) (+17th century)</td>
<td>—</td>
<td>—</td>
<td>up to 360</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Chinese - Manchu (modern)</td>
<td>5' to 6"d</td>
<td>1.5 to 3.5</td>
<td>156d</td>
<td>6 to 12</td>
<td>200 250</td>
</tr>
<tr>
<td>Turkish - Tartar (modern)</td>
<td>4'</td>
<td>0.75</td>
<td>115</td>
<td>6 to 12</td>
<td>450 650-800f</td>
</tr>
<tr>
<td>Asia: Chinese crossbows: Han (-2nd/2nd) Thang (+8th)</td>
<td>—</td>
<td>—</td>
<td>195 to 450c</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>large winch-armed arm-drawnf</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>166k 500</td>
</tr>
<tr>
<td>horse-archer'sf</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>165f 330</td>
</tr>
<tr>
<td>Sung (+11th) unspecified leaf-spring multiple-bolt</td>
<td>—</td>
<td>—</td>
<td>up to 1090</td>
<td>—</td>
<td>400h 500h</td>
</tr>
<tr>
<td>Ming and Chhing small hand type</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>85j —</td>
</tr>
<tr>
<td>Asia: Chinese multiple-bolt arcuballista on carriage: Yuan or early Ming (studied by Liu Thien-Ho about +1530, see on, p. 192)</td>
<td>—</td>
<td>—</td>
<td>196</td>
<td>6 to 12 simultaneous</td>
<td>500</td>
</tr>
<tr>
<td>Asia: Chinese magazine crossbow, with wood leaf-spring stave (recent)</td>
<td>3'6"</td>
<td>10</td>
<td>ca. 200</td>
<td>{if single 48}</td>
<td>80 200</td>
</tr>
</tbody>
</table>

Notes:
a. Turkish and Tartar bows have light leaf-spring and multiple-bolt.
b. Chinese crossbows are small hand type.
c. Chinese crossbows are of the small hand type.
d. Chinese crossbows are of the small hand type.
e. Chinese crossbows are of the small hand type.
f. Chinese crossbows are of the small hand type.
g. Chinese crossbows are of the small hand type.
h. Chinese crossbows are of the small hand type.
i. Chinese crossbows are of the small hand type.
Where no attribution is given, the data are taken from the standard works already cited, e.g. Payne-Gallwey (1); Klopsteg (1); Wilbur (2); Horwitz (13), etc.

The extreme range of 330 yards recorded by Payne-Gallwey (1) was achieved with light, specially-made arrows useless for war or hunting. With war-arrows the range would undoubtedly have been less. In any case Payne-Gallwey did not accept the common view that the longbow at all times outranged the crossbow. It may well have done better, but not better than the steel one. He thought that the Genoese arbalists at Crécy must have been using bolts which were too heavy for their weapons. It seems also that their bowstrings had been adversely affected by wet weather. As for the Chinese crossbows of the Han, we are constantly told that they outranged the short bows of the Huns (cf. pp. 105, 123 above).

b Figure from Shen Kua, *Mêng Chhi Pi Thàn* (p. 155 above).

c Figures from Sung Ying-Hsing, *Thien Kung K'ai Wu* (p. 115 above).

d Measurements personally made by H. Lamb (1).

e Figures calculated from the evidence of the Han wood and bamboo slips, and from Wang Chhungh, *Luu Hêng* (pp. 142, 155 above). We have not found a reliable estimate of the range of Han crossbows, but p. 192 below suggests certain figures for Warring States/Han archers.

f Information from Wang Chhui's *Chiao Shi Chung* (see p. 122 above), and Li Chhian's *Thao Po Yin Chung* (see. p. 150 above). All converted from double-paces (pu), at 3 ft. to the double-pace.

g Figure from Shen Kua, *Mêng Chhi Pi Thàn* (p. 155 above).

h Figure of 300 pu from Shen Kua, *Mêng Chhi Pi Thàn* (p. 156 above). This is the lower value recorded by Chu Pien in *Chhù Wei Chhù Wên* of 240 pu. These are again conversions from double-paces.

In this connection it is interesting that about +950 Thao Ku recorded (Chhong l Lu, ch. 2, p. 36a) that in the army of Wang Chien (first king of the independent State of Shu in Szechuan earlier in the century), the crossbow had been called ‘The King of One Hundred Paces’ (Pai Pù Wang). No doubt at 150 yards or less, direct hits were expected.

† Data from Chhäng Tsung-Yu and Mao Yuan-l in *T S C C, Jhong chhêng tiên*, ch. 294, pp. 1a, b.

k This range seems credible only with difficulty, yet strangely enough there is a confirmation of it from a Persian source, namely the historian ‘Ali’-al-Din al-Juwaini, who wrote of what happened when one of the almost impregnable castles of the Assassins was taken by Hulagu Khan. Here, in +1256, the Chinese archers (‘ar-balaists’ *kamâni-gàâ*) shot their projectiles 2500 (Arab) paces from a position on the top of some mountain, (see Reinaud & Faveé (2), p. 295). Huuri (1), pp. 7, 124, considers this exceptional range of about one kilometre (1,000 yards) not at all impossible. *Al-Juwayni* (+1233/+1283) see Hitti (1), p. 488, Mielé (1), p. 168. His actual words are: ‘[...] and a *kamâni-gàâ* which had which had been constructed by Cathayan craftsmen, and which had a range of 2500 paces, was brought to bear on those foes, when no other remedy remained, and of the devil-like Heretics many soldiers were burnt by those meteoric shots [...]' (Boyle tr., p. 128). The castle in question was not Alamut itself, but Mamin-Diriz, also in the Elburz range, and it was the strongest military base of the Assassins (Hashishin).

These ranges were achieved by the use of the especially short light flight-arrows (cf. p. 162 above). The range would certainly have been less with war-arrows, say 350 yds; cf. Latham & Patterson (1). In an interesting paper, Foley, Palmer & Soedel (1) have confirmed this in wind-tunnel experiments, giving figures for drag/weight ratio of longbow arrows as compared with crossbow bolts. They give the maximum range of the former as some 220 yds but for the latter more like 350 yds.
indications may be forthcoming from the internal structure of the crossbow itself at both ends of the Old World. About the nature of the trigger-mechanisms in European antiquity nothing can surely be said, but those of the later middle ages (+15th century) show a tumbling nut of horn which is very reminiscent indeed of the bronze nut of the ancient Chinese crossbows. Fig. 58 shows Payne-Gallwey’s representation of it; one may notice the double tooth, exactly as in the Chinese specimens, though a lug is always lacking. The nut was usually made from the crown of a stag’s antlers, and carved with a notch in its under surface into which the trigger could fit, the area of contact being protected by a small wedge of hard steel embedded in the nut. For this ‘tiller-detent’ (Fig. 59) a small metal spring set within the stock was necessary. In the +16th century the quest for safety from accidental discharge led to the elaboration of much more complex detents, and though they almost certainly owed nothing directly to their Chinese predecessors they followed them in a natural course of evolution. For they incorporated (Fig. 60) a series of levers, springs and catches such that a cocking lever below the stock formed the approximate equivalent of the old Chinese lug above it.

Comparatively simple machines such as the crossbow never seem to perish from human technology, and they will probably be used, for example, in the remote control of radio-active chemicals a thousand years or more from now. After long banishment from the battle-field the crossbow returned there during the First World War as a device for throwing grenades and mines in static warfare. To conclude this history, we may state a simple probability, namely that from its Chinese home the hand-crossbow was introduced once if not twice to the peoples of Western Europe.

(3) THE SOCIAL ROLE OF THE BOW AND CROSSBOW

Philosophy in general cannot be studied with advantage apart from the actual concrete social background, including many technological factors. It was one of the greatest authorities on the Chinese Bronze Age, H. G. Creel, who first realised the importance of considering the technological military level of the ruling class in any ancient society with relation to that of the mass of the people. Take the case of the mediaeval knight in Western Europe, with his steel armour from top to toe, his lance and his sword, mounted on his horse, also armoured. He was able to ride into a mass of peasants and mow them all down without their being able to defend themselves adequately. It is a commonplace that the coming of gunpowder to Europe (from China) was what broke up the feudal power by removing the technical superiority in arms of the knightly class.

a See Rohde (2) and Payne-Gallwey (1), pp. 169ff.
b It is not generally known that the contributions of Leonardo da Vinci to theoretical mechanics were largely based on his study of the crossbow; see Foley & Soedel (1).
c (2). French ed. pp. 338ff, esp. pp. 344-5. It has been the custom among my collaborators and myself for more than forty years past to call this ‘The Creel Argument’.
d See pt 7. One of the great Japanese objections to gunpowder was that it made it possible for the meanest peasant-farmer to pick off the most illustrious lord in the land, cf. Perrin (1).
30. MISSILES AND SIEGES

Fig. 58. Tumbling nut of 15th-century European crossbow trigger-mechanism, from Payne-Gallwey (1).

Fig. 59. Side view of the trigger-mechanism of the later mediaeval European crossbow, from Payne-Gallwey (1).

Fig. 60. The lock of a large 16th-century sporting crossbow, showing safety-promoting improvements, from Payne-Gallwey (1).
Creel mentioned only the composite reflex bow in the hands of the common people, but as we have seen the crossbow must have come in by the time of Confucius himself, about -500 or rather earlier, i.e. before the end of the chariot-warfare period. This was a most powerful weapon, but it is sure that the men of the feudal armies from -800 onwards through the period of the Warring States until the First Unification of the Empire under Chhin Shih Huang Ti in -221, were armed with very effective projectile-weapons delivering arrows and bolts. But at the same time protective armour was rather little developed.

It is agreed on all hands by those who have studied the matter that this was true of ancient China; not until the San Kuo (Wei) and Chin periods in the +3rd and +4th centuries was there any real development of iron plate armour, though this process had begun in the Han and perhaps in the Warring States time. In those days most armour was made of leather or rhinoceros hide, though sea-shell, bone and tendon, even hardened and many-layered paper, were brought under contribution. Iron laminae were coming in by the Chhin and Han, though helmets of bronze had been used as early as the Shang; chain mail does not occur until the Ming. The general upshot was that the ordinary soldiers and the mass of the people were, during the Chou time, in possession of powerful offensive weapons, while the members of the ruling class were quite inadequately protected by armour. Hence, as Creel pointed out, the Confucian emphasis on persuasion, explanation and propaganda, with the demand that rulers and people, to be successful, must be united in their will. Instances of such persuasion are quite numerous in the Tso Chuan, ranging from -706 to -471.

But the same history also gives, most significantly, many instances of eminent patricians being killed by arrow-shots fired by men of much lower rank, if not regular commoners. To begin with, there are examples of high officials of feudal States being done to death by arrows fired from bows wielded by members of the common people. Then there are five examples at least of princes of feudal States themselves being killed in a similar way; the earliest in -637, the last in this chronicle being of -492, during Confucius' own lifetime. Finally there was one

a Cf. Sect. 30 (j) in pt 8.

b It will be remembered from Vol. 4, pt 3, pp. 682ff, that we traced a strong 'projectile mentality' throughout Chinese naval warfare.

c Laufer (5); Yang Hung (2, 8, 5); Liu Han (7); Topping & Needham (1). We shall deal fully with armour and caparison in pt 8, Sect. 30 (i).

d In 1984, however, Chinese archaeologists found a fragmented suit of armour made of bronze plates belonging to a warrior who had lived in the Western Chou (Pai Jung-Chiu (?)), but this is an isolated example. Future discoveries may force us to alter our conclusions.

g Duke Hsi 22nd year (-637); Courteur (1), vol. 1, p. 334. Duke Huan 10th year (-598); Courteur (1), vol. 1, p. 602. Duke Haing 25th year (-547); Courteur (1), vol. 2, p. 423 and another case of the same date, p. 440. Duke Chao 20th year (-521); Courteur (1), vol. 3, p. 375. Duke Ai 4th year (-492); Courteur (1), vol. 3, p. 618.
case where a Chou emperor himself suffered death in the same way. Such were the results of a situation where the mass of the people possessed an effective offensive weapon, while the ruling class were relatively unprotected by armour. The balance of power in a society of this kind would be necessarily quite different from what it was in other societies. In the early Roman Empire, for example, the disciplined legions were rather well armoured, with bronze and iron. A slave population was possible because it did not have access to the arms and armour of the legionaries, nor was it in possession of powerful bows. We know what trouble to the State the slaves could give on the few occasions when they did come to command substantial stores of weapons, as in the revolt of Spartacus. But in the Chinese situation, the people had to be persuaded, rather than cowed by force of arms — hence the importance of the Confucians. Could one go so far as to say that the whole Confucian ethos during the following two millennia in China had arisen in the first place from this military-technological balance as between the ruling class and the mass of the people, so different from anything in European history? In the — 4th century, in a State such as Sung or Wu or Chhu, the soldiers on whom the feudal prince depended — in effect, his people in arms — might well desert to his opponent suddenly on the field of battle. They had to be convinced of the justice of their (and his) cause. To effect this it was necessary to have a class of ‘sophists’ which became in fact the Confucians, to commend to the mass of the people the activities and virtues of their feudal lord, and to gather them around him for his support. If this was the case, we can understand much better that humanitarian and democratic character of the Confucian philosophers.

Here we cannot dispense with quotations, but they shall be few. Pride of place belongs to the military theoreticians. On almost its first page the Sun Tzu Ping Fa of the early — 5th century says:

It is the Tao that causes the people to be of the same mind as their ruler, so that whether they meet with death or whether they meet with life, they never fear any danger.

And in the Wu Tzu Ping Fa of the early — 4th century we read:

Master Wu said that of old the princely family leaders felt that it was their first duty to teach and explain to the mass of the people, and they felt attached to the myriad men and women. Now, he said, there are four unharmonious things. If one is not in harmony with the country, it is not possible to lead out an army. If one is not in harmony with the army, it is impossible to send out detachments. If one is not in harmony with the detachments, it is impossible to join issue with the enemy. If one is not in harmony with the fighting, it is impossible to decide the day and bring victory.

Therefore a ruler who has the Tao first uses the people like this, first seeks for harmony, and only then sets on foot great affairs. He does not dare to hatch private stratagems [...]

a Duke Huan 5th year (— 706); *Couvreur (i)*, vol. 1, pp. 83–4.

b Ch. 1, Sects. 5 and 6, tr. auct. adjuv. Giles (11), p. 2.

c Quoted in *HPC*, ch. 2, p. 2b, tr. auct.

1孙子兵法 2吴子兵法
Exactly the same ideas are to be found in the words of Master Khung himself. For example:

The Master said: Let a good man teach and explain to the people for seven years; only then may they be employed in war. To lead an uninstructed people into battle is simply to throw them away.

And in another place:

Tzu-Kung asked about government. The Master said 'The requisites of government are that there should be sufficiency of food, enough military equipment, and the confidence of the people in their ruler [min hsin chih]. Tzu-Kung then said 'If it cannot be helped, and one of these must be dispensed with, which of the three should be foregone first?' to which the Master replied 'The military equipment.' Tzu-Kung again asked 'If it cannot be helped, and one of the remaining two must be dispensed with, which of them should be foregone?' The Master answered 'Part with the food. From of old, death has been the lot of all men; but if the people have no faith in their rulers, there is no standing for the State.'

On another occasion Tzu-Yu said to the Master:

I remember once hearing you say that when a man of high station has grasped the Tao, he [finds that he] loves all men, and when a man of low station has grasped the Tao, he is easy to lead into battle.

And these convictions remained characteristic of the Confucian school for the subsequent two thousand years. The essence of them was that social solidarity and the belief in the righteousness of one's cause would always win the day against heavy armaments unsupported by truth and justice. Until the coming of weapons of mass destruction there may have been much in this — what we are now looking into is the situation in which it arose in the first place.

The tradition was of course carried on by Mêng T'zu about — 290, and it is worth while giving one excerpt from his book.

Mencius said: 'The opportunities of time vouchsafed by Heaven are not as good as the advantages of situation afforded by the Earth, and these again are not so good as the harmonious union arising from the accord of Men.

Imagine a city with an inner wall 3 li in circumference, with an outer wall of 7 li. The enemy surround it and attack it, but they are not able to take it. No doubt they were given by Heaven the opportunity of time, but their failure to take the place was because that was not equal to the advantages of the situation afforded by the Earth.

Imagine another city the walls of which were distinguished for their height, and the moats by their depth, where the arms of the defenders were distinguished by their strength...
and sharpness, and where the stores of rice and other grains were very large. Yet the city had to be given up and abandoned. This was because the advantages of situation afforded by the Earth were not equal to the harmonious unity arising from the accord of Men.

In accordance with these principles it is said that a people is not bounded in by the limits of dykes and borders; a kingdom is not made secure by the impassability of mountains and rivers; the empire is overawed not by the strength and sharpness of arms. He who finds the proper course has many to assist him; he who loses it has few. When this losing of the Tao reaches its extreme, even the prince's own relations revolt from him. When this grasping of the Tao reaches its extreme, the whole empire becomes obedient to this prince.

Finally, we may quote from the *Huai Nan Tzu* book, dating from about — 120. Liu An¹ says:²

> When war arises from sheer lust of territory, it would be vain to hope for true kingship. He who fights for himself alone finds no accruing merit. An aggressor for personal ends will always be left to his fate, but when on the contrary a case arises which involves the interests of the people, all will help. He who has the goodwill of the people [chiung chih so chu³] though with small resources, will be strong; but even a powerful king who has lost their goodwill [chiung chih so chhu⁴] is certain to perish. An army which has lost the Tao is weak, but if it possesses the Tao it will be strong. If a general loses the Tao he will be powerless, but if he has the Tao he will be efficacious. If a country is imbued with the Tao it will abide, if it loses the Tao it will perish.

So could it be that the predominant ethos of the Confucian school — argument and persuasion in the interests of social justice (in so far as it could be conceived of in a feudal society) — was due essentially to the fact that efficient projectile weapons were in the hands of the common people long preceding the development of protective armour for the lords? The idea is at any rate well worth pondering.

¹ 刘安
² 厚之所助
³ 厚之所去

² Ch. 15, pp. 1b, 2a, tr. auct. adjuv. Morgan (1), p. 186. The argument continues on pp. 3b ff., tr. Morgan (1), pp. 192-4. Crossbows are now mentioned frequently.
We now take up again the question of projectile weapons, but no longer in their light forms suitable for use by individual soldiers. Something must be said of the ancient and mediaeval artillery of China in comparison with that of the West. Such machines had always one or other of two primary objectives, either to hit a moving target with an arrow or similar projectile, or to batter large solid objects with a rain of hard balls. The sizes of the first of these types were always kept relatively small, partly because the missiles never needed to be large, and partly because their stands had to be as mobile as possible on their bases. Since flat trajectory and long range were desired, high initial velocity was necessary, and this was attained fairly well by weapons of the crossbow and torsion catapult type. The second sort of machine called for quite a different design, for there was no intrinsic upper limit of size and no particular need for mobility of mounting; the projectile could have a highly curved trajectory with a comparatively short range and a low initial velocity. In what follows we shall see how far these requirements were met by the military engineers of the ancient Chinese and Western worlds respectively. The first thing to do is to establish the definitions of the words used, and to sketch the distribution of the types in space. At the end of our study we shall return to view the distribution of the types in time as well.

The crossbow constructed in large size and mounted on a framework or carriage (Fig. 61a) we shall call the arcuballista. In the text of Biton, the only ancient western writer who describes it (c. -239), it is called simply petrobolon (πετροβόλον) or lithobolon (λίθοβόλον) since it was used, though sparingly, in Greek and Roman antiquity for shooting stone balls as well as for the arrows or javelins which suited it better.

Its Hellenistic mounting was typically the tripod, but in mediaeval European

a The terminology of this subject in the West through the centuries was perhaps more complicated and confused than that of any other branch of technology. I have found the most reliable guides to be Schramm (1, 2); Beck (3); Schneider (1); and above all Huvel (1). Fortunately, the chief controversy which arose, whether or not the torsion catapults of antiquity survived long into the middle ages, is not of great moment to us, but the Franco-Prussian war was fought over again about it in the realms of scholarship, Bonaparte & Favé being attacked by Köhler (1) and later Rathgen (1), though approved by Schneider. Concerning the Chinese inventions and their influence there is not much dispute. The works of Marsden (1, 2) appeared too late to be of help to us in the first writing of this sub-section, but we are greatly indebted to him for advice as we went along.

b The sketches are reduced to their simplest diagrammatic form.

c As before pointed out (p. 121), this mediaeval Latin word was applied indiscriminately to the hand-crossbow and to crossbows of artillery dimensions set upon mountings, but we shall use it solely in the latter sense, for in English there is no equivalent to Standarnbust except some such cumbersome phrase as 'crossbow-catapult mounted on framework or carriage'.

d See Rehm & Schramm (1).
use it was probably placed on a wheeled carriage (Fig. 61b). Chinese mountings tended to be rectangular frameworks, often wheeled (Fig. 61c), and it was possible to couple two or three bowstaves together in order to increase the energy of tension and hence the initial velocity of the bolt (Fig. 61d). Quite different in principle were all those machines which depended upon the torsion of sinew or hair. The torsion catapult (Fig. 61e) consisted of two arms the forward ends of which were tightly held in vertical bundles of sinew so that when the string was released...
the elastic torque gave the effect of a powerful spring. When used for shooting arrows or bolts, this piece of artillery was termed *euthytonon* (ἐὐθύτονον) or *scorpio*; when adapted for stone balls it was the *palintonon* (παλίντονον) or *ballista*. This Hellenistic terminology was already debased, for the two Greek words had originally meant respectively the plain bow and the reflex bow, neither of which was here concerned at all. The torsion machines (*neurotonoi*, νευρότονοι) used sinews of all animals except the pig, and also human hair; it is interesting to reflect that this was yet another use of the extensibility properties possessed by structure proteins such as collagen and keratin, properties which had already been put to good use in the composite bow. As we now realise, this contractility is a phenomenon occurring in the individual fibres on the molecular level itself, since the polypeptide chain has more than one position of stability in length, and the elastic return of a catapult was essentially similar to the shrinking of a piece of flannel. Since these phenomena are highly sensitive to temperature and humidity, it was natural that the Alexandrians should have sought some spring-mechanisms which would be more dependable — hence their attempts to use bronze springs (the *chalcotonon*, χαλκότονον) and even compressed air in bronze cylinders (the *aerotonon*, αερότονον), but these remained purely experimental.

At this point a further principle entered, that of the sling attached to the end of an arm which should imitate the human arm. The sling doubles the range. A single one of the arms of the torsion catapult may have given the idea for this; at any rate by the time of Ammianus Marcellinus (ca. +390) the onager (Fig. 61f) was in wide use by the Roman armies. It may have got its name from the Greek *monagkon* (μονάγκων), the ‘one-armed’, from which in turn the word mangonel may have derived. In the onager, the torsion skein had become horizontal, no longer vertical, but in time both spring and sinew were altogether abandoned, leaving nothing but the sling on the end of the arm. Mangonel was one of the names for this new type of machine, though in what follows we shall use one of its other names, the trebuchet, (Fig. 61g). At once we recognise that very ancient water-raising device, the swape (or counterweighted bailing bucket). But instead of the bucket’s weight being balanced by a weight at the other end of the lever, the
end furthest from the sling was equipped with a number of ropes whereby a crew of men could violently depress it, thereby exerting propulsive force upon the sling's contents. The rocking point was between 1/5th and 1/6th of the whole length of the arm. All kinds of frameworks were evolved for the support of the fulcrum (Fig. 61h); the single pole, for instance, was easy to swivel in any direction but unsuitable for a machine of large size. Eventually there was a return to the oldest form of the swape when the principle of the counterweight was again applied (Fig. 61i), a modification doubtless encouraged by the tempting target presented by a tightly packed group of men straining on the ropes of the trebuchet simple. Lastly, with the swinging counterweight (Fig. 61j), the machine reached its highest development before the coming of explosive weapons rendered all such devices obsolete.

A word or two may be added about the projectile weights and ranges of these catapults. Estimates for the torsion types in ancient Greek texts vary between 160 and 600 yards for missiles weighing up to 10 lb but the probable average, partly derived from experience with modern reconstructions, was really 330 to 410 yards. This span coincides with Chinese arcuballista figures (270 to 500 yards). Ancient European sling-and-torsion catapults (onagers) threw stones of about 50 lb weight, occasionally up to 175 lb but never much more than 160 yards. Manned trebuchets sent larger missiles, up to about 275 lb, from 80 to 190 yards, and fixed counterweight ones had a somewhat longer range. Anything as heavy as this was already dangerous for defensive masonry, whatever its character. Really heavy masses, up to a little over a ton, could be shot only with the swinging counter-weight trebuchet of the late middle ages. Initial velocities would probably be of the order of 70 yards/second for the arcuballistae, and 30 yards/second for the trebuchets.

(5) FORMS OF THE ARCUBALLISTA

When once it had been found feasible to build crossbow catapults with a stave length of up to 20 ft the search for further improvement was encouraged. For

* It is likely that, strictly speaking, trebuchets were always counter-weighted (Huuri (1), p. 64), and that the manned ones should be termed petarina. But in the interests of simplified terminology we shall neglect this. It may also be that in the + 14th century mangonel meant something like an onager (the torsion system still in use), while in the + 13th and + 14th it came to mean a trebuchet - but this is far from sure. An Arabic al-manjat was always a trebuchet.

b On all these subjects the works of Skoljar (1, 2) are very valuable. Unfortunately they appeared rather too late to help us in the drafting of the following sub-sections. The contribution of Yates (3) is, however, indispensable.

c The figures in this paragraph are converted from those in the elaborate discussion of Huuri (1), pp. 7ff. Cf. Schramm (2), p. 241.

d But in certain cases the higher of these ranges was greatly exceeded; see note to Table 3 above.

Payne-Gallwey's own onager (1), p. 296, would hurl a stone of 10 lb as far as 350 yards.

From experiments with models, Payne-Gallwey (1), p. 309, estimated the distance as long as 300 yards. Counterpoises reached weights of 10 tons. Napoleon III's reconstruction, with a counterpoise of 5 tons, had a range of 200 yards, but its projectile weighed only about 50 lb.

* We have noticed already (p. 150) a description of one of 12 ft. (TPYC, ch. 36, p. 4a).
fire-power and range two factors could be multiplied, the number of bolts shot off at each loosing, and (less obviously) the number of spring components which could impart their stored energy to the same projectile. To the first of these developments we know an occasional Western parallel, but not to the second. In Chinese texts the terms lien nu (compound crossbow) or chhé nu (crossbow on a carriage) signify the multiple-bolt arcuballista, while the multiple-spring arcuballista, though going by many names, may be recognised under the term chhuang tsu nu (crossbow secured to a bed or framework).

Let us begin with the multiple-bolt machine, a typical drawing of which is shown in Fig. 62 taken from the Wu Pei Chih. This is clearly an enlarged version of those smaller hand-crossbows which also shot several bolts at once, and with which the name of Li Hung, the Sung military inventor, is associated. But it was far older than his time. In fact, it enters history in that dramatic episode in the last year of the life of Chhin Shih Huang Ti when he was touring the coastal provinces and trying to get in touch with the spirits and immortals of the marvellous islands of the Eastern Sea (-210). The magicians whom he had sent on expeditions thither, led by Hsiü Fu, excused themselves for having failed to reach them, saying that large sea-monsters (la chiao) had prevented it; they therefore proposed that good marksmen with multiple-bolt arcuballistae should be sent to sea to destroy them. The emperor ordered that this should be done, and himself stood on guard with one of these machines (lien nu) waiting for some of the monsters to appear. Ssu-ma Chhien says that in fact he did kill a big fish, but not long afterwards he fell ill and died.

There are two other ancient passages about multiple-bolt arcuballistae which deserve to be noted. One comes from about a century earlier, and the other less than a century later. The first is the remains of a matter-of-fact specification, visible to us only through the veil of a rather corrupt text; while the second is a reference to some further invention, probably an increase in the number of bolts simultaneously shot, taking the form of a historical narrative.

It will be remembered that the ancient philosophical school of the Mohists developed a great interest in fortification technology and all means of attack and defence. The chapters on poliorcetics in the Mo Tzu book are about to be the subject of our study. Mo Ti himself died about -380, but the activity of the chief Mohist military technologist, Chhin Ku-Li, is supposed to have continued for

* In the text of Bion (see Rehm & Schramm, 1) an arcuballista shooting two bolts at once is described, and attributed to Zopyros of Tarentum. Cf. the old diagrams in Weacher (1).
* Ch. 103, p. 14a.
* Cf. p. 156 above.
* The story is told in Shih Chi, ch. 6, p. 29b (tr. Chavannes (1), vol. 2, p. 190); Yates (3), p. 438.
* Chavannes in his translation mistook this for the magazine crossbow - 'l'arbalète qui lance plusieurs flèches de suite.' The probable reason for this mistake will be evident from p. 157 above.
another thirty years, and additions were probably being made to these chapters down to the end of the century. It would therefore not be unreasonable to date the following passage somewhere in the neighbourhood of ~320, and thus it would be a little older than any of the descriptions in the Alexandrian treatises.

Chhin Tzu bowed again and again and said: ‘I would like to ask what is to be done when the enemy pile up earth to form a scarp (yang ling), and then come up it pushing their pavisae (mobile shields) before them, and whether weapons and crossbows are to be brought forward?’

Master Mo replied: ‘You are asking concerning the defence of a city against artificial ramps. In fact the use of these is unprofitable, for they take a great deal of effort, and do but little harm. Those within the besieged city can put forward to left and right rams 20 ft long, mounted on the ramparts 30 ft above the ground. They should also use powerful crossbow catapult machines (chhiang nu chi), relying on the ingenioustrigger-mechanisms (chi chi chi chih3), and the wonderful [...] (lacuna). Thus can the ramp attack be beaten off.

The multiple-bolt arcuballista with which the rampart must be equipped is mounted on a carriage (lien nu chih chhe) which has two axles and three wheels on a rectangular framework like that of a wagon, made of 1 ft square beams6 and in length suitable for the

*Mo Tzu, ch. 53, tr. aust. adjv. Forke (3), p. 607. Forke’s translation was grossly abridged, and contains several misapprehensions, but the passage is admittedly very difficult. We present our own translation with due diffidence. Yates (4) argues that the first two paragraphs are one fragment and should be separated from the third, which is close in date to Chhin Shih Huang Ti.

b Some versions of the text have four.

c It will be remembered that in the late Chou period the foot was no more than 7½ of our inches, approximately.

1 弢弩 2 強弩機 3 拔機籍之 4 靈弩之車
width of the rampart. The wheels are inside the framework [khuang], which is double above and below, having to left and right two vertical posts [chih], and two horizontal [beams] [heng] each end of which is fixed by a 4 in. tenon and mortise [ju]. The bowstaves are all [chieh] bound to the posts. One string is hooked to another, and all are connected with the main string [tahsien]. The stock at front and back is level with the framework which is 8 ft high, and the crossbow winch [nu chui] is 3 ft 5 in. above the lower framework. The arcuballista trigger housing is of bronze. It takes 1 shih 30 chin weight to draw the string with the winch. The framework is in all 3.1/2 arm-spans round about. To left and right there are 3 in. hooks [for drawing the string]. The wheels are 1 ft 2 in. broad. The stock [along which the] hooks [move] is 1 ft 4 in. deep, 7 in. across, and 6 ft long. Outside the stock and the framework with which it is level, there is a claw 1 ft 5 in. long, and a chu 6 in. wide and 3 in. thick and as long as the framework. And there is an instrument [jao] which can rise and fall, for [aiming] up and down. There is also a treadle for arming it, using a strength of 1 shih, its circumference being 5 in. The bolts [arrows] are 10 ft long, and have cords attached to them like the arrows used by hunters, so that they can be wound back by a reel or windlass. The arrow projects beyond the stock 1 shih. This is the Tao of shooting from city towers where the banners float.

Thus the description is on the whole clear enough, and corresponds with what we would expect from Fig. 61a–d.

Less clear, but more entertaining perhaps, is the story of the invention of a mechanic named Kao Thung. It comes from a lost book called the Chiao chou Wai Yü Chi (Record of the Countries beyond Annam), fortunately quoted in the Shui Ching Chu, and concerns the great Viceroy of the South, Chao Tho, who ruled in Kwangtung independently during the Chhin, but submitted to the Han, dying in -137.

The Prince of Nan Ytieh, [Chao] Tho, once massed his army to attack the Prince of Anyang. But that lord had a [mechanic as clever as a] spirit, whose name was Kao Thung.
He caused his assistants to make for the prince a magic crossbow [shên nu¹] which could kill three hundred men at one time. Thus the Prince of Nan Yüeh, realising that he could not withstand this, retired with his army to Wu-Ning Hsien, and sent [his son, prince] Shih² to feign obedience to the Prince of Anyang. Now the Prince of Anyang did not know that Kao Thung was an immortal, and treated him with insufficient respect, whereupon [Kao] Thung departed from his court, telling him that whoever held this arcuballista would be able to rule the world, and whoever lost it would lose the world too. After Kao Thung had left, it fell out that Mei Chu³, the daughter of the Prince of Anyang, fascinated by the good looks of Prince Shih, entered into an intimacy with him. He asked her to let him see her father's great catapult, and found a way to cut it secretly with a saw. After this had been done he took to flight and reported to his father. Whereupon the latter set his army in motion once again, and when the Prince of Anyang ordered the arcuballista to be used, it broke. Thus he was defeated and fled away across the seas in a ship.

The reality concealed behind this tale was doubtless some improvement of the machine, and Kao Thung was probably a real mechanic. Further early Han references are numerous. In Huai Nan Tzu (c. —120) we read⁴ that:

Anciently soldiers were armed only with bows and swords; their spears had no pick-axes and their bills no hooks. But the soldiers of these late times have had to be equipped with battering rams for attack, and shields against the arrows; they shoot with multiple-bolt crossbows which are lashed to carriages [and so drawn into position] for the fight.

And the 3rd-century commentator Kao Yu added that 'all (the bolts are shot off) by one string, and they use an ox to arm (wan⁵) it'.

'Li Ling⁶ shot the Shan-yu with a lien nu' — so runs a classic phrase from the Chhiien Han Shu.⁶ It refers to an exploit performed against the khan of the Huns by this great Chinese general in —99, on the occasion when his army was surrounded in hilly country by thirty thousand horsemen.⁶ That the arcuballistae were mounted on carriages is very probable, as the Chinese forces formed a laager with their wagons, whence they poured a hail of crossbow bolts into the Hunnish cavalry, outranging their short bows. On this passage there is an interesting skirmish of commentators.⁷ The lien nu is of course mentioned in general military works of the Han period, e.g. the Liu Thao,⁸ and we have the title of at least one book (long lost of course) which was entirely devoted to this piece of artillery, the Wang Yüan Lien

¹ Ch. 13, p. 35b. tr. auct. adjov. Morgan (1), p. 151.
² Ch. 34, p. 10b.
³ Cf. the description of this battle by Dubs (2), vol. 2, p. 15.
⁴ First Fu Chihen (+1601/+1891), certainly no technician, said that the lien nu was an affair of 30 crossbows on one string. Then in the 3rd century Chang Yen got it right, saying that the lien nu has 30 arrow-grooves on one work — a definition often repeated afterwards, as in the Kuang Pin and other encyclopaedias. Yen Shih-Ku (ca. +601) supported him, but Liu Pin (+1029/+1088) said that all these interpretations were nonsense, and that the lien nu was the same as the multiple-spring arcuballista. In his text, no doubt, there was no great distinction between them, and many of the machines may have embodied both principles, but that had not always been the case. The incident is interesting as showing how the scholars often lacked direct acquaintance with techniques, and still more with the history of techniques.
⁵ Ccit. TPL, ch. 336, pp.6bff.
⁶ 神弩 ⁷ 始 ⁸ 繼術 ⁹ 桦 ⁵ 李陵
"Nu Shé Fa Chú" (Manual of Shooting with the Arcuballista and its Sights). Then in the early +3rd century the great general of Shu, Chu-ko Liang, busied himself with it. We hear that he altered the design of the lien nu, removing some features and adding others, after which it was called yuán jung [principal weapon]. The bolts were made of iron, 8 in. long, and each arcuballista shot off 10 at one time. This would have been about +225. A few years later, Ma Chun⁵, the famous engineer, 'seeing the crossbow catapults of Chu-ko Liang, said that they were not as good as they might be, and could be improved so as to do five times more damage'. We need follow no further the history of this machine, which changed little afterwards. In +1126 it figured among the weapons with which Chhen Kuei⁶ and Thang Tao⁷ defended Té-An⁸. A year later, much use of it was made by Li Kang⁹ in his heroic defence of Khai-feng. And about +1530 Liu Thien-Ho³ found, and studied, an example of the Yuán or early Ming time in a store of obsolete weapons on the city wall of Sian.¹

Another name for the lien nu was the chhè nu⁹ (arcuballista mounted on a carriages), the carriage being termed a fu⁵. Even alchemists knew about it, thus Pao Phu Tzu (ca. +340) says of a certain Chhu Wen Tzu¹⁰ that having eaten ti huang¹¹ for eight years¹² he began to glow visibly at night, and could arm an arcuballista with his bare hands.¹ Li Chhúan in +759 gives an admirably clear description:

The arcuballista is a crossbow of a strength of 10 tan⁶, mounted on a wheeled frame. A winch cable [chu chhè¹²] pulls on an iron hook; when the winch is turned round until the string catches on the trigger the crossbow is drawn. On the upper surface of the stock there are seven grooves, the centre carrying the longest arrow. This has a point 7 in. long and 5 in. round, with iron tail fins 5 in. round, and a total length of 3 ft. To left and right there are three arrows each steadily decreasing in size, all shot forth when the trigger is pulled. Within 700 paces whatever is hit will collapse, even solid things like ramparts and city towers.

¹ Chhien Han Shu, ch. 30, p. 40b.
² San Kuo Chih, ch. 35 (Shu Shu, ch. 5), p. 15b; Phei Sung-Chih's commentary quoting the Wei Shih Chhun Chhun Hsiian. Yüan Hung⁸, commenting on this in the Chin, says (p. 23b): 'How marvellous was the effect of these catapults!
³ San Kuo Chih, ch. 29 (Wei Shu, ch. 29), p. 96a; Phei Sung-Chih's commentary quoting the biography of Ma Chūn by Fu Hsiian. Text practically identical with CSHK (Chhin sect.), ch. 50, p. 11a; TSCC, Khaung kung sien, ch. 5, p. 5a; and (abridged) TPIL, ch. 752, p. 1b. Before the end of the century, Phan An-Jen was referring to multiple-bolt arcuballistae as the Chhi Tzu⁹ type (Wei Hsian, ch. 16, p. 3b) which may point to a parallel line of development from another origin.
⁴ Shou Chheng L. n. ch. 3, p. 3a.
⁶ TSCC, Jangchhengtien, ch. 283, p. 12b, quoting HWP. He recorded that its strength was only 150 chin (196 lbs.) but that it would shoot no less than 500 yards.
⁷ Shu Hsi Chih, Nan, ch. 19, p. 3a.
⁸ Ch. 11, tr. auct. The plant name is Rehmannia glutinosa (R107).
⁹ The translation of Féiél (3), p. 26, is all at sea here.
¹⁰ TPIL, ch. 35, p. 1b; text slightly better in TPIL, ch. 337, p. 1b, from Thung Tien; tr. auct.
¹¹ Assuming the Thung value for the chhun, this would come to some 1870 lbs. adp; high but not impossible.
Only the last sentence seems exaggerated, and the range of 525 yards is probably a little too great.

Sometimes whole batteries of these machines were linked together and operated from a single control. In the Wu Pei Chih we find an illustration of a row of them, each pair being released by a single pedal. It looks as if devices of this kind also go back to the Thang, for we have an interesting statement by Thao Ku in his Chhing I Lu, written about +950.

The soldiers at the headquarters of the Hsüan-Wu Army were exceedingly brave. They had crossbow catapults such that when one [master-] trigger was released, as many as twelve connected triggers would all go off simultaneously. They used large bolts like strings of pearls [lienchu ta chien], and the range was very great. The Chin people were thoroughly frightened by these machines. Literary writers called them ‘chi lung çhê’ [rapid dragon engines].

There may be more in this passage (referring to about +895) than meets the eye. The ‘lienchu’ was a later name, and a natural one, for the magazine crossbow; and the dragon engine, ‘lung çhê’, is of course the water-raising square-pallet endless-chain pump, which again suggests some kind of magazine or feed.

Lastly there were the multiple-spring arcuballistae, less familiar to us, but in some periods of Chinese history the most widely used. From the beginning of the +11th century they are constantly figured, but invariably resemble with only minor modifications the machine shown in Fig. 63, from the Wu Ching Tsung Yao.

This has the straightforward name of triple-bow mounted crossbow (san kung chihwang lizu nu), but other names are quite numerous. To increase the amount of stored energy and the length of time of its application to the projectile, a triple-spring unit is mounted on a stand, with facilities for adjustment of elevation, a winch-arming mechanism, and sights of some kind. The manner of stringing these complex forms is not at first sight at all obvious, but Groslier (1) and Mus (2) were moved to investigate the matter because representations of them in relief are carved in military scenes on the walls of the Bâyon (at Angkor Thom) and the

*a Ch. 103, p. 18a.
*b Ch. 2, p. 86a. tr. auct.
*c One of the important military commands at the end of the Thang dynasty.
*d The Hou Chin, one of the short-lived Wu Tai dynasties.
*e See Sect. 27e above.
*f Chien Chi. ch. 13. p. 6a: reproduced in Hu Pei Chih, ch. 103. p. 9a.
*g The terminology is consistent. Two double-spring units mounted on the same stand are called shuang kung chihwang lizu nu. A single double-spring unit mounted on its stand is either hsiao ho shou nu or shuo lzu nu. Alternative names for the single triple-spring unit on its stand are shou shê nu or san kung shu lzu nu. The set of illustrations will be found: first in IVCT1/CC, ch. 13, pp. 6a–12a; then in WPC, ch. 105, pp. 4b–9b; also in encyclopaedias such as San Tshui Thu Hu (‘Chhî yung’), ch. 6, pp. 19a–24a; and TSFC, Chung chih lien, ch. 283, pp. 5a–8b. Cf. Parker (6).
*h Noris it clearly explained in the Chinese texts.
buildings at Bantay Chamrak, in Cambodia. Since these date from about +1185, and since the arcuballistæ depicted may quite safely be taken to have derived from contemporary or perhaps rather earlier Chinese practice, the evidence which they afford is of much interest. Taking first the double-spring unit, one stave of which is convex forwards in the usual way while the other is reversed, the simplest reconstruction is that the string was attached at each end of the rear spring and slipped freely over both ears of the forward one (Fig. 64a). This would follow from all the Chinese illustrations, and from the wheeled example shown on the Bâyon (Fig. 66a), of which Groslier made an interpretative sketch (Fig. 66b). In one of

a Cf. the photographs of Carpeaux (1), pl. XXXIII, fig. 44, pl. XXXIV, fig. 45, pl. XXXVI, fig. 47, pl. XXXIX, fig. 50 and pl. XL, fig. 53. The reliefs are on the western portion of the South Front.

b It will be remembered that a similar control from Indo-Chinese sculptures was valuable in matters of nautical technology (Sect. 29).

c P. 90.
the elephant-borne arcuballistae (Fig. 65) it is possible to see clearly the pair of hooks and drawing-cables on each side of the stock (cf. Fig. 64b) just as described in the Mo Tzu passage, and to make out something of the winch.\(^a\) Mus supposes, however, that in another system the two springs were connected by two fixed lengths of cord, the bowstring being attached only to the forward one (Fig. 64d); in this case arming was effected by the pull of an assistant crossbowman on the rear stave. He thus interprets the use of another arcuballista mounted on an elephant saddle (Fig. 67), but we have not found anything in the Chinese material which would favour this explanation. Still, the Cambodian sculptures seem to attest it, especially in a further form (Fig. 64b) where a single continuous bowstring is freely movable round all four ears of the staves and the rear stave is

\(^a\) The presence of crank-handles, surmised by Mus, seems to us most improbable as against small handspikes (cf. Vol. 4, pt. 2, p. 111 above).
Fig. 65. Relief of complex wheeled arcuballista, Ankor Thom, from Carpeaux (1).

Fig. 66a. Relief of complex wheeled arcuballista, Ankor Thom, from Carpeaux (1).

Fig. 66b. Reconstruction (after Groslier (1)) of mounting of the Ankor Thom wheeled arcuballista.
capable of moving back and forth in relation to the forward one. Pulling this back will therefore change the shape of the rectangle and arm the weapon. Such a system seems to be quite different from anything in Chinese literature or iconography, where the rear bowstring is never seen and the rear how is never movable with relation to the stock. Lastly, the great triple-spring unit, shown only in Chinese sources, always has the bowstring on the second forward stave, whence it passes over the ears of the rear one and is attached to those of the forward one.

Some experimental research has recently been conducted into the practicalities of these machines (McEwen); it confirms the feasibility of both the three-bowed and the two-bowed construction. It was found that the idea of a continuous bowstring merely slipping over the recurved ends of the bows, as Mus had supposed, was impractical, and for efficient operation pulleys attached to the ends of the second and rearmost bows were necessary. The difficulty in accepting this reconstruction is that there are no indications of pulleys in the Chinese illustrations. Nonetheless, the Chinese drawings have suffered because of repeated copying, and the disdain of the artists, which has distorted them to such an extent that even such details as the trigger mechanisms (surely a familiar item to military men) are incorrectly shown. Even the bows themselves are represented as being lashed together in such a way that actual operation would be impossible. In these circumstances, and bearing in mind the experimental evidence, it seems likely that pulleys of some sort were employed.

* An alternative plan given by Horwitz (13), p. 178, seems less satisfactory.
The research confirms that the linking together of the bows multiplies not only the draw weight but also the length of draw. Because of this the amount of power derived from the bows is increased and a prolonged thrust is given to the missile(s). McEwen illustrates this by producing a forcedraw curve which also shows the difference between the potential power of a single bow of equivalent weight and that of the three-bowed example.

Great skill in the construction of these bows was undoubtedly necessary, particularly when composite bows of enormous draw weights were employed. It was essential to adjust the strength of each bow so that an equal amount of bend was given when the bowstring was drawn. Because of the inherent friction, even with the pulleys, and the difference in leverage applied to the bows, the foremost bow had to be only half as heavy as each of the other two.

The technical expertise required was of a high order and this is undoubtedly why Chinese craftsmen were employed in the Mongol armies to operate them. On the other hand, it was a drawback that specialists were required to maintain them, and they must have been cumbersome to manoeuvre and transport. They certainly could not have been constructed from locally available materials as some siege-engines could. On the other hand, they were made so that they could be dismantled. If, indeed, they were so strong that oxen were required to arm them and 'oxen' was not merely a term to classify strength, similar to the English 'horse-power' used to measure the output of internal-combustion engines, then even greater difficulty of operation would have been experienced.

The WCTY does depict a smaller, hand-operated type (shou shě nu¹) fitted with two bows (Fig. 68). These would not have been powerful enough to operate as siege weapons capable of destroying fortifications, but as a superior type of crossbow they would have had a great effect and an impressive range.

When did the double and triple spring arcuballistae originate? If the hints which we have derived from the Mo Tzu passage are justified, they may have been known as early as the late Warring States period (—4th century), but perhaps it is more probable that they developed later. In Thang books such as the Thai Po Yin Ching they are not at all prominent, and appear to have come into general use between the +8th and +11th centuries, i.e. around the Wu Tai period and the wars of succession when the Thang gave place to the Sung. It is curious that the first origins of gunpowder weapons coincide with this period. Perhaps we should not be far wrong in placing the first experiments with multiple spring units early in the +5th century. This was the time of Chang Kang², one of the most famous of military engineers and catapult-makers in all Chinese history. He first served the Yen (Hsien-pi) dynasty under Mu-jung Chhao³, but later transferred his services

¹ Cf. p. 219 below.
² Cf. WCTY/CC, ch. 13, p. 11b.
³ Cf. TPLY, ch. 752, p. 2a; TSCC, K hao kung tien, ch. 5, p. 7a.
to the founder of the Liu Sung dynasty, Liu Yü. The chief period of importance of the multiple-spring types was no doubt the early Sung, before the explosive weapons began to dominate towards the end of the +12th century. Thus we hear of special regiments of artillerymen (chhuang lzu nu shou) being established in +1016 at Tshao Wei’s suggestion. In the following century (ca. +1171) there was the arrival of the Fukienese officer Chi Yang-Ch’in in Champa, where he remained to teach horse-archery and the use of crossbow catapults to the Indo-Chinese. That he had great influence is strongly indicated by the sculptures on the Cambodian buildings just described.

Fig. 68. Hand-operated, two-bow arcuballista (shou shénu), from WCCTY, ch. 13, p. 11b.
Before taking up the story of the trebuchets, one strange account must be mentioned. It seems to refer to a type of artillery weapon for which no well-known parallel exists, though apparently this never left the stage of practical experimentation. We noted above the criticism of Chu-ko Liang's arcuballista made about +240 by the famous engineer Ma Chiin. The same passage proceeds as follows:

Ma [Ma] was also dissatisfied with the trebuchet (fa shih chhê1). [The enemy used to] hang curtains of wet ox leather on the sides of their towers, and these could be shot down. But the stones could not be fired [quickly enough] one after the other [so as to prevent the enemy from putting up more curtains].

He therefore planned to construct a wheel on which were hung [in slings] large stones, several tens in number. This drum-wheel [ku lun2] was rotated by a mechanical device [chi3], and then (when sufficient speed had been attained), a long curved knife4 was so arranged as to cut the [cords] by which the stones were attached. In this way the stones were made to fly one after another like lightning, and hit the enemy city. Once when a test was made with several tens of roof-tiles attached to the wheel [instead of stones], they flew forth several hundred paces.

This seems to suggest that Ma Chiin was trying to build what might be called a centrifugal flywheel ballista (Fig. 69). It is clear that a considerable number of stones were to be attached to the circumference of his wheel, and the text only makes sense if their attachments were suddenly cut. This could have been done by sliding a long and sharp knife into the appropriate place when maximum speed had been attained. As for the motive power, it will be remembered that Ma Chiin's name was closely associated with the development of the square-pallet chain-pump (fan chhê4) which was traditionally worked by man-power using radial treadles.5 These were probably what he used in this case. But the idea, ingenious though it was, involved a construction doubtless too complex for practical military use, and from the trial mentioned the range may not have been impressive.

A still more important drawback of this reconstruction would evidently be that the machine had no 'angle of fire' and could only shoot in one direction. Third-century facilities would not have permitted any kind of turntable for such a large framework. But perhaps Ma Chiin avoided this difficulty very simply by mount-
ing the drum-wheel in a horizontal position; if that were done an adjustment of the point at which the knife-edge was vertically raised would easily give an angle of fire of as much as 130° of arc. Since, as we have seen, Chinese engineers always preferred to mount wheels horizontally rather than vertically, it is likely that this was in fact what he proposed.

That centrifugal force could be used for the propulsion of a missile must have occurred to many at one time or another in all civilisations. In the form of the *bolas* and the lasso, the principle is prominent in South America for many purposes, where it derives from autochthonous peoples. The lasso has a wider distribution, probably going back to the ancient cultures of Egypt and Babylonia, and still

Fig. 69. Reconstruction of Ma Ch'ien's 'centrifugal flywheel ballista'.

a See Sect. 27f. h. i above.

b Note that this would of course have involved the complication of some form of right-angle gearing. But here again this was a technique with which Ma Ch'ien was well acquainted, as we know from Sect. 27c on the south-pointing carriage. However, with the materials and designs of his time it would probably have been very difficult to produce a machine of the duty needed which would not almost tear itself to pieces by the play of its parts. Possibly it was a proposal never put into practice.
indigenous in many parts of the Eurasian land-mass. But a suggestion closely similar to that of Ma Chün was current in mediaeval Europe, for one of the illustrations in the MSS of Walter de Milamete, prepared for Edward II in + 1326, shows a windmill-like machine intended for hurling incendiary material at the enemy. Its motive power is the descent of a heavy weight, which is raised to the top of its travel when necessary by a man with a winch, (Fig. 70). It seems the less practical of the two. Of course both these devices were essentially derivative

* See Cowper (1), pp. 190ff.
* Feldhaus (2), pp. 317, 321. Another plan of Walter's was to hurl beehives onto the ramparts before an attack in order to disconcert the defenders (p. 320).
from the sling, but in onagers and trebuchets the centrifugal principle is some-
what concealed, since the arc of the circle described is so small.

Perhaps the most extraordinary thing about Ma Chiün's rotary ballista is that
Leonardo da Vinci himself designed a somewhat similar one.\(a\) It had slings and
large stones hanging from the ends of eight arms rotating horizontally on a central
axle, and it was called a 'mangano centrifugo' - but it may well have been only a
design never practically executed.

Finally, we may note one other heavy artillery piece, the name of which has
come down to us from the Mohist chapters and the Han slips from the sands of the
Gobi, the 'revolving shooting machine' (chuan shê chi\(^1\)) used to defend forts and
cities. Yates (3) describes it as follows.\(b\) 'In the Mozi (Mo Tzu) the weapon itself is
said to be six feet long, buried one foot into the ground and deployed every 120
feet along the walls. Each machine was to be manned by a marksman aided by one
assistant, neither of whom was to leave his post under any circumstances. In the
Juyan (Chü-Yên) strips it is indicated that these crossbows were equipped with
sights (shên mu\(^2\)).' The name implies that these crossbows could 'move', and they
were probably mounted in such a way as to be able to turn horizontally as well as
to move up and down, thus providing full coverage of the ground outside the
walls. It is also quite possible that they were fired through devices mounted in the
crenels called 'revolving windows' (chuan yu\(^3\)) or wên\(d\), which had revolving cylin-
ders with an opening that allowed for an angle of rotation of 120°. We shall discuss
these presently.\(e\) Unfortunately, however, further details of these revolving cross-
bows are lacking, and their development seems to have come to an abrupt end
with the fall of the Han.

(6) TEBUCHETS, MANNED AND COUNTERWEIGHTED

When Tuan-mu Tzu-Kung, one recalls, was wandering in the south in Chhu, he
met the old man working in a garden who refused to use the swape for drawing his
water.\(a\) The counterweighted bailing bucket, he said, was a cunning device, and
'they who use cunning devices have cunning in their hearts', so although he knew
about the machine he despised those who used it. The old man, indeed, was one of
those ancient Taoists who felt that since all machines were only too liable to
become infernal machines it was better to renounce the use of them altogether. If
he could have been present seventeen hundred years later at the siege of Hsiang-
Yang (late 13th century) and seen the damage done by stone projectiles of
perhaps half a ton or more, as well as by gunpowder bombs, all hurled upon the
city from manned or counterweighted trebuchets, he might have claimed a certain
justification for the standpoint of ancient Taoism.

In continuing the story of mediaeval artillery we must now leave the realm of
the spring and sinew to consider that of the sling and swape. The long arm,
trembling on its fulcrum, proved able to surpass by far any spring engine in the
weights of the projectiles which it could deliver, though in range it fell behind. But
by the end of the +13th century, both in east and west, masses of stone weigh­
ing as much as 250 lb were commonly sent over in sieges, and this was hard for
any defensive masonry to withstand (see Bradbury (2), p. 268). The end of the
+10th had already seen, in China, the beginnings of the use of gunpowder bombs
thrown in this way. And in the +14th, before gunpowder rendered all such
machines obsolete, the use of swinging counterweights weighing several tons per­
mitted the delivery of projectiles well over a ton in weight.

The only analysis of the physics and dynamics of the trebuchet that we know
of is due to Donald Hill (1). After an interesting historical introduction on the
manned trebuchets as well, he took two examples of counterweighted trebuchets
and calculated their ranges for varying ratios for the arm lengths on each side of
the fulcrum.

<table>
<thead>
<tr>
<th>missile wt.</th>
<th>counterweight</th>
<th>length of arm</th>
<th>length of sling</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb</td>
<td>tons</td>
<td>ft</td>
<td>ft</td>
<td>yards</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>30</td>
<td>15</td>
<td>240-350</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>48</td>
<td>30</td>
<td>300-410</td>
</tr>
</tbody>
</table>

The ratios of arm lengths on each side of the fulcrum varied from 1:3 to 1:8 in his
calculations. All these figures were for swinging counterweights, a type which
seems to have originated somewhere in the Maghrib (i.e. the Arabic countries of
North Africa) late in the +12th century. Among other interesting details Hill
gives a reconstruction of the hook which assured the release of the arm for shoot­
ing, with its spanning rope and its release rope; as well as a drawing showing the
ring which slipped off the beak on the end of the arm as the sling unwound and
allowed the projectile to fly loose. Later on (p. 218) we shall see something of the
appearance of this type of trebuchet in China, the land where the trebuchet itself
had first arisen.

Hill refers to the occurrence of the trebuchet in Leonardo da Vinci’s notebooks,
where the counterweight operates a large wheel with its axle set at the fulcrum,
though, as he says, by this time (ca. +1485) the trebuchet was in full decline. Nevertheless, Hollister-Short (1) has suggested that perhaps the counterweighted trebuchet was the origin of all sector-and-chain devices, and therefore a cardinal factor in the development of mechanical engineering, since it was one of the ways of converting rotary to longitudinal motion. Leonardo probably knew of the trebuchet from Mariano Taccola, who had figured it about +1432, but he modified it by having a weighted wheel attached to the arm and revolving at the fulcrum, and he soon saw that the full circumference of the wheel was not necessary. Then by his unique grasp of kinematic relationships he applied the sector-and-chain (or rope) principle to many devices unconnected with war, such as a pile-driver and an excavator. Subsequent engineers constructed many pendulum pumps using this principle, and it was adopted also for balances, candle-dippers, mine-ventilating machines, and finally the steam-engine of Thomas Newcomen himself (+1712). This was of course a beam-engine, and the sector-and-chain device at each end of the beam transmitted the power to the two suction lift pumps below. Thus, as we shall see in the case of gunpowder, this military machine too played ultimately a beneficent part in the development of those heat engines upon which so much of our civilisation depends.

There can be no doubt that the trebuchet is among the oldest of artillery pieces in Chinese technology. But it has gone under a multiplicity of names, mostly with the pronunciation phao (perhaps onomatopoieic) mostly meaning to throw or hurl some hard object such as a stone in opposition to some thing or person. Phao appears early in the Han, but is often written afterwards in other ways, the semantic significance of ‘contradiction’ (p’0) being thus concretised to ‘throwing’, or a machine for throwing. Later alternatives were phao, which embodies the idea of the projectile as a leopard springing on its prey, and finally (universal after the end of the Thang) phao. The terminology is extremely confused throughout this field, for the projectile was never clearly distinguished from the machine which sent it, both being called phao. Hence when gunpowder first made its appearance, trebuchets which lobbed over bombs or grenades were called huo phao, as also were these explosive projectiles themselves, though in earlier centuries such a term could have meant only incendiary missiles. In each particular

* When the wheels were not weighted, the cord or chain of the counterweight would naturally go round the rim.
* Cf. Hollister-Short (3).
* Outstanding contributions of modern scholars to our knowledge of it are those of Matsui (1); Lu Mou-Tê (1, ch. 1); Wang Ling (1); Goodrich & Feng; Feng Chia-Shêng (9).
* In Chihren Han Shu, Couvreur (2); and in the Huên Chi Fu of Phan An-Jên (6) (Wen Huian, ch. 16, p. 3b) who died about +300.
* Some further ones will be mentioned below as we come upon them.

1 擊 2 搵 3 箭 4 子 5 火砲 6 閘居賦 7 潘安仁
case the context alone decides. Eventually the fire radical was incorporated in the word itself as *phao*¹, but even this does not infallibly designate the true barrel gun or cannon, for which other terms came in. Here we can follow these terminological problems no further, but naturally we shall have to return to them more than once.²

None of the *phao* words were the oldest term for the swape catapult or trebuchet, however. This was *kuai*² (or *kuei*), but unfortunately the original meaning of the word was signalling-flag.³ Perhaps its oldest appearance (about the 9th century?) occurs in the Ta Ming ode⁴ in the Ta Ya section of the *Shih Ching*: ‘*Yin-Shang chih liu, chhi kuai ju lin*’⁵ (*The cohorts of Yin-Shang with their banners were massed like a forest*).⁶ Somewhat later is the mention in the *Tso Chuan*⁷ in connection with the battle of Hsu-Ko in —706, at which the prince of Chêng ordered the drums to beat whenever the signal-flags were moved (*cuai tung erh ku*⁸). The origin of the trebuchet from the single flagpole would have been extremely natural, since the swape usually embodies but a single vertical pole. And by the Han it had certainly taken place, for commentators then explained both these passages as referring to trebuchets. In +121 Hsù Shên, quoting the *Shih Ching*, said⁹ that the *kuai* is ‘a great arm of wood on which a stone is laid, and this by means of a device [*chi*¹²] is shot off and so strikes down the enemy’. Before him, about +50, Chia Khuei had given the same explanation of the *Tso Chuan* passage. But the word *kuai* continued for some time more to mean flags, since one can find it for instance in a poem¹⁰ of Ma Jüng’s about +150. If one had to fix any particular time for the first origin of the trebuchet, it would be tempting to associate it with the name of the Yüeh statesman Fan Li about —480, or whoever it was in the following couple of centuries who wrote the now long lost *Fan Li Ping Fa*¹¹ (Military Manual). Chang Yen had a copy of this in the +3rd century, and a quotation which he made from it has reached us through the commentary of the *Shih Chi*¹²: ‘The flying stones weigh 12 catties¹³ and by devices [*chi*¹²] are shot off 300 paces¹⁴. Any earlier reference than this would be unlikely.

¹ It was distinguished from the old word *phao*, meaning to roast or fry, by a different orthography, though composed of the same elements.
³ As was very reasonable from its pennant ‘radical’, *yen*⁶.
⁴ No. 236.
⁵ Legge (8), III (2), v. 7, and Karlgren (14), p. 188, read *hui⁶*, which is redundant, and therefore did not translate it. Waley (1), p. 262, following the commentators, translated it as a catapult. Both courses seem mistaken.
⁶ Duke Huan, 5th year; *Couvreur* (1), p. 83, as flags.
⁷ *Shuo Wen Thang Hsu Hsiao Tsung Sheng*, ch. 13, p. 11a.
⁸ In *Hsu Han Shu*, ch. 90a, p. 6b.
⁹ Ch. 73, p. 9a. The sentence is also quoted by Li Shan*¹⁴* (ca. +660), *Wên Hsüan*, ch. 16, p. 9b. Curiously, it had little to do with the *Shih Chi* text, which concerned some fast bowling in the war games of the army of Chhin Shih Huang Ti’s great commander Wang Chien¹⁵.
¹⁰ About 6.7 lbs.
¹¹ Presumably about 225 yds.
The next reference is to be found in the Sun Pin Ping Fa where the trebuchets are mentioned in passing under the name 'throwing machine' (thou chi) but unfortunately no details of their construction are provided.

Chapter 14 of the Mo Tzu does, however, contain two fragments describing the late Warring States trebuchets and these have been analysed by Yates (3). It is worthwhile to quote him in full (romanisation changed)\(^b\):

The first passage indicates that the posts (chu\(^a\)) are to be 17 feet high with four feet buried below ground for stability. The posts would then stand 13 feet above ground level. The second passage merely states that the posts are to be 12 1/2 feet high without mentioning that they are to be buried. There is the possibility that the latter machines were intended to be mobile and mounted on wheels, as are the trebuchets illustrated in the 11th-century Sung military manual, Wu Ching Tsung Yao,\(^c\) but the fragment contains no record to this effect. The fulcrum or pivot (khun\(^d\)) at the upper ends of the posts was constructed out of the wheels or can, and presumably the axle-pivot rested in notches on top of the posts or, alternatively, was inserted into holes drilled through the posts. Exactly how the throwing arm or beam was attached to the axle is unclear: it may have been tied with rope or iron wire or, if the axle was large enough, inserted through a hole. This latter arrangement is seen in the Wu Ching Tsung Yao trebuchets.

The passages indicate that the throwing arm (fu\(^a\)) was to be 30 to 35 feet long and 'if it was less than 24 feet long, it was of no use' (fu chhang erh shih ssu chhii i hsa pu yung\(^*\)).

Three quarters of the arm was to be above the pivot and a quarter below: to this quarter, as has already been mentioned, the ropes for pulling the arm down were attached. The sing, (literally, 'horse's jowls' ma chia\(^6\)) for the missile at the upper end of the arm was to be two feet 8 inches long. The arm itself was probably constructed out of several timbers bound together by iron wire. This technique was employed to allow for greater strength and flexibility: an arm made from a single tree trunk would be more likely to fracture after repeated use and with heavy missiles. In one passage of Mo Tzu, the iron wire bands are called thieh tsuan\(^7\), while in the two fragments giving the details of construction of the trebuchets, they are termed thieh shih.\(^d\) [A tentative reconstruction of the Mohist trebuchet is given in Figure 71a and b.]

How were these trebuchets deployed by the Mohists, what were the missiles, and what attacks were they intended to repel? Three different versions in chapter 14 give the distances between the machines deployed along the wall as 300, 180, and 120 feet respectively, and the defenders fired the trebuchets against counter-weighted ladders, long ramps built up to the height of the wall, the filling in of the moat by the enemy, and direct

a Section 4, 'Thien Chi Wen Lei' (Thien Chi Asks about Ramparts), Sun Pin Ping Fa, p. 49; Chang Chen-Tse (1), p. 42; Balmforth (1), p. 347; Wu Chiu-Lung (1), slip 0200, p. 17, where the original graph for chi\(^b\) is given as chi\(^10\).

c Note that the illustration in present editions of the Wu Ching Tsung Yao may only be of Ming dynasty date.

d Possibly shih is an error for sheng\(^11\); sheng in the Li Chi means 'skein' (i.e. 80 threads).
infantry assaults. It is somewhat surprising that the Mohist military experts suggest that the machines be fired from on top of the wall (chēng-shang) rather than from the ground behind it. Exposed in such positions, and probably buried in the banquette, they would no

Both Wu Yü-Chiang (1), ch. 14 pp. 6b-7a and ch. 14 p. 13b, and Tshên (3), pp. 17-19 and 30-2, interpret tui as su, a mine or tunnel, but it is unlikely, in our opinion, that trebuchets would be fired against underground tunnels for at this early date explosives had not been invented. Probably tui should be understood as a ‘line’ or ‘rank’ as in the passage in the T'ao T'ang, 1975 ed., vol. 1, ch. 14, pp. 6a-7a, where the numbers of defenders required to stave off assault by 100,000 men in waves, tui or shu, are given. Note that the graph thau ‘throw’ in the phrase thau chi has been corrupted in different passages of the extant text to chi, phi, and chiao. Previous scholars have emended and interpreted the graphs differently and, in our view, mistakenly.
doubt have been fairly easy targets for the attackers' own trebuchets and crossbows. Furthermore, the length of the throwing arm would have required the banquette at the top of the wall to have been more than 35 feet wide. We should possibly understand, therefore, that they were buried behind the walls with a forward look-out stationed on top of the wall to give directions to the artillerymen below him.

Undoubtedly the trebuchets threw stones, but the weight of such missiles is not recorded. Piles of stones were placed every 12 feet along the wall, with 100 to 500 stones per pile, with each stone weighing more than 10 chūn1 (ca. 73 kilos) but these may have been dropped by hand by the defenders, rather than thrown by the trebuchets.

Another missile that the Mohists did develop, however, was a type of fire-bomb which was to be used if the enemy tried to fill in the moat with brushwood and earth.

The passage which describes these bombs is unusually corrupt and fragmentary but it is possible to reconstruct the Mohist method. Pieces of wood 2 feet 4 inches long and a wei2 in circumference, possibly 23.1 cm, were hollowed out in the centre, lighted charcoal was

\[\text{This passage in the extant text reads} \text{érh pü chi shih shih chang shung shih chun i shang ché wu po mei wu po.}\text{ The Chang-Huai Thai-Tzu Li Hsien commentary on Hou Han Shu (Hou Han Shu Chi Chieh 'Lieh Chuan') 12, p. 10a 'Chien Hsin Chuan' reads Mo Tzu yüeh: Pei chéng ché ché shih po pei, chung shih chün i shang ché.} \text{ Pi Yian quotes the commentary as having chihien2 'tooo' instead of shih2 'ten', a misreading or an unidentified edition as Sun I-Jang speculates. Tshên Chung-Mien (3) and Wu Yu-Chiang take shung as meaning 'a half', while Wu Ju-Lun reads the word in the fourth tone 'hit the mark.' The passage should be emended to érh pü chi shih, shih chang shih chun i shang ché wu po mei, wu hsia po.}\text{ Western machines may have fired stones up to 76 kilos in weight (Foley & Seeedel (2) p. 150).}

b Such stones were also known as liu shih1, lei shih14, and lei shih11.

c There is some doubt about the meaning of wēi as a unit of measurement for the circumference of a circle. On Chuang-Tzu ('Jén-Chien Shih11'), Lü Té-hsing quotes two opinions: Tshui-Shih16 (Ching Tien Shih Wén14 ch. 26, p. 16a) suggests that a wēi is 8 feet, 'hsuan pa chih i wēi18, which is far too large to merit acceptance. Li Shih16 defines wēi as the circumference of a circle with a diameter of 1 foot 'chung chih wēi wēi18' (Ching Tien Shih Wén14 ch. 26, p. 15a). Since each of the Warring states had a different system of measures which changed through time, it is unclear what length is meant in the Mohist military chapters. It appears, however, that the length of the foot in the state of Chihin in Shang Yang's day (mid-4th century) was 23.1 cm (Wang Shih-Min18 (1) quoting Thang Lan19 (4). Given that the circumference of a circle can be expressed by the formula 2 πr, the length, according to Li, would be ca. 72.2 cm. We will see below, however, [Yates (3) p. 444], that the Mohists recommended burying iron stakes more than half a wēi in circumference in the glacis at the base of the city wall. If Li is correct, these stakes would be 36.25 cm. in circumference. In addition, in the passages on mining, the Mohists indicate that the posts supporting a tunnel 7-8 feet wide and high (c. 173.2-184.8 cm.) are to be 24 wēi thick: this would give a circumference of 181.3 cm. and a diameter of 57.94 cm. Both of these figures, 36.25 cm. and 57.94 cm. seem, in our opinion, to be too large, particularly the latter. As the posts were supposed to be erected opposite each other, the joint diameters would be 105.88 cm., which would leave a bare 70-80 cm. for the actual width of the tunnel. The Mo Tzu states that 20 torches or flares ('hu18) to feet long and a wēi large should be placed in a pile every 12 feet along the top of the walls. Recently, two Han torches, made from bundles of dried stalks of Achnatherum splendens, have been discovered (Kansu Chi.-Yen Khao-Ku Tui (1) p. 6; EPSq: 047, 058). They are 82 cm. long and 8 cm. in diameter with 2 or 3 short wooden sticks or rods (Kan18) stuck through the torches at right angles. A diameter of 8 cm. gives a circumference of 25.1 cm. We suspect, therefore, that a wēi was roughly one foot ('chih18) or 23.1 cm. in circumference. This gives 57.7 cm. as the circumference of the pillars and thus 18.36 as their diameter, and 23.1 cm. as the circumference of the stakes. Both these figures are much more compatible with the actual practical requirements of the objects mentioned in the Mo Tzu.

1 轲
2 圓
3 二步積石，石重二十鈞以上者五百枚母下百
4 堅鐵傳
5 黑子曰：偏域者積石百枚，重十鈞已上者
6 千
7 橋石
8 二步積石石重二十鈞以上者五百枚母百
9 梁石
10 匯八尺一圍
11 人間世
12 孫氏
13 禽氏
14 膝尺
15 西氏
16 徑尺為圍
17 王世民
18 王康
19 王開
inserted and the hole tightly covered. These bombs were then hurled by the trebuchets at the piles of brushwood gathered by the attackers. It should be observed in passing that the Mohists do not seem to have used burning oil in these bombs.

From the Chhin and Han onwards, trebuchets handled by teams of pullers were an extremely common feature of Chinese siege warfare. In view of the rather different development of artillery at the other end of the Old World, it is necessary to do something to indicate the great wealth of evidence for the use of this machine in China in antiquity and the early middle ages. We shall therefore choose some examples from the successive dynasties, noticing especially the names which have come down to us of military engineers who built the trebuchets and organised their use. One would expect to find them at work in the wars of the Three Kingdoms period which closed the long peace of the Han, and there they are, used by Tshao Tshao against the forts of Yuan Shao\(^1\) at Kuan-Tu in +200. We are told that the stone-throwing machines (\(fa\ shih\ chhê\)) were called by the soldiers ‘thunder carriages’ (\(phi\ li\ chhê\)).\(^2\) If these represented any new development, it was probably the mounting of the trebuchets on mobile bases with wheels. Other contemporary artillery actions are easy to find.\(^3\) Our first named engineer appears in the +5th century, Yu I-Chih\(^4\), building shih chhê\(^5\) and chhio chhê\(^6\) (these last probably rams) for the siege of Shou-Yang.\(^7\) A century later there is mention of incendiaries (\(huo\ tshuan\)) and huge stones (\(lei\ shih\)) cast by trebuchets upon the besiegers of the city of Pa-Ling.\(^8\) The admiral Huang Fa-Chhiu\(^9\) we have met with before, in connection with his paddle-boat, on which he set, at the siege of Li-Yang in +573, his pho chhê\(^10\) or phao chhê,\(^11\) thus breaching the defences.\(^12\) The ‘thunder carriages’ appear again at this time in a curious context, namely the juristic chapter of the \(Sui Shu\), which tells of the detestable Northern Chou emperor Yu-wên Yin\(^12\) (r. +578/+580) that he had them made as a form of punishment ‘to frighten the women’.\(^13\) This may imply that by then they were powerful enough

\(^1\) \(Hou\ Hsueh\ Shu\), ch. 104 A, p. 22 b; \(San Kuo Chih (Wei Shu)\), ch. 6, p. 24 b. We shall frequently meet with the term \(phi-li\) again in connection with the earliest gunpowder weapons eight hundred years later. The \(Wei Shih Chhan Chih\), quoted in the commentary of the \(Wei Shu\), says that the machines were built following the pattern of the ancient \(kun\). Li Hsien in the \(Thang\), said that they were ‘the same as our \(phao\ chhê\)’, commenting on the \(Hou\ Hsueh\ Shu\).

\(^2\) E.g. the reduction of Chü-ko Tan’s\(^1\) stronghold in +258 (\(Wei\ Shu\), ch. 28, p. 153).

\(^3\) \(Song Shu\), ch. 87, p. 15 b. He was working for the general Yin Yen\(^1\) about +450.

\(^4\) \(Liang Shu\), ch. 45, p. 5 a. This is in the biography of Wang Sêng-Pien\(^1\), and refers to the neighbourhood of +349.

\(^5\) Sect. 27 g above.

\(^6\) \(Chên Shu\), ch. 1 t, p. 3 a.; \(Van Shih\), ch. 66, p. 17 b.

\(^7\) \(Sui Shu\), ch. 25, p. 16 b; tr. Balazs (8), pp. 72, 160. The passage runs: ‘\(yu\ tso\ phi-li\ chhê\ i\ weifu\ jen\)’.

\(^8\) \(Yuan Shih\), ch. 10, p. 22 b; tr. Jiro (8), pp. 66, 83. The passage runs: ‘\(yu\ tso\ phi-li\ chhê\ i\ weifu\ jen\)’.

\(^9\) \(Tao Shih\), ch. 16, p. 29 b; tr. Jiro (7), pp. 28, 30. The passage runs: ‘\(yu\ tso\ phi-li\ chhê\ i\ weifu\ jen\)’.

\(^10\) \(Hou\ Hsueh\ Shu\), ch. 104 A, p. 22 b; \(San Kuo Chih\), ch. 6, p. 24 b. We shall frequently meet with the term \(phi-li\) again in connection with the earliest gunpowder weapons eight hundred years later. The \(Wei Shih Chhan Chih\), quoted in the commentary of the \(Wei Shu\), says that the machines were built following the pattern of the ancient \(kun\). Li Hsien in the \(Thang\), said that they were ‘the same as our \(phao\ chhê\)’, commenting on the \(Hou\ Hsueh\ Shu\).

\(^11\) E.g. the reduction of Chü-ko Tan’s\(^1\) stronghold in +258 (\(Wei\ Shu\), ch. 28, p. 153).

\(^12\) \(Song Shu\), ch. 87, p. 15 b. He was working for the general Yin Yen\(^1\) about +450.

\(^13\) \(Liang Shu\), ch. 45, p. 5 a. This is in the biography of Wang Sêng-Pien\(^1\), and refers to the neighbourhood of +349.

\(^14\) Sect. 27 g above.

\(^15\) \(Chên Shu\), ch. 1 t, p. 3 a.; \(Van Shih\), ch. 66, p. 17 b.

\(^16\) \(Sui Shu\), ch. 25, p. 16 b; tr. Balazs (8), pp. 72, 160. The passage runs: ‘\(yu\ tso\ phi-li\ chhê\ i\ weifu\ jen\)’.

\(^17\) \(Yuan Shih\), ch. 10, p. 22 b; tr. Jiro (8), pp. 66, 83. The passage runs: ‘\(yu\ tso\ phi-li\ chhê\ i\ weifu\ jen\)’.

\(^18\) \(Tao Shih\), ch. 16, p. 29 b; tr. Jiro (7), pp. 28, 30. The passage runs: ‘\(yu\ tso\ phi-li\ chhê\ i\ weifu\ jen\)’.
to shoot off objects as heavy as a man – as was done many times in the European Middle Ages later on.a

In the Thang dynasty sources become still more numerous. In its founding hours, the assault on the Sui capital in +617 was urged on with the help of 300 trebuchets (*yün kuai*)b constructed by the engineer-general Thien Mao-Kuang.b A few years later the commander who was to be the second emperor of the dynasty brought similar batteries against Wang Shih-Chhung3 in Lo-Yang, firing 66-pound balls some 150 yards in high curving trajectories.c Much must have depended upon the intensity of the fire. Trebuchets seem to have been a key factor in the success of the expedition of +668 against the Koreans, whose capital fell to Li Chi4 in that year.d A century later, the army of Li Kuang-Pi5, one of the ablest generals of the imperialists in the An Lu-Shan rebellion, had trebuchets so heavy as to require a team of 200 men each to swing them over.e These lei shih chê6 were mounted on mobile carriages like heavy field artillery.

And now just at this time begin the first detailed descriptions. For in Li Chhuian’s *Thai Po Yin Ching*, compiled only two years after the death of An Lu-Shan, we find a valuable passage worth reproducing. Some time before any trebuchets were known or used in the West, in + 759 he wrote:f

For the trebuchet (*phao chê*) they use large baulks of wood to make the framework, fixing it on four wheels below. From this there rise up two posts (*shuang pi*) having between them a horizontal bar (*hêng kua*) which carries a single arm (*tu kan*) so that the top of the machine is like a swape (*chieh kao*). The arm is arranged as to height, length and size, according to the city [which it is proposed to attack or defend]. At the end of the arm there is a sling [lit. nest, *kho*] which holds the stone or stones, of weight and number depending on the stoutness of the arm. Men [suddenly] pull [ropes attached to the other] end, and so shoot it forth. The carriage framework can be pushed and turned around at will. Alternatively the ends [of the beams of the framework] can be buried in the ground and so used. But whether you use the ‘Whirlwind’ (*Hsian-Fêng*) type or the ‘Four-footed’ (*Ssu-Chiao*) type depends upon the circumstances.

At this point we can no longer forgo some illustrations. Though we have none dating from the Thang time itself, the chief types of framework had apparently already taken form then, and we can appreciate them by four pictures from the

a Pavy-Gallwey (2), p. 39; Alwin Schultz (1), vol. 2, p. 100n.

b Hsin Thang Shu, ch. 83, p. 3a. The soldiers called them ‘army-general catapults’ (*chiang-chên phao*); this was under Li Chi’s command. Parker (6) drew attention to the passage long ago.

c He was Li Shih-Min6; the figures come from *Ts’ao Chih Tiang Chen*, ch. 188, p. 21.

d Hsin Thang Shu, ch. 220, p. 3b. Li Chi was an interesting officer; he also edited a pharmacopoeia.

e Hsin Thang Shu, ch. 136, p. 2a.

f Ch. 33, p. 1th, tr. auct.
Wu Ching Tsung Yao of +1044. Fig. 72 shows that the ‘Whirlwind’ (Hsüan-Fêng¹) type was the oldest, consisting of a single pole, but also probably the most handy for small-‘calibre’ missiles since it could so easily be turned round to face any desired direction.² Note should be taken of the rectangular framework at the top of the pole, which formed the bearings of the rocking axle at the fulcrum. Fig. 73 illustrates a battery of five of these trebuchets mounted, presumably in a fixed manner, on one single turntable,³ and Fig. 74 gives the phao chê⁴ itself, the single-pole machine mounted on a four-wheeled carriage.⁵ The ‘Four-footed’ (Ssu-Chiao⁶) or trestle-frame model, used for much heavier work, is seen in Fig. 75 where it is called the Chhi-Shao Phao⁷ or ‘Seven-Component Trebuchet’.⁸

This terminology has puzzled several sinologists because shao normally means ‘branch’ or ‘tip’,⁹ but a study of the text and illustrations in the military manuals shows that the word was here applied to the number of component wooden (or

² WCTY(CC), ch. 12, p. 50a. copied in e.g. WPC, ch. 113, p. 18a; TSCC, Jung chêng tien, ch. 296, p. 30a.
³ WCTY(CC), ch. 12, p. 55b. copied in e.g. WPC, ch. 113, p. 23b.
⁴ WCTY(CC), ch. 12, p. 39a. copied in e.g. WPC, ch. 113, p. 36b; TSCC, Jung chêng tien, ch. 296, p. 24b.
⁵ WCTY(CC), ch. 12, p. 48a. copied in e.g. WPC, ch. 113, p. 16b; TSCC, Jung chêng tien, ch. 296, p. 29a.
⁶ E.g. Mus (2), p. 339, and Huber (3), p. 676, translating the Huang Yuan Chêng Mien Lu¹ (Records of the Imperial Mongol Expedition against Burma, +1300) written a year or two later by an anonymous author, p. 6b. The Burmese defending Myin-saing had ‘three-branch and one-branch trebuchets [sanshao tusao phao¹]’.

¹ 旋風 ² 拋車 ³ 四腳 ⁴ 七梢砲 ⁵ 皇元征録 ⁶ 三梢單梢砲
Fig. 73. Battery of five whirlwind trebuchets, *WCTY/CC*, ch. 12, p. 48b (Ming ed.).

Fig. 74. Trebuchet mounted on four-wheeled carriage (*phaochhl*), *WCTY/CC*, ch. 12, 39a.

Fig. 75. ‘Four-footed’, ‘seven-component’ trebuchet, *WCTY/CC*, ch. 12, p. 48a.
even bamboo) poles which formed the arm when lashed tightly together, or bound with metal bands. The illustrations in the *Wu Ching Tsung Yao*, though probably not, in their present form, contemporaneous with the text, may be taken as the prototypes of those which appear in a number of later books and encyclopaedias such as the *Wu Pei Chih*, the *Thu Shu Chi Chhêng*, etc. and which continued to be reproduced long after the machines themselves had become quite obsolete. In most cases we possess quantitative details about the different types (see Table 4 below). References to them in Thang and Sung literature, moreover, are not infrequent. For example, in the Ching-Tê reign-period (+1004/+1007) many young men were advanced in office because of their military services and some of them were then lampooned as being insufficiently scholarly. Thus of Chang Tshun it was said that all his knowledge consisted in skill with the ‘Whirlwind’ (*Hsüan-Fêng*) trebuchet.

Before leaving the different types of machine, a further glance at Fig. 72 will show a couple of poles marked ‘*Shou Phao*’ or ‘Hand-Trebuchet’. This was the invention of a military engineer named Liu Yung-Hsi, who presented it to the emperor in +1002. One pole, shod for fixing in the earth, carried a pin at its upper end to act as the fulcrum for the arm, and by this means a single soldier could lob over stones (or even by that time gunpowder ‘grenades’) on to the enemy’s lines in the static trench warfare which developed around fortified positions in this period. It was ordered that all the frontier troops should be supplied with these devices.

Returning to the Thang period, it is noteworthy that the Chinese types of trebuchet found their way towards the West in the course of those great expeditions of Thang Thai Tsung which brought about the submission of the whole of Sinkiang by +648. The campaign had begun some ten years earlier with the siege of the city of Yarkhot (capital of Kao-Chhang the city-State of the Turfan basin) (cf. Figs. 179, 180). For the artillery train required ‘the emperor summoned from east of the mountains all those skilled in constructing siege machines’ and the general Hou Chûn-Chi cut down whole forests for the timber-yards of the engineer Chiang Hsing-Pên. A stele still situated in a votive temple south-east of Barkul, commemorating the siege of Karakhoto, bears an inscription which

* The significance of this composite construction for easy dismantling and transport should not be missed; cf. p. 219 below.
* Even as late as 1840, in the work of Chhênn Chieh-Phing (†), ch. 4, pp. 34ff.
* Chhêng Hsüang Tsa Chi, ch. 8, p. 6a.
* Sung Shih, ch. 197, p. 2a.
* Cf. Chavannes (†); p. 7ff., Eberhard (9), pp. 190ff. The Turfanese had become vassals of the Western Turks.
* *Tohê Fu Yuan hui*, ch. 985, pp. 108ff.

1 張光 2 手砲 3 劉永錫 4 高昌 5 侯君集
30. MISSILES AND SIEGES

has been translated by Chavannes (18); it states that Chiang's trebuchets were (naturally enough) a great advance on anything known in ancient times. Establishing himself in the mountains for the purpose of constructing the machines, he developed or discontinued the old methods (as the case might be), and thus made great improvements in them. The importance of these facts is that early in the +7th century effective trebuchet designs must have become known to the Turkish peoples, who were in a position to transmit them further west to the areas of Byzantine and Arab culture.

After the end of the Thang, the use of trebuchets continually increased. In the Wu Tai period, one of the emperors himself acted as an artilleryist. Chinese trebuchet troops served in the Liao armies, as also under the Sung command against them. This was at the end of the +10th century; in the +12th there were bombardments on a most extensive scale in the wars against the Chin Tartars, using now not only stone, but also explosive, projectiles. Sometimes we read in these accounts of strangely modern devices of defence, such as sandbags in quantity for protecting buildings on city-walls, and water-buckets for extinguishing fires in them. There was certainly no less artillery activity in the wars against the Mongols when the Sung went down to defeat towards the end of the +13th century. Only in the Ming did the trebuchets begin to be seriously displaced with the use of barrel-cannon on a large scale.

The Wu Ching Tsung Yao of +1044 was the first book to give elaborate details about the different designs of trebuchets, and their performances; this information

* Also an interesting figure: previously one of the architects of the Ministry of Works who had laid out parks and built many palaces and temples. He was eventually killed in the Korean expedition, which he had advised against, and the emperor himself wrote his elegy.

* Hsun Thang Shu, ch. 91, p. 7a.

* This was Kuo Jung, the second ruler of the Later Chou (r. +954/+959), remarkable also for his encouragement of iron-casting and his interest in agricultural techniques. The source is Tsu Chih Thang Chen, ch. 293, p. 1.

* As witness the correspondence between the two generals Yeh-li Hsiu-K'ao and Yeh-li Hseh-Chen in +986 (Liao Shih, ch. 11, p. 5a). See also ch. 18, p. 5b and ch. 19, p. 7a, the relevant passages tr. Wittfogel & Feng Chia-Sheng (t), pp. 366ff.

* E.g. Chang Yung defending Tzu-Chou in +988 against the Liao (Sung Shih, ch. 507, pp. 4a, b) when Lu Pin came to his relief.

* E.g. Wei Sheng defending Hai-Chou in +1161 (Sung Shih, ch. 368, p. 15b). His trebuchets had a range of some 200 paces, (500 yds). Earlier also in the famous defence of Te-An (+1132); Shou Chheng Lu, ch. 3, p. 6a, ch. 4, p. 6b, etc.

* See Vol. 5, pt 7, p. 60, for details.

* In the story of Meng Tsung-Cheng's defence of a city against the Chin general Wan-yan E-Kho in +1219, (Sung Shih, ch. 403, pp. 10ff.). A possible earlier sandbags reference is the siege of Samarqand by the Arabs in +712 (Huuri (t), p. 144).

* For example, the Mongol general Sogatu (So-Tu) reducing Sung cities in Fukuin (Yuan Shih, ch. 129, p. 13a), or on Chang Chien-Tso* taking Sha-Yang and Tang-Lo-Pao (Yuan Shih, ch. 151, p. 20b). But by the time that Li Ting* was using the hukou against a rebellious Yuan prince in +1288 (Yuan Shih, ch. 162, pp. 8b, 9a), the context shows that these were no longer either trebuchets or grenades but rather hand-guns or bombards (cf. Vol. 5, pt 7, p. 276 below).
<table>
<thead>
<tr>
<th>description</th>
<th>name</th>
<th>WCTY/CC</th>
<th>WPC</th>
<th>TSCG/JCT</th>
<th>no. of haulers<sup>a</sup> (i shou 挑手)</th>
<th>no. of commanders<sup>c</sup> (ling feng 定放)</th>
<th>projectile wt in lbs<sup>f</sup></th>
<th>range in yds<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>hand trebuchet</td>
<td>shou phao</td>
<td>12/50a</td>
<td>113/18a</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small trebuchet on two trestles</td>
<td>ho phao</td>
<td>12/56a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed single-pole trebuchet</td>
<td>hsūn fèng p.</td>
<td>12/50a</td>
<td>113/18a</td>
<td>296/30a</td>
<td>50</td>
<td>1</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>fixed, on small box or truss framework</td>
<td>ts chiao h. f.</td>
<td>12/53b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>battery of 5 fixed single-pole trebuchets on turntable</td>
<td>hsūn fèng wu p.</td>
<td>12/55b</td>
<td>113/23b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-wheel mobile single-pole trebuchet</td>
<td>h. f. chhè p.</td>
<td>12/54a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-wheel mobile single-pole trebuchet</td>
<td>wo chhè p.</td>
<td>12/39a, 40a, 54b</td>
<td>113/19b</td>
<td>296/24b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triangular frames trebuchet</td>
<td>hu tun phao</td>
<td>12/52a, 53a</td>
<td></td>
<td>296/31a</td>
<td>7</td>
<td>1</td>
<td>16</td>
<td>85</td>
</tr>
<tr>
<td>'Crouching Tiger'</td>
<td>chū su phao</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Complement and ranges of mediaeval trebuchet artillery (from the Wu Ching Tsung Yao, etc.)

^a WCTY/CC

^b WPC

^c TSCG/JCT

^d no. of haulers

^e no. of commanders

^f projectile wt in lbs

^g range in yds
<table>
<thead>
<tr>
<th>2-wheel mobile triangular frames trebuchet</th>
<th>hsieng chhé p. 行車砲</th>
<th>12/55a</th>
<th>293/14b, 15a</th>
</tr>
</thead>
<tbody>
<tr>
<td>rectangular truss frame trebuchet with one-component arm</td>
<td>tan shaó p. 單梢砲</td>
<td>12/42a</td>
<td>296/25a, 26a</td>
</tr>
<tr>
<td>rectangular, identical, but for gunpowder bombs</td>
<td>huo phao 火砲</td>
<td>12/56b</td>
<td></td>
</tr>
<tr>
<td>rectangular, with two-component arm</td>
<td>shuang shaó p. 雙梢砲</td>
<td>12/44a</td>
<td>296/27a</td>
</tr>
<tr>
<td>rectangular, with five-component arm</td>
<td>wù shaó p. 五梢砲</td>
<td>12/46a</td>
<td>296/28a</td>
</tr>
<tr>
<td>rectangular, with seven-component arm</td>
<td>chhi shaó p. 七梢砲</td>
<td>12/48a</td>
<td>296/29a</td>
</tr>
<tr>
<td>counterweighted trebuchet</td>
<td>hui-huí p. 回鷙砲</td>
<td>108/13b</td>
<td>293/11b</td>
</tr>
</tbody>
</table>

* Amplified from the tables of Feng Chia-Sheng (2), p. 45 and Huuri (1), p. 201.

* It is hardly credible that all of these hauled at one moment; the figures presumably represent the total number of men in the unit who divided into groups and took turns at the hauling. This is Huuri’s view (1), p. 14.

* Presumably NCOs who attended to the aiming and gave the order to pull.

* Calculated from the Sung catties (chin) given at the rate of about 0.6 kilo.

* Calculated from the paces (fu) given, assuming the usual double paces of equivalent to 3 ft.

* These figures indicate fixed counterweights. Projectile weights ten times as heavy (i.e. about a ton) could only be attained with machines embodying swinging counterweights (Huuri (1), p. 12). Since the illustration in TSSC shows one of this kind, the heavier forms must have been known in the Ming and Yuan, if not before the end of the Sung–Yuan wars.

* This figure is that worked out experimentally by Payne-Gallwey (1), p. 309. The estimate of Huuri (1), p. 13, is rather less, about 220 yds.

* Huuri (1), pp. 14, 87, 169, etc. records weights of up to 75 lbs. shot from manned trebuchets in the 11th century according to Arabic and Byzantine sources, but there may be some doubt about the units of weight. Nothing as heavy as this seems to have been used by any of the Chinese manned types. He also gives about 180 yds. as the extreme range of the Western machines, which again seems rather excessive, but we do not know whether the figures given in the Chinese manuals are average or extreme ranges.
is digested in Table 4. Some idea can thus be gained of the increasing sizes, ranges and projectile weights which came into use as the centuries passed. It is probable that shot of more than 200 lb were unattainable before the substitution of fixed counterweights for the company of haulers pulling in unison on the ropes, and that above 500 lb the addition of a swinging counterweight was necessary.

The fixed counterweight was such a simple idea that its development only towards the end of the +12th century seems surprisingly late, especially as the ancient water-raising machine, prototype of all *phao*, had always had it. As we shall see now, the counterweighted trebuchet which captured the Chinese military imagination was a type introduced by engineers from the Arabic countries, but the invention was quite probably made in several places about the same time, and the fact that the group of haulers presented so attractive a target must have been one stimulus. One inventor may have been Chhiang Shên¹, the Chin commander who defended Lo-Yang against the Mongols in +1232.

Chhiang Shên furthermore invented a trebuchet called the ‘Arresting Trebuchet’ (*Phao*²), which was used to prevent [the enemy] from overrunning [his positions]. Only a few men were needed to work it, yet [with this engine] great stones could be hurled more than 100 paces,³ and there was no target which it did not hit right in the middle.⁴

But although for the time being the Mongol army raised the siege, this valiant captain died in the following year, and two years later the Chin dynasty was extinguished, so that apparently the design was not transmitted to the Sung people, though it would have been very useful to them.

As things turned out it proved to be one of the most important new weapons employed against them. The story is of such absorbing interest from the point of view of east–west relations that we must give it as carefully as possible. The opening chapter, perhaps, was the move of large contingents of Chinese artillerists westwards in the Mongol service about the middle of the +13th century. Even the first expeditions to the West had used this arm.⁵ But in +1253, wishing to strengthen it, Mangu Khan sent to China for extensive reinforcements.⁶ Apart from many units of Chinese crossbowmen, therefore, the Mongol army of +1255 included

¹ Equivalent to 165 yds., which for a trebuchet suggests in itself counter-poising.
² *Chen Shih* ch. 111, p. 122: tr. auct. adjuv. St-Julien (B) who was translating from *TCKM*, pt 3, ch. 19, pp. 48f: cit. alsoin Romoński (1), vol. 1, p. 48.
³ For example, at the battle against the Hungarians beside the Sajo in +1241 (Howorth (1), vol. 1, p. 149; Martin (2), p. 67). It has been stated that gunpowder bombs were hurled on this occasion (Pawlin (1), p. 259), but no grounds have been given for the assertion, though such an action would have been entirely possible. Apparently +1244 was the date of the famous remark of the fugitive Russian archbishop about the Mongols—‘Machinas habebt multipes. recte et forter jacientes’ (Yule (1), vol. 2, p. 168), so often quoted and misquoted. The *Tabaqat-i Naṣiri* gives the name of Chingiz Khan’s chief engineer (man janiq-i khās) as Aikah Nūvīn (Yule, p. 168); he had ten thousand men under him.
30. MISSILES AND SIEGES

a thousand families\(^a\) of Khitā-i Manjanīk-chīs [catapult workers], Naft-Andāz [naphtha-throwers],\(^b\) and Charkh-Andāz [shooters of fiery arrows worked by a wheel]\(^c\) [who] were to accompany him and they brought along with them such a vast amount of missiles and stores appertaining to their peculiar branch of the forces as cannot be enumerated. They had with them also Charkhī Kamāns [wheeled arbalists],\(^d\) worked by a wheel\(^e\) in such wise that one bow-string would pull three bows, each of which would discharge an arrow of three or four ells in length.\(^f\) These arrows or bolts, from the notch for a thousand families of Khita-i `vlanjanik-chis [catapult workers], Naft-Andaz hides of horses and buttocks [to prevent their being burnt], like as a dagger in its sheath; missiles and slores appertaining to their peculiar branch of the forces as can only be

So wrote some Persian historian in a passage translated by Raverty.\(^f\) It would be very surprising if no technical information was interchanged between the Chinese experts and their Central Asian colleagues.

A dozen years later the Mongol arms under Khubilai were confronted with fortifications even stronger than those of Alamūt, namely the twin cities of Hsiang-Yang\(^1\) and Fan-Chhêng\(^2\) which lay near the northern borders of the Sung empire. They occupied a strategic position on the Han river some 200 miles north of the Yangtze valley, and their defenders, led by Fan Thien-Shun\(^3\) and Niu Fu,\(^4\) were determined and resourceful.\(^8\) A floating bridge connected the two cities. In

\(^a\) Perhaps this term arose from a misunderstanding of the meaning of the word chia\(^5\), which of course means school of study or expertise as well as family in the ordinary sense.

\(^b\) On these, see Vol. 5, pt 7, pp. 73ff below.

\(^c\) Evidently fu nu or coupled lien nu; cf. p. 187 above. Later on, in +1281, a train of these was captured from the Persians by the Egyptians, see ref. in Huuri (1), p. 124.

\(^d\) This is very interesting confirmation, from an independent source, of the composite nature of the arms of the Chinese trebuchets.

\(^e\) Raverty (1), p. 1191. Howorth (1) incorporated this passage in his prose but with several minor amendments. He seems to have thought the passage came from the text of the Tabāqāt Nāṣiri of al-Juzjānī but in fact it is contained in a footnote to that work. It may not be a direct translation, but it is certainly taken from some Persian source. Rashid al-Din only says: 'After having made his dispositions, Mangu sent couriers to Cathay to bring from that country a thousand men skilled in setting up war machines, hurling naphtha and shooting arcuballistae' (Quatremère (1), p. 133). Allāh al-Dīn al-Juwainī says, more fancifully, 'And he [Hulagū] sent to Cathay to fetch mangonel experts and naphtha-throwers, and they brought thence one thousand Cathayan mangonel-houses, which with a stone missile would convert the eye of a needle into a passage for a camel, while the poles of the mangonels were so firmly fastened with snares and glue that when they aimed from the nadir to the zenith the missile did not return' (Tāʾrikh-i Jahān-Gushā, ca. +1260, tr. Boyle, p. 92). We are much indebted to Mr. J. A. Boyle of Manchester University for allowing us to consult his then unpublished translation of al-Juwainī's 'History of the World Conqueror'. Besides this, there is a very brief mention of the matter in d'Ohsson (1), vol. 3, p. 135; but the source of Raverty's detailed description remains a mystery.

\(^f\) These were subordinate officers in charge of Fan-Chhêng, loyal men of the Sung, but Lü Wên-Huan had already been in contact with the Mongol court, though he had quarrelled with some of its members (Reinaud & Favé (2), p. 392).
+1267 Li Wên-Huan was appointed their governor and commandant, and at the end of the year there commenced a siege which was to be one of the most memorable in all Chinese history. At first the Mongols and their Chinese troops made little progress, though capably led by the generals A-Chu (Arcu) and A-Li-Hai-Ya (Ariq Qaya), the latter a Uighur. In +1271 therefore A-Li-Hai-Ya urged Khubilai to send to the West (the Arabic lands) for engineers who could construct large counterweighted trebuchets. To this there was an immediate response, and new machines (hsin phao fa) capable of hurling projectiles of 200 lb weight and upwards, constructed by I-Ssu-Ma-Yin and A-Lao-Wa-Ting, began to play upon the city of Fan-Chhêng towards the end of +1272. The autumn of that year had seen a most remarkable and gallant attempt to relieve the place by means of a convoy of a hundred treadmill paddle-wheel boats commanded by Chang Kuei and Chang Shun, remarkable not only for this but for the extensive use of gunpowder weapons on both sides; their men got through with much of their supplies, though one of the leaders was drowned and one captured. For their part, the Mongol generals led a force against the floating bridge, cut it with mechanical saws under fire, and burnt it. In the last month of +1272 Fan-Chhêng, breached and battered, fell, Fan and Niu preferring suicide to surrender when resistance had to cease. On 17 March 1273, Lü Wên-Huan lowered the Sung colours after prolonged and thunderous bombardment of Hsiang-Yang by the new trebuchets, thus ending an investment of five years' duration, and transferred his services to the Mongol conquerors.

We are fortunately able to make closer acquaintance with the two Muslim engineers because both were honoured by a biography in the official history of the Yuan dynasty. A-Lao-Wa-Ting (presumably 'Alāʾ al-Dīn) was apparently from Mosul in Iraq, or Mayyāfāriqin; I-Ssu-Ma-Yin (presumably Ismāʿīl) was either an Iraqi, an Afghan or a Persian. Their engines were assembled first at the Yuan capital, where Khubilai attended some of the trials in person, and then trans-
ported to the Mongol lines around Hsiang-Yang. Chêng Ssu-Hsiao, writing about thirty years later, said:

The [Mongol] bandits used the Muslim trebuchets [hui-hui phao] against Hsiang-Yang city, the towers and walls of which they broke down with fearful effect, so that [Lü] Wên-Huan was greatly alarmed. [...] The design of the Muslim trebuchets came originally from the Muslim countries, and they were more powerful than ordinary trebuchets. In the case of the largest ones, the wooden framework stood above a hole in the ground. The projectiles were several feet in diameter, and when they fell to the earth they made a hole three or four feet deep. When [the artillerists] wanted to hurl them to a great range, they added weight [to the counterpoise] and set it further back [on the arm]; when they needed only a shorter distance, they set it forward, nearer [the fulcrum].

Thus the counterweighted trebuchets acquired the name of Muslim phao, by which they were long afterwards known, as also that of Hsiang-Yang phao. The hole in the ground would save timber in the supports of the fulcrum above ground level. Though as yet the counterweight was probably not a swinging one, it could evidently be moved back and forth along the arm. The projectile weight mentioned in the Yüan Shih is 150 catties (chin), equalling about 200 lbs, but this may well have been exceeded by some of the machines, for one single shot brought down the whole drum-tower of Hsiang-Yang with a noise like thunder. After the fall of the city, 'Alâ’al-Dîn and Ismâ’il went on to further engagements as the Sung forces were slowly pushed southwards, but much of their later work (for they ended their lives in China) was spent in organising a corps of 'Muslim' trebuchet artillerists and military mechanics. Their commissions as generals descended through some decades to other male members of their families, such as Pu-Pai (probably Abû Bakr), I-Pu-La-Chin (probably Ibrâhîm), and Ma-Ha-Ma-Sha (probably Muhammad Shâh), down to about + 1330. The two originators of the clan, and the clan itself, are rich in historical authenticity, for their feats were known and recorded in Persia as well as China. Rashîd al-Dîn al-Hamadânî wrote of them in his Jâmi’ al-Tawârîkh (Collection of Histories), finished in + 1310.
Speaking of the siege of Hsiang-Yang by the armies commanded by Bayan, he said that before then counterweighted trebuchets (kumgha marjaniiq) of largest size had not been known or used in China. But the khan requested the Persian court to send him a famous mangonel-maker, Ṭālib, from Damascus or Baalbek in Syria, and so the three sons of this man, Abū Bakr, Ibrāhīm and Muhammad, made in due course the seven great engines which reduced the place. This does not correspond exactly with what the Chinese sources say about their relationships, but it is close enough to bear striking witness of their activities.b

A point of much interest is that nothing is said in any text about the use of explosive projectiles in the Muslim trebuchets, but gunpowder was almost certainly used at Hsiang-Yang, c and by Chinese artillerists working manned trebuchets. Their leader was Chang Ch'īn-Tso, son and grandson of engineers who worked for the Mongols, and an interesting character in his own right. The probable explanation is that at this stage gunpowder was mainly an anti-personnel weapon, perhaps not available in sufficient amounts to compete with solid stone as a destructive agent for masonry defences.d

Another remarkable feature of the Hsiang-Yang siege is the fact that Marco Polo, with his father and uncle, was long supposed to have been present at it, and even to have supervised the construction of the great trebuchets. A very circumstantial account of the matter is given in ch. 146 of his book, including the presence of two trebuchet experts in the suite of the Polos, a German and a Nestorian Christian.e But the story raises grave difficulties of date, which indeed were noted long ago by Pauthier and by Yule.f The Polos left Acre in November 1271, and could not have reached the Khan's summer capital, Shangtu (Chandu), before the summer of +1275, yet the siege of 'Saianfu, a very great city and noble, in the province of Mangi toward sunsetting' had ended early in +1273. When the Mus-

*a Po-Yen, (1237–1294), Khubilai's most celebrated general.
*b It is interesting that Arab trebuchet artillerists, or at any rate men who could use their machines, were in the service of the Champa kingdom in Indo-China shortly after +1300 (T'ien Shih, ch. 210, p. 71; cf. Huber (3), p. 576: Naus (2), p. 339).
*c We qualify the statement because the T'ien Shih does not positively affirm it. But it does mention the use of gunpowder by Chung Ch'in-Tso in all his other engagements. He was richly rewarded by Khubilai for his successes.
*d This Chang family was noteworthy. Chang Jung (1159/1230) was Chagatai's chief engineer, and built the famous floating bridge over the Amu Darya, as well as a military road through a pass east of Kuldja in Sinkiang which had 48 double-tracked trestle-bridges. For these feats Chingiz Khan conferred upon him the honorific name Wu-Su-Chinh (1206). He was a trebuchet artillery general in +1229. His son, Chang Nu-Pei (1189/1262) — strangely named — followed the same career and took charge of naval forces and all kinds of military artisans. The grandson, Chang Ch'un-Ts'o (ca. +1290/1284), specialised in gunpowder weapons, and bombarded many cities with bombs from trebuchets after the fall of Hsiang-Yang. The biography of all three is in T'ien Shih, ch. 151, pp. 196f. The note of Goodrich & Feng (1), p. 118, by oversight confuses persons and dates.
*e Moule & Pelliot (1), vol. 1, pp. 316ff.
lims were setting up their machines there the year before, the Polos' caravan had hardly left Laias. Everyone has been kind to Marco Polo on this matter, but the last word seems to have been said by Moule (13) who thinks Marco probably told what he truly knew of it to his scribe, but that 'Rusticianus felt that a good story would be made better by the substitution of the familiar Italian names of his heroes for the strange difficult names of foreigners'.

It is generally said that no illustration of a counterweighted trebuchet occurs in a Chinese book, but we have had the good fortune to find two. One shall be mentioned now, the other postponed for a few pages. In the Thu Shu Chi Chhêng encyclopaedia (+1726) will be found a curious picture of a machine, entitled simply phao lou thu1 (trebuchet tower), the identity of which has long been concealed by the bad drawing (Fig. 76). The tank-like object in the centre is in fact the counterweight, but it is depicted as secured for transport, that is to say supported by a couple of dismountable struts at the rear. The bulb at the end of the arm suggests that the draughtsman had before him a machine with both fixed and swinging (sliding adjustable) counterweights. The main part of the arm (five or six times as long as the part shown) has been detached for transport. When we look at the Wu Pei Chih illustration, from which this picture derives (Fig. 77) we can see the arm still in place and leaving the frame of the drawing at the upper left. The curious thing is that in neither of these two books is there any explanatory text attached to the diagrams, and furthermore that their position — just following the sapping and mining apparatus, indeed somewhat confused with it — is identical with that occupied in modern editions of the +11th-century Wu Ching Tsung Yao by the two inserted +16th-century bombard or culverins. A possible explanation would be that in the late Ming (+16th century), when the material for the Wu Pei Chih was being collected, the Hsiang-Yang phao was still on the 'restricted' list, so that its text was withheld. The culverins were often pictured set at so acute an elevation, and shaped with such prominent bulges, that booksellers themselves ignorant of military techniques might even have confused the counterweighted trebuchets with them.

We noted that in the campaigns which followed the fall of Hsiang-Yang, the counterweighted trebuchets continued in use, though they must have been very hard to transport. The Hsin Shih echoes their effects from the Sung side:

1. Thus Benedetto (1) proposed that the intervention of the Polos took place on their way through Persia, but the dates will not fit. Fêng Chia-Shêng (2), p. 42, and many others have tried to adjust the dates of the Polos' journey so as to validate ch. 146, but without success. The Polos simply were not there. See further the Moule & Pelliot ed., introduction, vol. 1, p. 26.

3. 'Jung chêng tien', ch. 293, p. 11b.

7. Ch. 1, p. 57b; tr. auct.
Fig. 76. Counterweighted trebuchet tower as depicted in the *TSCC/JCT*, ch. 293, 11b.

Fig. 77. Counterweighted trebuchet tower, *WPC*, ch. 108, p. 135.
In the tenth month of the first year of the Tê-Yu reign-period [+ 1275], the enemy returned to attack Chhang-Chou, where the commander of the garrison was Liu Shih-Yung. It had always been an unfortified city, surrounded by open market-places, and protected only by a stockade along the moat. Previously, when attacked, it had always held out. But in the eleventh month the enemy brought up many reinforcements and surrounded the city for more than a month, battering it with Muslim trebuchets and breaking down temples, towers and halls.

But it was not long before the Sung side began to make them too.\(^a\)

In \(+ 1273\) the frontier cities had all fallen [into the Mongols’ hands]. But Muslim trebuchets were constructed, with new and ingenious improvements to make them more powerful, and [several] different kinds became available, far better than those used before.\(^b\) Moreover an extraordinary method was invented of neutralising the effects of the enemy’s trebuchets. Ropes of rice straw four inches thick and thirty-four feet long were joined together twenty at a time, draped on to the buildings from top to bottom, and covered with [wet] clay. Then neither the incendiary arrows, nor bombs [hu phao\(^2\)] from trebuchets, nor even stones of a hundred lin\(^3\) caused any damage to the towers and houses. These nets were called ‘hu-phi-li’\(^3\) [protective palisades].\(^d\)

More and more of the Sung technicians, however, were captured. The Mongols particularly feared smiths and iron-workers, and removed them with all their families to particular towns. The Yüan Shi says:\(^e\)

At the beginning, during the military expeditions of Thai Tsu [Chinghiz Khan, r. \(+ 1206\) to \(+ 1227\)] and Thai Tsung [Ogotai Khan, r. \(+ 1229\) to \(+ 1242\)], all available blacksmiths, carpenters, metal-workers and fire-artisans were enlisted on the roads and from the prefectures and districts captured, and were made to act as trebuchet technicians with the expeditionary forces. In the Jên-tzu year \(+ 1252\) they were all duly registered as trebuchet workers.

These would have been largely from the Jurchen Chin dynasty. In \(+ 1279\) Nang-Chia-Tai\(^4\)

collected together in the two Huai districts six hundred Hsin-Fu technicians who were skilled in making counterweighted trebuchets, some Mongols, some Muslim, and some Chinese, and thus they were assembled at army headquarters.\(^f\)

Later, in the following year, all these experts were concentrated at Nanking – a \(+ 13\)th century Los Alamos.\(^8\)

\(^b\) This might well mean the application of the swinging counterweight.

\(^c\) A surprising figure, for there were 30 canoes to the chian, and the equivalent weight would thus be just under 4000 lb or about 1\(\frac{1}{2}\) tons. So either this is a mere literary exaggeration of the historians, or else Ali al-Din’s brigade had started using swinging counterweights of greater size and were improving their shooting. It does at any rate suggest that the official figure for their projectile weights at Hsiang-Yang was on the small side.

\(^d\) A pun upon the name Khubilai?

\(^e\) Ch. 98, p. 5a, tr. auct.

\(^f\) Yüan Shi, ch. 10, p. 17a.

\(^8\) Yüan Shi, ch. 11, p. 14a.

\(^1\) 劉師勇 \(^2\) 火砲 \(^3\) 護障篩 \(^4\) 羣加帶
The question may arise to what extent trebuchets, whether manned or counter-weighted, were adapted for use in naval warfare. The greatest combined operations ever undertaken by the Mongols under Khubilai were those of the expedition to Japan in +1274, that famous Armada which, like its counterpart in the West, was shattered and dispersed by the assistance given to the rough islanders by stormy weather. Another even greater expedition was organised in +1281, with a Chinese general, Fan Wên-Hu, as one of the leaders. Quite reasonably, he asked also for two thousand horses for the Thu-Shih-Hu-Ssu army, and for technicians for Muslim trebuchets. But the emperor said 'What use could he have for them in sea-fighting?' and declined to grant his request. Perhaps he was not fully trusted, but though 'gunlaying' with such devices would have been impossible with even a slight sea, ship transport would have carried them into estuaries very conveniently, whence they could have been used to cover landings. And shortly afterwards this seems to have been appreciated, for when preparations were being made from +1283 to +1285 for the third (abortive) expedition, the engineer Chang Lin was commissioned to build counterweighted trebuchets for it, and fifty skilled artillerists were assigned to the staff of the commanding general (a Mongol this time) A-Tha-Hai. These facts give particular interest to a picture which exists showing three counterweighted trebuchets mounted on the top deck of a four-decker warship (lou chhuan). This is to be found in the Thu Shu Chi Chheng encyclopaedia and here reproduced as Fig. 78. The accompanying text is based on that of the Thai Po Yin Ching (+759), paralleled in the Thung Tien of +812, much older, of course, than the application of the counter-poise principle. At this date the trebuchet was being pulled down by ropes at the short end. We have already quoted the passage in full elsewhere, but here are the sentences concerning the artillery pieces:

* For a brief but good account of the events of this time cf. Cordier (1), vol. 2, pp. 30off.

b Yián Shih, ch. ii, p. 10b.

c Yián Shih, ch. 12, p. 18b.

d Yián Shih, ch. 13, p. 23b.

e European parallels are not unknown. The MSS of Jacopo Mariano Taccola’s De Machinis, dating from about +1449, show counterweighted trebuchets mounted on boats and hurling incendiary materials. One of these pictures is reproduced in Bonaparte & Favé, vol. 3, Pl. 3 and p. 45. Moreover Marino Sanuto in +1321 describes clearly the mounting of such machines upon ships (text and translation in Schneider (1), pp. 46, 96).

f Jung ching lien, ch. 97, p. 5b; reproduced (reversed) in Krause (1). It is interesting that by the time this is reproduced in the Wán-khan Sen-yō-shi forty years later (ch. 7, p. 7a) the trebuchets have metamorphosed into barrel cannon.

g Ch. 40, p. 10a.

h Ch. 160, p. 16b.

i Vol. 4, p. 685above.

1 范文虎 2 張林 3 阿塔海 4 樓船
Tower-Ships; these ships have three decks \([\text{lou san chhung}^1]\) equipped with bulwarks \([\text{nù chhiang}^2]\) for the fighting-lines, and flags and pennants flying from the masts. There are ports and openings for crossbows and lances, while [above] there are trebuchets for hurling stones set up [in appropriate places] \([\text{chih phao chhèlei shih}^3]\).\(^a\)

This proves that already in the 8th century the mounting of trebuchets on naval vessels was a known practice, so there was nothing extraordinary about Fan Wên-Hu’s request. On the other hand, it is curious that the machines are not shown in other \(\text{lou chhuan}\) drawings of earlier date.\(^b\)

\(^a\) Tr. auct.
\(^b\) Neither in \(W\!C\!C\!n\!r \text{HCTJ} / \text{CC}\), chs. 117 and 11 respectively. But the illustration on p. 8a of the latter (Fig. 79) has an object on the uppermost deck that might be a flag; yet it is supported near the flag end on the forked top of a vertical column. So the drawing may have been meant to represent a counterweighted trebuchet. On the other hand, \(\text{HCTJ}\) is rather early (+ 1044) for such a design.

\(^1\)三重 \(^2\)女屧 \(^3\)置拋車擂石
Counterweighted trebuchets still had a part to play at the beginning of the Ming. Towards its end, a historian wrote:

[Ming] Kao Huang Ti [Chu Yuan-Chang] conquered all the other heroes, having excellent soldiers and good weapons, among them the Hsiang-Yang phao, which was used at Ku-su [Suchou] but not much afterwards. It was made of a wooden framework and shot round stones as projectiles weighing more than a hundred chin [catties]. For working it several tens of men were necessary. The missiles flew up into the air, and buried themselves 7 ft deep in the earth where they fell.

Actually these weapons were used at many places from +1355 onwards, when

Fig. 79. Illustration of counterweighted trebuchet mounted on multi-deck warship.

\[^{a} \text{Fan Wei-Chéng in Yen I Chih Liu (Collected Records of Salt City), ch. 28, quoting Tung Han-Yang's Pi Li Tao Tshun (Miscellaneous Records of Pi-Li), ch. 1, p. 13a; it. auct.} \]
Chu Yüan-Chang first raised his standard, and not only at the siege of Suchou. Here, however, a turning point was reached, for we find them side by side at last with true barrel-cannon (+1366),

[The besiegers under Hsü Ta] also built up wooden frameworks like pagodas, as if answering to the pagodas in the city. As these ‘enemy towers’ were three storeys high, those on them could look down into it. Each level was furnished with bows, crossbows, and culverins [huo chhung]. Hsiang-Yang trebuchets were also set up to batter the city, and everyone inside was very frightened.

Yet their heyday was coming to an end. Chu Yuan-Chang himself thought them too unwieldy. He is recorded as having said in +1388: ‘The old type of trebuchet was really more convenient. If you have a hundred of these machines, then when you are ready to march, each wooden pole can be carried by only four men. Then when you reach your destination, you encircle the city, set them up, and start shooting!’ This emphasises the composite dismountable nature of the old Chinese types. Yet as late as +1480 there were still those who thought the Muslim phao important.

From the time [wrote Chhiu Chhin] when these trebuchets were first made, they were used for the besieging of cities, and there was never one which they did not break, nor was any ship not sunk by them when they were used against ships. Now there are among the people many who know how to make them. They ought to be available everywhere, and those to whom the design has been handed down ought to make diagrams of them and present them to the officials, for a reward. But those who keep it privately and try to make such machines are guilty of a crime which should cost them their heads. In any case the design must be sent to the frontier commands and preserved there. Construction [of the trebuchets] should not be permitted except in emergencies. The situation is much the same as that which pertained in the days of the emperor Hui Tsung of the Sung, when the making of multiple-bolt crossbows [shen pi kung] [by unauthorised persons] was prohibited.

But after this little more is heard of such machines.

Before taking leave of this survey of the mechanical artillery of the Chinese middle ages, it may be of interest to glance for a moment at the great difficulties
which modern historians of technology have encountered in identifying the devices used. Allusion has already been made to what constitutes a veritable dossier of the Department of Utter Confusion, and in the gunpowder story we shall have to refer to it again. Naturally, perhaps, those who lived nearest to the events themselves, like Chhiu Chiin, were best informed. His views were sometimes supported in the +18th century, as by Hsi Huang who was clear that there was no necessary connection between gunpowder and Muslim trebuchets, but it was then that the muddle really began. It arose from a number of causes. First (a) there was the confusion between the launching machine and the projectile itself, for both of which one word had always done duty. Then (b) there was the confusion between the two ways of writing *phao*, using either the ‘stone’ or ‘fire’ radical. Many writers (c), familiar with the use of gunpowder only as a propellant, and unable to give full weight to its earlier uses in explosive bombs and grenades hurled from trebuchets, were constrained to see a metal-barrel cannon in every mediaeval *phao*. Others (d) became confused between the terms ‘Hsi-Yu *phao*’, trebuchets of the Western regions, and ‘Hsi-Yang *phao*’, guns or culverins of the Western-ocean foreigners, which was applied in their own time (and since the late Ming) to the types of barrel-guns introduced by the Portuguese and made by the Jesuits. Finally (e), it was unfortunately the case that the counterweighted trebuchets had come to their maximum development just when gunpowder was beginning to find widespread use, and (f) within a single decade of that crowning achievement of the military chemists, the practical metal-barrel cannon. It was therefore too much to expect a clear distinction between the two. Wang Hung-Hsü about +1715 and Chao I in +1790 foundered on the fourth of these rocks, while both were joined in the fifth pitfall by Chang Thing-Yü in +1739. Throughout the period of modern research uncertainty continued. Reinaud & Fave in 1845, however, decisively identified the Muslim *phao* with counterweighted trebuchets, rejecting the old idea of de Visdelon that they were some kind of barrel-cannon. At the same time

* See Vol. 5, pt 7, pp. 1:1ff., 22, 40, 130, 373 (g).
* (Chhiu Ting) Hsi Wén Hsien Thung Khao, p. 3993 (ch. 134).
* This was what vitiated the presentation of Lu Mou-Tê (r.,), otherwise full of interesting quotations.
* Ming Shih Kao, ch. 70, p. 7b.
* K'ai Yü Tshang T'ao, ch. 30, pp. 16a, b. Also Ling Yang-Tsao in +1799 in his Li Shao Pien, ch. 40 (p. 649); and Liang Chang-Chü in his Lang Chi Tshang Thau, ch. 5.
* The sixth caught also Liang Chang-Chü (r.) in 1848, and the Japanese writer Arisaka Shozō (r.).
* Ming Shih, ch. 30, p. 10b. And Chiang Chhên-Yüng (r.) in 1849.
* (r.), p. 188.

1 許嘉璐
2 西坡齋
3 西洋齋
4 王鴻緒
5 趙翼
6 張廷玉
7 明史稿
8 陔餘叢考
9 靈陽藻
10 聽勳編
11 梁章鉅
12 澀跡叢談
13 五等爵
14 不經之論
15 碧梧書屋
they underestimated the antiquity of Chinese gunpowder weapons. In 1871 Yule, stimulated by the chapter in Marco Polo, embarked on an excellent study of mediaeval artillery which led him to the same conclusion as Reinaud & Favé. Yet Goodrich & Feng Chia-Shêng revived the old confusion in their learned contribution of forty years ago, and the matter was not set at rest until Feng Chia-Shêng (2), with further texts, later rallied to the opinion of Reinaud & Favé, in agreement with the conclusion reached independently in the meantime by Wang Ling.

In the 15th century popular Taoism considered that the counterweighted trebuchet, with all its force and thunderous noise, must have a tutelary deity, who ought to be worshipped in a special temple (phao shên miao). We know of this from the I Pin Chi of Wang I, written about 1325. Each of the five ancient weapons had its spirit, so why not a war-engine much more impressive than any of them? And Wang I wrote a poem on it, which in very free translation might appear somewhat as follows:

The crags of the mountains, rounded by craft,
Are made to fly forth from the catch of a machine;
Through wind and clouds they ride upon their way,
Like shooting stars they thunder through space—
Over the walls, crash! Down go temples and halls
And all the people are thrown into confusion.
Thus the height of technique achieves the height of victory.

(7) DISTRIBUTION AND DIFFUSION

The time has now come to draw together the threads of the preceding sections, and to consider the diversity of times and places which saw the dominant use of one or another of the types of ancient and mediaeval ballistic machinery. After all, this is yet another chapter in the history of engineering as such, quite apart from the far-reaching implications of developments in this field for social and political history. First, in discussing the hand-crossbow, we were led to the problem of crossbow catapult artillery. From the time of the return of the former to Europe — or, if you will, its revival there — in the 10th century, until the supersession of all such devices by gunpowder weapons, the arcuballistae were in fairly frequent
use. But we also saw that in European antiquity, from the beginning of the — 4th century onwards, Greek and Roman ingenuity had for the most part employed a quite different type of machine, which depended on the torsion of sinew-bundles and not on the bending of the stave of a bow. That true crossbow catapults (arcuballistae) also existed in Hellenistic times there could indeed be little doubt, but unfortunately their descriptions raised difficult points of dating, and we agreed provisionally to regard them as not earlier than the — 1st century. Away at the other end of the Old World the development followed a different course. It was necessary from the — 4th century onwards to recognise the presence of two dominant forms, the arcuballista, often shooting many bolts simultaneously, and a device which used an entirely different principle, namely the trebuchet or flicking lever based on the swape. Both these continued in active use throughout Chinese history until outclassed by the coming of gunpowder, and spread steadily from their centres of origin throughout the culture-area.

 Historians of artillery in the West came to agreement long ago that during the Middle Ages the torsion-type catapults all died out, and that the use of the swape-types did not commence in Europe until about the + 10th century. But there was great difference of opinion as to how long the former lasted; some considered that they ceased to be made and used by the end of the Germanic invasion, others that they were occasionally employed down to the + 14th century. The former view seems the better, though it may still be too extreme to assert confidently, with Schneider (1, 6), that there was a period in which European warfare lacked artillery of any kind (a Zeit ohne Artillerie). Still, while the Byzantine forces in the + 6th-century Gothic wars made much use of both torsion and bowstave arcuballistae, the Goths themselves apparently had no artillery. In the late + 10th-cen-

1 Many will remember that Leonardo da Vinci in the last years of the + 15th century busied himself with these machines. His drawing of a giant one is well known (cf. Dibner (1); Payne-Gallwey (1), p. 262, (2), p. 26). It was worm-armed, with a leaf-spring bow and a Chinese nut, the stock being carried on six wheels. Cf. that of the Hussite, c. + 1430: Berthelot (4), p. 466.

2 Whether its arms were double, as in earlier stages, or single, as in the later onager (which incorporated the sling principle) is unimportant for the present argument.

3 It is of much interest that the steel spring bowstave which was so characteristic of European hand-crossbow, during the second crossbow period, had already been introduced for arcuballistae towards the end of the first. R. P. Oliver (1) has recently shown, developing the views of Reinach (2), Berthelot (7), and Schneider (3), that no other interpretation is possible for the ballista quadrivitis and the ballista fulminata described in the De Rebus Bellinis of the Byzantine Anonymous who wrote about + 370 (see Sect. 27g above). Oliver also draws attention to the close similarity of these engines, with their arcus ferrus rising transversely above the arrow-groove, to those described byProcopius (De Bello Gothico, I, 21, 14-17) as used by Belisarius during the siege of Rome (+ 536/ + 538); cf. also Schneider’s translation, with text (1), pp. 3, 88. There can be little doubt that the development of these machines was greatly inhibited by the metallurgical technique available, and it is paradoxical that in China, where the handling of iron and steel was much more advanced, we find no attempt to use steel springs for this purpose.

4 Bonaparte & Favé (1).

5 Kohler (1); Rathgen (1). Their arguments depended in part upon the interpretation of certain MS drawings, but these are very ambiguous, as Schneider (1) showed.

6 Huuri’s cautious conclusion is that no two-arm torsion machines are detectable with certainty after the + 7th century, though the one-armed onager may have lingered on as a very exceptional thing till as late as the + 12th, (1).

7 Schneider (1), p. 6, after Procopius, De Bello Gothico.
tury sieges described by Richerus Remensis none was used on either side. The capitular lists of Charlemagne about +800 give no hint of any. It looks as if the skill required to make the torsion types died out before the swape types were introduced.

But the empty period would not have been very long. For something new appears in the poem of Abbo (+890) about the siege of Paris by the Northmen in +886 — it is the word mango or mangana. Though he is not very explicit, he describes their stone-throwing machines as having two high posts, between which presumably swung the trebuchet arm. There are indications of the use of the same machines at the earlier siege of Angers (+873) which the Normans had occupied. During the +10th, +11th and +12th centuries many examples of the use of these mangonels or petrariae can be found; in fact by the time when the Crusades began (+1100), hardly any other type was used. A second turning-point occurs in +1212, when the word trebuchet appears for the first time (as tribok) in three German annals simultaneously; this probably marks the entry of the counterweighted trebuchet. It is illustrated shortly afterwards (about +1240) in the notebook of Villard de Honnecourt, and by +1280 there is an elaborate description of four different types by Aegidius Romanus in his De Regimine Principum. Here we have the trabucium with its fixed counterweight, the biffa with a swinging one, and the tripanium with both. To the fourth we shall return in a moment. Another valuable description is that of Marino Sanuto in +1321, included in his general staff plans for a last crusade which never materialised.

Were the new machines of +886 and +1212 independent European developments, or were they an introduction from more eastern regions? There is much evidence in favour of the latter alternative arising both from historical statement and from intrinsic design. In the +8th and +9th centuries trebuchets had been used repeatedly by the Arabs against fortifications in southern Europe — at Toledo in +761, Afranjah in +793, Salerno in +871 and many other places. For the siege of Angers Charles the Bald (grandson of Charlemagne) brought engineers from Byzantium, whose work was described by Regino of Prüm in the words

a Cf. p. 173 above.

b De Bello Panico, 1, 364 (cf. Schneider (1), pp. 25, 60).

c In such narratives as those of Gulicinus Tyrus or Albericus Aquensis (see Schneider (1), pp. 52ff.).

d Schneider (1), p. 98.

e See the editions of Lassus & Darcel (1) or Hahnloser (1); unfortunately only the plans remain, for the page which had the elevation is lost. And many other drawings, such as those collected by Alwin Schultz (1), vol. 2, pp. 33ff. Cf. Viollet-le-Duc (1), vol. 5, p. 320ff.; Berthelot (5). The size which the engines attained within a few decades can be appreciated from the fact that de Honnecourt's counterweight was a box of earth or stones 6 ft. x 8 ft. x 12 ft. in dimensions.

g Liber Secretorum Fidelium Crucis, 11 (4), 22. Text and translation in Schneider (1), pp. 41, 93. We met with this book before in Sect. 22d on Geography.

h Huuri (1), pp. 56ff.

i Cf. Viollet-le-Duc (1), vol. 5, p. 220.

'nova et inexquisita machinamentorum genera applicantur'. In the 7th century two new technical terms, manganikon (μαγγανικόν) and tetrapea (τετραπέα), had appeared there. Such facts certainly suggest transmission of the swape engine from the eastern edge of Europe.

But even more striking are the similarities which exist between the design of the European and the Chinese trebuchets. It is for instance quite clear that the earliest European ones were manned rather than counterweighted. They were of the fourth type described by Aegidius Romanus. Many of these are shown in the drawings of an important MS poem on the history of the Norman kingdom of Sicily by Peter of Ebulo which has been studied by Erben (1). This was written probably about 1196, and depicts machines (cf. Fig. 80) which are identical in all respects, including the rectangular frame for the bearings at the top of the pole or mast, with the 'Whirlwind' type of Chinese trebuchet (Hsüan-Fêng phao) (6). Erben pointed out that the little drawings in the Genoese Annals of Caifarus (writ-

*Huuri (1), pp. 82, 138.
*Berne, no. 120.
*Curiously, the rocking axle is often shown as spindle-shaped, but this may only be an echo of the mounting of the obsolete torsion catapults. The arm is often shown very much bent as if highly elastic.
ten about +1285a distinguish between petraria and trabuchium, the former the manned single-pole type; the latter counterweighted, its arm being borne (as is usual in the European drawings)b upon two linked triangular supporting trusses. This is clearly derivative from, or at least related to, the Chinese ‘Crouching Tiger’ type (\textit{Hu-Tun phao}1), and it is the construction most commonly seen in Arabic drawings. Four of these were reproduced by Reinaud & Favé long agoc

a Carefully reproduced in Pertz (1), pl. III. They refer to entries for +1182 and +1227 respectively. Also in Schneider (1), pl. 1, and Schultz (1), vol. 2, p. 376.

b E.g. Paris Lat. no. 7239. c. +1393, \textit{De Re Militari}, prefaced by Paulus Sanctinus, illustrations published by Reinaud & Favé (1), pls. IV, V, VI; also by Berthelet (4). Many drawings also in Schneider (1).

c (1), pp. 4ff., 48ff., 274ff. pls. II and III. Copied by Feng Chia-Shêng (2).

1 虎蹲炮
Fig. 82. Mahmud of Ghaznah besieging Arak, from Bloch (1).

Hee ut bud

gra'dil

... clInd ...

'tncmlr...

.. m

IIp!d

meni...

... npJcil,

tDrru et

menia scindit, Opida castella urbes secat (et) civitates.

Fig. 83. Single-pole trebuchet illustrated in the Bellifor of Konrad Kyeser von Eichstädt, from Schneider (1).
from a MS of the work of Hasan al-Rammah (c. 1285) on war machines, and two are given here, one manned and one counterweighted (Fig. 81a and b). A fine painting of about 1310 published by Bloch(*) (see Fig. 82) shows the Sultan Mahmud of Ghaznah (early 11th century) besieging the town of Arak in Seistan with a counterweighted trebuchet.\(^5\)

But there is still further community of type between the later European and the earlier Chinese designs. The single-pole engine is seen secured at the base in a rectangular box-truss framework in 1044 in China;\(^4\) and a system of support recognisably identical is found in works of much later European writers, notably the *Bellijoris* of Konrad Kyeser about 1395 (Fig. 83).\(^6\) This has wheels for mobility but was probably provided with stays when at work. To complete the argument we need only recall that in 1272 the counterweighted trebuchet was regarded as a new and dreadful device in Sung China\(^7\) when carried eastwards from the Arab countries. The conclusion therefore inescapably presents itself that the swape engine was an invention which radiated from mediaeval China, but that the provision of the counterweight was an Arab modification, made presumably between the Sinkiang expeditions of the +7th century and the time of the first 'triboks' at the end of the +12th.

The case was stated with singular acuteness by Chhiu Ch'in about 1480.

The Yuan people [he wrote] were the first to make these trebuchets, in order to batter down Hsiang-Yang, therefore they became known as 'Hsiang-Yang phao'. But if we look in the *History of the Thang Dynasty* we find that Li Kuang-Pi (d. +763) also made phao which cast heavy stones, a single one of which would kill more than twenty men. I have little doubt but that these *phao* were essentially the same thing. Thus in quite old times they had the design, and it was transmitted to the Western countries, so in this way it came about that I-Ssu-Ma-Yin was able to construct [such new machines].\(^8\)

And his conclusion has been adopted by many modern military historians. Already Kohler\(^h\) believed that the trebuchet was a Chinese invention which came to Europe through the Arabs, and the same view is held by Huuri,\(^7\) who adds that the increasing simplicity of ballista construction should not be regarded as a decline from the Greek forms.\(^7\) Here we need not go too deeply into the successive 'artillery systems' or complexes which have been held to characterise different

\(^{(*)}\) *Kitab al-Furusiyya*; 'Al-Munif al-Harbiyya* (Treatise on the Art of Cavalry Combat and War Machines), Paris, n.o, 1127.

\(^{h}\) (1), pl. LVII.

\(^{c}\) This may be an anachronism of the Persian artist.

\(^{d}\) *ICCT*, ch. 12, p. 35: it is the 'Single-Foot' (*Tu-Chiao phao*).

\(^{e}\) See Berthelot (5), p. 335, or a better representation in Schneider (1), fig. 13.

\(^{i}\) Though, as we saw, it may have appeared a little earlier under the Chin dynasty, possibly as an independent development.

\(^{f}\) *Tu Hsieh yen ipu*, ch. 122, p. 16a, tr. auct.

\(^{h}\) (1), vol. 3, pt 1, p. 166.

\(^{i}\) Huuri (1), pp. 207ff.

\(^{j}\) Huuri, p. 25: 'Some scholars have, to be sure, spoken of decline, especially because the design of *ballistae* became simpler. It is however the case that, in the art of war, the simplest means are the best and that efficiency alone, and not artistic perfection, is the decisive factor.' (Translated from the German by Iain White.)
Table 5. Artillery systems in different ages in East and West

<table>
<thead>
<tr>
<th></th>
<th>European zone</th>
<th>Chinese zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-4th/1st)</td>
<td>(+1st/+6th)</td>
</tr>
<tr>
<td>hand crossbow</td>
<td>(-^a)</td>
<td>(+^b)</td>
</tr>
<tr>
<td>arcuballista</td>
<td>(-^c)</td>
<td>(+^h)</td>
</tr>
<tr>
<td>2-armed torsion catapult (arrows)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>2-armed torsion catapult (stones)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>1-armed torsion catapult (stones)</td>
<td>(±)</td>
<td>(+)</td>
</tr>
<tr>
<td>trebuchet(d)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>counterweighted trebuchet</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>gunpowder weapons</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

\(\text{as barrel guns from the early +14th onwards}\)

\(\text{as bombs etc. from the +10th onwards and barrel guns from the late +13th}\)

\(^a\) Only the *gastraphetes*, not a standard weapon.

\(^b\) Probably never standard equipment.

\(^c\) The date of its introduction and use is uncertain.

\(^d\) Strictly speaking, *petraria*, also called mangonel.

\(^e\) Enters in the late +9th century, from Arab practice.

\(^f\) Enters in the late +13th century, from Arab practice, perhaps also independent.

\(^g\) With steel bowstave from the +13th century.

\(^h\) Steel bowstave proposed in the +5th and used in the +6th, but subject to severe metallurgical limiting factors.

\(^i\) Magazine or repeating crossbows from the beginning of this period.

\(^j\) Very commonly shooting many bolts simultaneously.

\(^k\) From the beginning of the +13th century, probably deriving from Arab practice.
European periods, but it is possible to summarise in a table their main features. From this kind of presentation it is possible to note one rather significant thing, namely that within a short period (about +850 to +1000) Europe not only acquired the trebuchet from further east but also revived the hand-crossbow and the arcuballista, two weapons extremely characteristic of those regions.

One curious point remains to be mentioned. The swape did do military service in ancient Europe, but not for the same purpose as in China. Under the name *sambukë* (σαμβύκη) it appears as a mobile counterweighted lift for raising a gondola with a few soldiers to the level of the enemy's ramparts, or for providing additional scaling rope-ladders once a 'bridgehead' had been established there. It appears thus in *Biton* and other poliorcetic writers, but it can hardly have been very useful in practice.

The deepest studies of the history of warfare have observed that the paucity of battles in a great cavalry age (the +12th and early +13th centuries in the West) was due to the ascendancy of the defensive over the offensive in siegcraft. The weaker side took cover - impregnably. Enseconed in their 'strong points', the besieged always had the best chance. What this meant for social and political history may best be summarised in the words of Oman: long survival of small states among greedy and powerful neighbours, and extraordinary powers of resistance shown by rebellious feudal lords or cities of very moderate strength in dealing with their suzerains. The supremacy of defensive fortification, in fact, was a prime inhibiting factor delaying the rise of larger and more highly organised social entities. It is a commonplace to say that (Chinese) gunpowder blew these feudal fortifications up: 'in the +14th century' wrote Oman, 'the change begins, in the +15th it is fully developed, and in the +16th the feudal fortress has become an anachronism'.

But to this there was a prelude, the +13th century, when the great counterpoised trebuchets began to shake the solidity of the keeps and curtain-walls. Already in +1204 the seemingly impregnable fortress of Chateau Gaillard, in the Seine valley guarding the road to Rouen, fell before the mines and trebuchets of Philip Augustus. In +1291, just before the beginning of the gunpowder age in the West, the crusader stronghold of Acre was lost to the Saracens, and all the Levantine castles soon followed. Once it had begun in earnest, the defence factor dropped catastrophically. By +1464 the Earl of Warwick battered down Bam­borugh in a single week, and in +1523 Philip of Hesse destroyed Landsthihii, the

* See e.g. Huuri (1), p. 217ff.
* Wescher (1), p. 61; Rehm & Schramm (1), Pl. IV.
* As, ancently, Athenaeus, *Peri Menvmatoa*; Wescher (1), p. 37. The *Bellifortis* MS of Konrad Kyser (+1405) has something similar, reproduced by Berthelot (3), fig. 16, but it is extremely like his trebuchet (fig. 44) on p. 339.
* Oman (1), vol. 1, p. 380; vol. 2, pp. 52ff.
* It will be recalled that projectiles more than 300 lb in weight are dangerous for any kind of defensive masonry.
Rhineland's strongest castle, within a single day.\(^a\) That gunpowder had its origins in China is another commonplace (which happens also to be true), and later in this series we shall elucidate the long development which it underwent there before embarking on its travels throughout the world.\(^b\) What has not been so well appreciated is the fact that the highest developments of ballistic machinery before the gunpowder period were in all probability also the gifts of China and Islam to a divided Europe ripe for greater unity.\(^c\) It is striking to reflect that all these inventions came from a part of the world where extreme decentralisation, like that of occidental feudalism, had already for a thousand years been superseded. In China, moreover, there had probably never been so great a dominance of the defensive over the offensive, for the social order of feudal bureaucratism had involved fortified cities with walls relatively low and long, not aristocratic castles which could raise soaring towers upon precipitous crags remote from population centres. And so, as the more efficient artillery designs imperceptibly spread from East to West, they carried with them certain inevitable consequences, and the coming of the strong centralised State was, in a sense, the Sinification of Europe. If modern science and technology, and the Renaissance during which they came to birth, also had some dependence upon these social and political changes, then the great paradox presents itself that Chinese culture and technique, which alone could not give rise to these world-transforming things, produced the inventions, here literally earth-shaking, which induced their rise in the tissues of the Western world.

\(^a\) Oman (1), 1st edn., p. 553.
\(^b\) See Vol. 5, pt 7.
\(^c\) It is a most remarkable fact that ancient European society, with all its theoretical and intellectual brilliance, was incapable of bestowing a trajectory in free flight upon any mass of material weighing more than 175 lb, at the most generous estimate. Naturally early mediaeval European society could do no better. Only the swape principle, used in East Asia, was capable of exceeding this, and only the counterweighted swape, developed in West Asia, could exceed it by a factor of ten or more. This is a parallel to what we saw in the section on harness (Sect. 27d). Europe could produce a Heron and a Euclid, but not an efficient system of harness for draught animals.
EARLY POLIORCETICS: THE MOHISTS TO THE SUNG

(1) EARLY CITIES

The ten-year siege of Troy stands at the beginning of Greek history and literature and has captured the imagination of poets and antiquarians, the mighty and the common people, from its conclusion towards the end of the — 2nd millennium down to modern times. Schliemann’s excavations of Priam’s city in the last century ushered in a new era of scientific archaeology in the cradle of Mediterranean civilisation. But no such siege, with brave Achaean duelling indomitable Trojan, no Homer singing in epic verse the exploits of the heroes, stands at the edge of known Chinese history and literature. This difference is a profound reflection of the divergence from the very outset in cultural norms and historical experience between the Chinese and the heirs to Greek civilisation in the West. Yet despite the absence of a great siege in the Chinese tradition, the warriors and engineers of the East Asian sub-continent in no sense lagged behind in bravery and technical achievement, as we will shortly see.

Very little is recorded about siege warfare in the early historical annals, almost nothing specific in the oracle-bone inscriptions of Shang China. In the Western Chou, too, evidence for protracted battles for towns and cities is scant in the extreme. Yet sieges must have been attempted, for otherwise there would have been no reason to erect massive city and town walls and dig deep and wide ditches surrounding early settlements, constructions which have been discovered by the archaeologists in increasing numbers in recent years. Among the earliest of these defensive works is the dry ditch around the Yang-Shao village at Pan-Pho in the eastern outskirts of the modern city of Sian, the capital of Shensi province, which is 5-6 metres deep and wide (Figure 84). Some scholars have suggested that this ditch was intended to protect against animal intruders, rather than...
humans, but competition for scarce resources even at this early date, −4000, may have necessitated the excavation of this ditch, which encloses a dwelling area of approximately 50,000 square metres.

According to later Chinese legends it was Kun, the father of the founder of the Hsia dynasty, who first invented walls for protecting towns and cities, but in the

* Fig. 84. The defensive ditch, Yang-Shao village, Pan-Pho, near Sian. (Photograph Shensi Sheng Huan-T'eng Chih-Phien-Chhang.)

archaeological record walls around settlements begin to appear in the later neolithic period, the late Lung-Shan in the second half of the -3rd millennium, and become increasingly common as the Bronze Age evolved. As yet, it has not been possible for archaeologists to draw detailed settlement patterns and to determine what hierarchical relationships existed between settlements and how such relationships evolved.

Although not all early towns and cities were walled, and although it was not essential for the earliest states to have their capitals walled, probably even the smallest settlements were protected in some fashion for the graph for town (i) which could include, apparently, as few as ten houses, in the Shang oracle-bone inscriptions of the late second millennium, is (invariably) written in the shape of a square or rectangular enclosure above the drawing of a man.

By the time of the Western and early Eastern Chou, i were organized into elaborate hierarchies in the different states. The capital settlement where the rule lived was called the kuo and major urban agglomerations, including the state capital, were known as tu 'metropolitan districts'. K. C. Chang points out that by the Eastern Chou within the same state the importance of the various yi differed among themselves according to a scale of a maximum of four levels: ordinary yi; tsung-yi with temples of aristocratic lineages; tu, with the temples of the grand lineages; and kuo, with the temples of the supreme lineages of the state. In contrast to tu and its neighboring yi. The yi and perhaps even the tsung yi distant from the center of the state were grouped into four pi: those in the eastern, western, northern, and southern pi of the state.

Throughout this same period, new towns and cities were founded and the literary record has preserved some indication of the extent of wall-building activity: 78...
cities are mentioned in the *Tso Chuan*¹ and *Kung Yang*² commentaries for the Springs and Autumns alone as having received walls, although perhaps some of these were having their walls repaired and strengthened rather than being made from the ground on up.

Initially, only the central core of the town was walled and it was within this protection that the ancestral temples K. C. Chang discusses were erected. In addition, the palaces in which members of the ruling lineage lived were located there, and Tu Chêng-Shêng has shown that the politically most important element of Western Chou states, the *kuo-jen*³, also resided within the walls. Both the walls, the palaces, which from neolithic times were constructed on stamped earth foundations, and other ritual and secular buildings were generally aligned on a north-south axis and gates were set opposite each other. Thus, although there were variations and development in layout over the millennia, the general principles of city planning were determined from the very beginnings of urban formation.⁴

The early Western Chou cities were, Ho Yêh-Chii (i) has argued, based primarily on the ritual system (*tsung-fa chih-tu*⁵), which strictly regulated the size of the city to conform with the rank of the chief of the lineage that held the site. Three grades of city were recognised, the largest being that of the Chou king, the son of Heaven; the second belonged to feudal lords who had assisted the Chou in the conquest of the Shang and most of whom were linked to the Chou by blood and/or marriage relations; the smallest were those bestowed on the latter's noble assistants.⁶ The internal layout of the cities conformed to the *ching-thien*⁷ ‘well-field’ system and the city itself and its immediate suburban areas were organised into districts (*hsiang*⁸), whereas the land beyond this core was called the *sui*⁹. The former provided the men and equipment for the army, while the latter supplied the grain taxes to keep them in the field. Ho therefore believes that the cities that were founded in the early years of the Western Chou constituted the first ‘high tide’ in urban construction in the Chou dynasty. They functioned essentially as castles for the Chou nobility.

Although Ho’s views are generally acceptable, from the archaeological point of view, it is clear that the overall layout of the Western Chou capital was similar to cities of the previous Shang dynasty.⁵

The second high tide took place roughly at the intersection of the Springs and Autumns and Warring States periods, for by the —6th century, many of the larger

² Tu Chêng-Shêng (x), p. 29ff.
³ Chu Ling-Ling (1).
⁴ The feudal lord’s cities were to be one fifth the size of that of the Chou king, and their assistants’ cities should be no more than one ninth the size of the Chou capital.
⁵ Yü Wei-Chhae (2), pp. 53-4.
cities had expanded in population and had become residentially very diverse, requiring many different types of artisans and peasants to supply their needs. In order to protect the quarters and workshops of these economically essential elements, to maintain control of their activities and those of the increasing number of long and short distance traders who visited the city markets, and to enclose a certain amount of agricultural land, an additional outer ring of walls was built.

Ho Yun-Ao disputes Ma's contention that ancient cities were originally square and that their shape was partially based on the idea that 'Heaven is round and Earth is square' and, as they were of earth, they should be square. Furthermore, Ho does not accept Ma's opinion that the shape was influenced by the *ching lien* 'well-field' agricultural system. Rather they were originally rectangular, with the north-south dimension being slightly longer than the east-west dimension. *Ma Shih-Chih* (3), however, has successfully refuted Ho's objections, at least to our satisfaction. Cf. *Ho Yen-Chu* (1); *Chu Ling-Ling* (1), pp. 153-4.
Fig. 86. The city of Hsia-Tu, capital of the state of Yen, near I Hsien, Hopei. (After K. C. Chang (1), fig. 154.)

Fig. 87. Yen Hsia-Tu, western wall of the outer city, from Chinese Academy of Architecture (1).
Ma Shih-Chih (1) argues that the original shape of ancient city walls was square and that by the Eastern Chou period essentially four types of cities had evolved. The first, the Hsin-Cheng type, consisted of two cities linked together, either one on the east and one on the west or one larger and the other smaller.

Sahara Yasuo has proposed a similar categorisation of Eastern Chou cities based on a relatively complete list of sites and has also grouped cities into another system based on size, without integrating the two classifications. Von Falkenhausen (1), in his review of Sahara's essay, observes that the largest size of city, one with one side greater than 3000 metres long, resulted from enlarging settlements of Type B ['outer enclosure without neicheng'] and D ['arrangement due to 'natural' formation'] layout into ones of Type C ['two [or more] enclosures juxtaposed'].

This type C was present only in the Warring States period.

Von Falkenhausen further comments, 'Besides the settlements of the second size group [ones with one side 2,500-3,600 metres long] (of Spring and Autumn or earlier origins) are all of Type A ['an inner neicheng surrounded by an outer uniguo enclosure'] or B layout, with settlements of Type D virtually limited to the smallest size group [one side less than 2,000 metres long] (the only noticeable exception being the Han capital of Chang'an, the peculiarities of which are known to be the result of unique historical events)." Cf. Yu Wei Chhao (2), pp. 54-7.
The ancient cities that comprised Hsin-Thien, capital of the state of Chin.

(After Shansi Sheng Khao-Ku Yen-Chiu So Hou-Ma Kung-Tso Chan (r), fig. 1.)

Wall and/or ditch or moat divided the city into two parts, but they remained integrally connected. (Figure 85). The capitals of the states of Yen¹, Hsia-Tu² (Figures 86, 87)b and of Chhi³, Lin-Tzu⁴, (Figure 88) also belong to this type.

The second is the Hou-Ma⁵ type. This is the site of the last capital of the state of Chin⁶ in north-central China whose dissolution and division into the three states of Han⁷, Chao⁸, and Wei⁹ in -403 is considered by many scholars to be the beginning of the Warring States period. In the written records the capital was

¹ Honan Sheng Po Wu Kuan Hsin-Cheng Kung Tso Chan, Hsin-Cheng Hsien Wên-Hua Kuan (r). Hsin-Cheng was the capital of the state of Chêng⁵ and later that of Han⁸. Goi Naohiro (r), p. 19.

² K. C. Chang (1), pp. 335–9; Fu Chen-Lun (1), (2); Hsieh Hsi-I (1); Chung-Kuo Li-Shih Po-Wu Kuan Khao-Ku Tso (r); Hopei Sheng Wên-Hua Chii Wên-Wu Kung Tso Tui (r), (2) (3), (4), (5); Hopei Sheng Wên-Wu Kuan Li Chhu (r); Wên-Wu Pien Chi Wei-Yuan Hui (r), pp. 42–3.

⁴ Cho-Yun Hsu (1), p. 1. Other dates for the beginning of the Warring States are -475, -468, and -463.
known by the name Hsin-Thien¹ ('New Fields') and actually consists of at least six different cities, those now called by their modern names Niu-Tshun², Thai-Shên³, Phing-Wang⁴, Ma-Chuang⁵, Pai-Tien⁶ and Chhêng-Wang⁷ (Figure 89).² To this second type, Han-Tan⁸, Hopei, the capital of the state of Chao, also belongs. The city consists of three roughly square enceintes in the shape of (Figure 90), with the northern Pei-Kuo-Chhêng⁹, 1,275–1,508 metres east–west and 1,550 metres north–south, the eastern Tung-Kuo-Chhêng¹⁰, 1,400 metres long and 850 metres

¹ Shansi Shêng Khao-Ku Yên-Chiu-So Hou-Ma Kung-Tso Chan (r). Chhêng-Wang city itself consists of two roughly rectangular enceintes, the northern one larger than the southern one which is attached to the eastern section of the former's southern wall. The northern city contains remains of stamped earth building foundations (Shansi Shêng Khao-Ku Yên-Chiu-So Hou-Ma Kung-Tso Chan (z)).
wide, and the Wang-Chhêng ('Royal City') 1,475 metres long by 1,387 metres wide. Inside this latter city lay the pounded-earth foundations of many large palatial and administrative buildings. North of the city, the excavators in 1958 found another wall running approximately 6,100 metres north-south with the city (Wang-Lang-Chhêng1) as its centre and north of this city another small city wall was discovered with a hill called Chha-Chien-Ling2 ('Inserted Arrow Hill') as its centre. But the excavators were unclear as to the relationship between these latter walls and the main three enceintes and, as no map is provided in the brief report, it is hard to draw definite conclusions as to the original configuration of the walls and of their defensive capabilities.*

The royal capital of the Eastern Chou dynasty Lo-Yang3 is characteristic of the third type of city, which possessed only one wall and had no inner–outer division (Figure 91). The northern wall was comparatively well-preserved and had a total length of 2,890 metres, the eastern wall was damaged and now only about 1,000 metres survives. The entire city, however, was roughly square in shape.b The capital of the state of Chung-Shan4, Ling-Shou-Chhêng3, Phing Shan Hsien6, also had the same form, being approximately 4,000 metres north–south and 2,000 metres east–west, but here again long walls running from the city have been discovered and their exact relationship to the city is as yet undetermined, having only been studied since 1974c (Figure 92).

The fourth type of city is similar to the first type in that it consists of two cities, but is different from it in that one city is smaller than the other and is located within the enceinte of the other. The smaller city is placed more or less in the centre of the outer ring of defences, as at Chhû-Fu7, the capital of the state of Lu8, which we will discuss in detail below (Figures 141–144), and at Hsia Hsien9, where Yu-Wang Chhêng10, once the city of An-I11 of the state of Wei12 (Figure 93),e lies. The outer walls of the latter are trapezoidal in shape and approximately 4,500

* K. C. Chang (t), pp. 324–7; Pei-Ching Ta-Hsieh Li-Shih Hsi Khao-Ku Chiao-Yen-Shih Shang Chou Tsu (t), pp. 342–4; Yang Fu-Tou (t); Shansi Shêng Wên-Wu Kuan-Li Wei-Hui Yüan (t) Shansi Shêng Wên-Wu Kuan-Li Wei-Yüan Hui, Shansi Shêng Khao-Ku Yen-Chiu So (t); Yeh Hsiêh-Ming (t); Shansi Shêng Wên-Wu Kung-Tso Wei-Yüan Hui Hsih-Tso Hsiao-Tou (t); Thao Cheng-Kang and Wang Kuo-Lin (t); Shansi Shêng Wên-Wu Kung-Tso Wei-Yüan Hui (t); Hou-Ma Shih Khao-Ku Fa-Chiieh Wei-Yüan Hui (t); Shansi Shêng Wên-Wu Kuan-Li Wei-Yüan Hui Hou-Ma Kung-Tso Chan (t); Yu Wei-Chhao (2), p. 55. Sekino Takeshi and Komai Kazuchika (t); Wên-Wu Pien-Chi Wei-Yüan Hui (t), p. 41; cf. K. C. Chang (t), pp. 333–5; Sekino Takeshi (t) pp. 295–302.

b Khao-Ku Yen-Chiu So Lo-Yang Fa-Chiieh Tui (t) K. C. Chang (t), pp. 322–4; Pei-Ching Ta-Hsieh Li-Shih Hsi Khao-Ku Chiao-Yen-Shih Shang Chou Tsu (t), pp. 359–42.

K. C. Chang (t), pp. 322–4; Pei-Ching Ta-Hsieh Li-Shih Hsi Khao-Ku Chiao-Yen-Shih Shang Chou Tsu (t), pp. 359–42.

* Wên-Wu Pien-Chi Wei-Yüan Hui (t), pp. 43–4; Hopei Shêng Wên-Wu Kuan Li Chhü (3); Tôkyô Kokuritsu Hakubutsukan et al. (t).

* Zhang Xuehai (Chang Hsiêh-Hai) (t), other references are given below, pp. 138–9.

metres north-south and 2,100 metres wide on the southern side. Inside them a second enclosure is located in the south-western corner and a third almost in the centre. Archaeologists are agreed that the central city in both cases was probably the palatial quarters where the royal family and its immediate entourage resided.

Alternatively, the inner city could be placed at one edge of the outer enceinte, making use of the thick outer walls as one of its sides. Yen-Chhêng¹, Honan, a Springs and Autumns city, is an example (Figure 94)² as is Chao-Khang-Chên².

¹ Liu Tung-Ya (2).
² 鄭城 趙康鎮
the probable site of Chiang\(^1\), which originally belonged to the state of Chin but was later taken over by the Wei (Figure 95).\(^a\)

Shang-Tshai\(^2\) is the much larger capital of the state of Tshai\(^3\), and was one of the original Western Chou feudatories. Its walls have a total length of 10,490 metres,\(^b\) and are a massive 15–25 metres — extending to 70–95 metres — wide at their largest point. The outer walls were originally additionally protected by a

\(^a\) Shansi Shêng Wên-Wu Kuan-Li Wei-Yüan Hui Hou-Ma Kung-Tso Chan (1); K. C. Chang (1), pp. 327–8.
\(^b\) Shang Ching-Hsi (1); Ma Shih-Chih (2), pp. 61–2. The site had been occupied since Yang-Shao\(^4\) neolithic times.
moat 70–103 metres wide, now 5–10 metres below the present ground-level, which was fed by a mountain stream that flows away to the east as the Tshai-Ho river. Now the inner sanctum is located in the northeast corner and is the present county seat, but the palace foundations of the Western Chou and Springs and Autumns times were constructed roughly in the centre of the enceinte on a hill known as Erh-Lang-Thai¹ (Figure 96). This, then, is an example of a city moving its centre of gravity within the outer walls. We will encounter other examples below; but it is time to turn to the matter of siege warfare contemporaneous with these four types of cities.

Although towns and cities must have been successfully attacked and defended in prehistoric and early historic times, we have virtually no contemporary evidence for such sieges. We can be sure, however, that the flowering of the art of poliorcetics really began in the Warring States period (-500 to -221) at the time when only a few of the feudal states founded by the Chou in the late -2nd millennium remained to fight for control of the entire Chinese world and when

¹ 二郎臺
urbanisation was rapidly developing, as we have seen above. In the end, Chhin, based in the Wei river valley, Shensi, was successful in eliminating all its rivals: in −221 it established the imperial system which lasted until the revolution of +1911.

In this period of savage internecine strife, where wars were fought not to display the chivalric behaviour of the participants as was the case in the earlier Springs and Autumns period (−770 to −500), Mo-Tzu, the erstwhile disciple and later philosophical opponent of Confucius, trained his followers to be experts in defending towns against attack. It is through the writings of the Mohist school that we can see into the inner workings of the tactics involved in contemporary siege warfare, for the other military manuals pay little attention to such matters, being written, for the most part, from the point of view of the besiegers, not the besieged. Yet, even so, they are sparing of detailed description and instruction.

We are indeed fortunate that a part of the Mohist compositions have come down to us, albeit in a very fragmentary state, and we may observe how advanced their methods had become. We can compare them to Greek and Roman develop-

* Kierman (2); Yates (3).
* Watumabe Takashi (1) (2); Yates (4).
ments, and we can deduce that the art of siege warfare underwent little change in its essentials from the Warring States period until the discovery and application of gunpowder to war over a thousand years later, even though innovations were made, and names of machines were altered in the succeeding centuries.
In what follows, we will describe the recommendations of the Mohists and trace in brief outline some of the subsequent developments in technology up through the +10th century, the period when the discovery and development of gunpowder transformed siege warfare.

Almost all of our information for the early period derives from chapters 14 and 15 of the extant book of *Mo Tzu*. The two chapters, however, are often most hard to read because at an early stage of the text's history, possibly in the Han dynasty, it suffered what A. C. Graham has called a bibliographic disaster. The leather bindings of the text loosened and rotted and many of the slips were broken and lost. Sometime, possibly in the Han or early Six Dynasties periods, a compiler tried to reassemble the remaining fragments and to write the text of the two

30. MISSILES AND SIEGES

chapters as one long, continuous, whole. The jumble that has survived is, therefore, the remains of at least three, and in one place, four, different versions of the text. These versions have been arbitrarily juxtaposed or separated so that the original order of the text has been lost, and much has been lost or obscured.\(^{a}\) Some scholars have doubted the text's authenticity, and claimed that it is a forgery of Han times, but it seems a genuine record of the Warring States Mohist tacticians.\(^{b}\)

The text is divided into two main sections: organisation of a city under siege and the rules and regulations that need to be enforced in the emergency, and precise, detailed specifications of the machines and techniques used in the battles. It will be the latter that concern us here. Again, this second section is divided into two main sub-sections: those passages which specify general requirements for defence, and those which give precise instructions on how to defend against twelve types of attack. We will review the general requirements first.

The Mohists we have already acknowledged as the masters of ancient Chinese defensive warfare. What preconditions did they conceive to be necessary to be present for an effective defence to be mounted? Their ideas are summed up in the following two passages, which formed the basis of all later discussion of the subject.

In general, the standard procedure for defending besieged cities is: the city walls are to be high and thick; the ditch and moat are to be wide and deep; the towers and su\(^{c}\) are to be in good repair; the preparations for defence (i.e., engines and weapons) are to be mended and sharpen; the firewood and food are to be sufficient to hold out for more than three months; the men are to be numerous and well-chosen; the officers and people are to be in harmony; the important subjects (i.e., local magnates) who have merit and long service\(^{d}\) with their superiors are to be many. The ruler is to be trustworthy and in the right, and the myriad people are to take boundless pleasure in him. If that is not so, then the tumuli and graves of the defenders' fathers and mothers are to be located there. If that is not so, the abundance of the mountains, forests, grasslands and marshes\(^{e}\) is to be sufficiently beneficial. If that is not so, the formation of the land is to be such that it is difficult to attack and easy to defend. If that is not so, then (the people) are to have a deep hatred of the enemy and great respect for their superiors. If that is not so, then rewards are to be clear and trustworthy, and punishments are to be severe and sufficiently intimidating.\(^{f}\)

\(^{a}\) Forke's (3) German translation, therefore, needs complete revision. cf. Forke (17).

\(^{b}\) Yates (4), pp. 55-56; cf. Yates (3); Cho-Yun Hsu (1), p. 187; Chih-Chia (3); Chu Hsi-Tsu (3); Sun Tzu-Chou (2); Watanabe (2) (2).

\(^{c}\) Su must be the name of a special type of tower on the walls, but we have insufficient evidence to identify it more precisely.

\(^{d}\) 'Merit' (kung\(^{2}\)) and 'long service' (lan\(^{2}\)) were two of the methods of determining military benefits in Han times (Loewe (4), vol. 2, p. 169; Oba Oyama (1)).

\(^{e}\) Tsu 'marshlands' should not be understood as entirely under water, since they were often areas where the nobility hunted (Bedde (32)).

\(^{f}\) Mo Tzu, Tao Tung ed., ch. 14, pp. 3a-4b; Sun I-Jang (2), ch. 14, pp. 3a-4a; Tshen Chung-Mien (3), pp. 4-5; Wu Yu-Chiang (1), ch. 14, pp. 10a-b. There is a parallel, and probably later, rendition of this passage in Kuan Tzu (P'ien 44) ('Chiu Pien'), 2, pp. 89-90 (HCPTS ed.). Yates (5), fragment 20, pp. 184-8.

\(\text{ Bert }^2 \text{ 功 }^3 \text{ 労 }^4 \text{ 泽 }^5 \text{ 九磐}^{6}\)
The Master Mo-Tzu said, 'In general, there are five conditions under which one does not defend. When the city is large and the men few in number is the first condition under which one does not defend. When the city is small and the men numerous is the second condition under which one does not defend. When the men are numerous and the food is scarce is the third condition under which one does not defend. When markets are distant from the city is the fourth condition under which one does not defend. When the stores and piles (of material) are located outside and the wealthy are (away) in the markets is the fifth condition under which one does not defend.'

This practical, common-sense advice for those responsible for the defence of a town or city is in marked contrast to the suggestions of Yin-Yang military theorists. Although most of their writings have been lost, a few passages remain, or have been recently discovered such that a sense of what they recommended can be gained. One of these passages is in the 'Military Omens' (Ping Chêng) section of the Liu Thao:

'In general, when attacking cities and besieging towns, if the color of the city's chhi resembles dead ash, the city can be butchered. If the city's chhi emanates and travels north, the city can be subdued. If the city's chhi emanates and travels west, the city can be forced to surrender. If the city's chhi emanates and travels east, the city cannot be attacked. If the city's chhi emanates and then re-enters, the ruler of the city has fled north. If the city's chhi emanates and covers over the attacker's army, the army will inevitably fall ill. If the city's chhi emanates high into the air and fails to stop anywhere, the battle will be long.

In general, when attacking a city or besieging a town, if it fails to thunder or rain for more than ten days, you should hurriedly abandon it, for the city will inevitably have great support at its disposal. By this (evidence), you will know when to attack the assaultable and desist from the impregnable.'

King Wu said, 'Excellent!'

The reason, one may suppose, why the city was believed to be vulnerable if its chhi travelled to the north or west, is that the yin power was dominant in those directions; the south and east, on the other hand, were the directions of yang, and therefore chhi that moved towards them indicated the city's ability to withstand an attack. The last paragraph displays a mixture of practical as well as religious thinking: if it did not rain, the besieger might run out of clean drinking water, but perhaps more importantly, thunder and rain were considered to be highly ominous. A lack of such a sign as thunder would indicate that the besiegers would not gain success.

3 Thunder was thought to result from the sudden and violent intermingling of yin and yang forces. By Han times, a belief had developed that there was a Lord of Thunder (Lei-Kung). Among the earliest references to this deity are the Huai Nan Tzu, ch. 2, p. 8b (SPPT ed.) and the Yüeh Chieh Shu, ch. 11, p. 1b (SPPT ed.). Whether Lei-Kung was a Warring States deity is unclear. A violent thunderstorm nearly disrupted King Wu of Chou's attack on the Shang, but Tai-Kung rejected the ominous implications of the death of the King's horses by fright and urged the forces to continue.
Sun Pin’s *Art of War* provides another example of a classification of cities into those that can be attacked and captured and those that cannot. Sun Pin designates the former as ‘female cities’ and the latter as ‘male cities’:

Male and Female Cities\(^a\)

If a city is situated in a low\(^b\) marshland, lacks high mountains and large valleys,\(^c\) yet has small hills\(^d\) on all four sides, it is a male city and cannot be attacked. If the army’s food supply comes by fast-flowing waters [they are living waters and army cannot be attacked].\(^e\) If in front of the city there is a large valley and at the rear is a high mountain, it is a male city and cannot be attacked. If the ground inside the city is high while the ground outside is low, it is a male city and cannot be attacked. If inside the city there are small hills, it is a male city and cannot be attacked.

If an encampment for an army on the march lacks a large river to surround it, that will damage the men’s vital energy [*chhi*] and weaken their wills: (the army) can be struck. If there is a large valley behind the city and it lacks high mountains on left and right, it is an empty city and can be struck. In cases where the land has been burnt to ashes,\(^f\) it is dead ground, and [the army can be struck]. If the army’s food supplies come by stagnant\(^g\) rivers, they are dead waters, and (the army) can be struck. If the city is situated in wide\(^b\) marshlands, lacks large valleys and small hills, it is a female city and it can be struck. If in front of the city there is a high mountain and in the rear a large valley, in front the ground is high, but behind it is low, it is a female city and it can be struck.\(^h\)

All of these passages demonstrate how far the art and theory of poliorcetics had developed since Sun-Tzu’s time, when he proposed that ‘one should only attack cities in the last resort’.

\(a\) The title is supplied by Yin-Chhüeh-Shan Han-Mu Chu Chien Chêng-Li Hsiao-Tse (3), B. 12, pp. 115–16. cf. Yin-Chhüeh-Shan Han Mu Chu Chien Chêng Li Hsiao-Tse (i), Chang Chên-Tse (i), pp. 184–7. This passage is also quoted in part by Tu Chêng-Shêng (i).

\(b\) The Liao-Ning editors (Anon. [229] *SPPF* (Liaoning ed.), p. 131, suggest reading ‘*pi*’ as ‘low’, as does Chang Chên-Tse (i), p. 186, note 1, who says that perhaps the copyist made a mistake in adding the ‘water’ radical. Alternatively, ‘*pi*’ would be understood as ‘small’.

\(c\) The Liao-Ning commentary suggests *khang* is to be understood as ‘high’. The word is a loan for ‘lift high’ in *Chuang Tzu* (Karlgren (i), 598a). Read as *khang* the word means ‘screen/protect/defend’ in *Ts’ao Ch’uan*. Perhaps this is the meaning here. *Ming* ‘famous’ they take as ‘large’ *ta* and deep.

\(d\) Interpreting *fu* as *fu* with Chang Chên-Tse (i), p. 186, note 3.

\(e\) These words have been added by the editors.

\(f\) Interpret with Chang Chên-Tse (i), p. 187, note. The editors believed that there was a graph missing at the beginning of the sentence, but Chang argues against this. The editors also suggest that *shao* is a loan for *shao* ‘barren, stony ground’, but this is probably mistaken and it is rather *chin* ‘all’ which is a loan or abbreviation for *chin* ‘ashes, embers’.

\(g\) Chang Chên-Tse (i) notes that *fu* ‘float’ is defined by the *Kuang Ya* \(^{16}\) (‘Shih Ku’ \(^{11}\)) (Phien 3) as *wu* ‘stagnant’ (and therefore polluted) \(^{16}\) (Kuang Ya Su Chêng, ch. 3; pp. 297–8).

\(h\) Interpreting *fu* ‘put out’ as a loan for *phê* ‘large’ with Chang Chên-Tse.

\(11\) In actual fact, Wu Chi-Chung (i) is probably correct in concluding that this passage does not belong in the original Sun Pin *Ping Fa*; it was, rather, an independent text.
To these Warring States opinions, Tsêng Kung-Liang\(^1\) and his assistants in the Sung dynasty\(^a\) added that a city could be defeated under five conditions: if the strong and adults were few and the young and weak were many, if the city was large and the population small, if the grain rations were few and the population large, if the supplies were located outside the city and if local magnates and strongmen did not obey orders. Furthermore, he averred that if the waters outside the walls were high and the ground level inside was low, if the veins of the earth (\textit{thu mai})\(^2\) were spread out and the moat was shallow, if the defensive instruments were not yet sufficient, and the firewood and water were not supplied: under these circumstances, even if the city walls were high, it was wiser to abandon it and not attempt a defence.

Similarly, he believed that there were five favourable conditions for a successful defence. If the city walls and moat were in good repair; if the instruments and weapons were ready; if the population was small and the grain supplies large; if superiors and inferiors were mutually affectionate; and if the punishments were strict and the rewards generous. In addition, a city could be saved if it was located in a favourable site. This meant being at the base of a large mountain and above a broad river, in such a way that the city would neither suffer from drought nor be inundated by floods, it would enjoy the protection of the surrounding terrain.

For these reasons, Tsêng states that the way of defence is not to rely on the enemy not coming, but for the defenders to possess the means to await them; not to rely on the enemy not attacking, but for the defenders to possess what cannot be attacked. Not only should the defenders, therefore, have high city walls, a deep moat, strong soldiers, and sufficient grain, but must have wisdom, thoughtfulness, and a complete and exhaustive set of plans, strategies, and tactics for all changes in the situation. The defenders should be prepared for all eventualities to sally forth frequently to harass the besiegers, to refuse to engage them, despite provocations, or to make them afraid to withdraw their forces.

Before a successful defence could be achieved, however, it was essential, as the Mohists stated, to make adequate preparations. It is to these that we must turn first.

\begin{itemize}
 \item[(ii)] \textit{Initial preparations for defence}
\end{itemize}

Roads outside the city were to be blocked to impede the enemy’s advance: those that were particularly vulnerable were to be given additional protection. Triangular blockhouses or posts (\textit{thing})\(^3\) were built in groups of three to form a triangle straddling the road in such a way as to provide help for each other.\(^b\) This is the

\(^{a}\) \textit{H.CT1/CC}, ch. 12, pp. 11a–2a.

\(^{1}\) 曾公亮

\(^{2}\) 士牌

\(^{3}\) 亭
The shaded area at B cannot be adequately protected by flanks at D and E.

Lorini recommends that bastions be drawn from a point 0.75 of the curtain length removed from its flank. A bastion drawn from centre curtain (C) would permit installation of additional guns between C and F for its protection, but the angle at X would become too acute.

Fig. 97. Comparison of round with triangular bastion, after G. Busca (c. +1540 to +1600), Della architettura militare (Milan, 1601), cited in de la Croix (2).

Fig. 98. Construction of bastions for a hexagon, after B. Lorini, Della fortificazione libri V (Venice, 1597), cited in de la Croix (2).

only reference in the early Chinese sources to a design of fortification construction based on triangles: such a design based on sharp angles revolutionised defensive architecture in Europe in the 17th and 18th centuries, when Italian military architects in particular finally found the right method to combat sieges led by the
Fig. 99. Palmanova, as built, plan by Cacogliati, c. 1695, from de la Croix (2).

mighty cannon, although later Chinese architects rejected the round shape, preferring almost exclusively rectangular and square shapes for fortifications. Only in the Tang dynasty was a round shape preferred, and then it was reserved for lookout posts along the northwestern lines. Nevertheless, it is clear that the Mohist prescriptions must have been carried out to some extent for the triangular design is found in one example on the military map excavated from the early Han tomb at Ma-Wang-Tui (Chu Chün Thu) which depicts where units of the army were stationed in the southern part of the realm (Figure 102).

8 Hogg (1), pp. 110–31; de la Croix (2), p. 145; Christopher Duffy (1); Christopher Duffy (2), pp. 23–42; Bricc (1), pp. 115–22; J. R. Hale (1).

9 Loewe (4), vol. 1, p. 84; Fujieda (1), p. 254. The Han Chu Chün Shu, ch. 5, p. 6b, does, however, give the dimensions of a round post (sheng) as being 18 feet (chih) high, a circumference of 30 feet (chih) at the base and 20 feet (chih) at the top. So perhaps that shape was more common than is suggested by its total absence up to now the archaeological record. Cf. Vogel (2), p. 47.

Fig. 100. Palmanova, an aerial view, from de la Croix (2).

Fig. 101. Lucca, aerial view from the north-east, from de la Croix (2).
The roads could also be sown with caltrops (chi li¹) made of wood or iron (Figures 103a and b). The Liu Thao² records three kinds of collapsible fences or traps which could be carried and deployed by an army on campaign, probably to stretch across roads and pathways leading to the marching camp to prevent enemy spies and small raiding parties from approaching unseen. The first of these fences is the ‘heavenly net tiger drop’ (thien lo hu lo³), which was linked together by a chain and was 15 feet (chhih⁴) wide and 8 feet (chhih) high. The second bristled with sword blades and was of the same dimensions: it was called the ‘sword-blade tiger drop’ (hu lo chien jên⁵). An army was equipped with 120 ‘heavenly net tiger drops’ and with 510 ‘sword-blade tiger drops’.⁶

A third type of trap called the ‘earth net’ (ti⁶) was spread over the ground to discourage enemy provocateurs from enticing the soldiers into engaging in a disorganised fight, which could be taken advantage of by the main body of the enemy’s forces. The prongs of this type of caltrop were made from two arrowheads each and were set in a triangular pattern so that each prong was two feet (chhih) apart.⁷ As the text makes no mention of a board, this ‘earth net’ may have been the special name for the rows of stakes discovered by archaeologists planted in the glacis of two of the Han desert forts. These rows of sharpened wooden stakes were also set in a triangular pattern and were 70 cm apart. The maximum number of rows discovered was four, in the case of the Chia-Chi hou kuan⁷, protecting the northeast corner of the main enclosure (Figure 104), and also protected the gate and fort at Chin-Kuan⁸, Chhien-Shui⁹ (Figures 105 and 106). These stakes are similar to the sharp iron stakes (jui thith jilO) mentioned in one corrupt passage of the Mo Tzu as being 5 feet (chhih) long and more than half a wei¹¹ 6 (11.5 cm) in circumference, sharpened at both ends and buried 3 feet (chhih) deep in five rows 3 feet (chhih) (ca. 69.3 cm) apart at the base of the walls. Such stakes were also hammered into the parapet or top of the wall.¹² These or similar fences might also have occasionally been erected by the defenders of a city, although there is no specific mention of them.

² See below, pp. 287–89, 425, 433; Yates (3), p. 444. The Liu Thao describes caltrop boards which were more than 6 feet (chhih) long and 8 inches (ishun) wide with iron prongs (mang¹³) projecting 4 inches (ishun) (Kambun Takeied., ch. 2, (Chiin Yung¹⁵) (Phien 31), p. 32). An army was equipped with 1200 of these boards. Cf. Strätz (1) p. 97.
⁴ Ch. 2, p. 32; Strätz (1) p. 98.
⁵ Ch. 2, p. 32; Strätz (1) p. 98.
⁶ Ch. 2, p. 32; Strätz (1) p. 98.
⁷ Chbu Shih-Pin (1), pp. 198–9, correctly observes that these stakes are not ‘tiger drops’ but they could be identified with the term ‘strong drops’ (chhih lo¹⁵) and that the ‘tiger drops’ were a type of fence, which perhaps later developed into the ‘sheep-horse wall’ (see below pp. 336–9).
⁸ Yates (1), p. 444. Chhu Shih-Pin (1), pp. 198–9, suggests that the name for the individual stakes was chien mu chuàng⁶ in the Han slips. See below pp. 270, 289, 445, 480–1.
¹ Ch. 2, p. 32; Strätz (1) p. 98.
² Ch. 2, p. 32; Strätz (1) p. 98.
³ Ch. 2, p. 32; Strätz (1) p. 98.
⁴ Ch. 2, p. 32; Strätz (1) p. 98.
Fig. 102. Triangular blockhouse in the Han military map (Chu-Chhin Tha) found at Ma-Wang-Tui, from Wang Tzu-Chin and Ma Chên-Chih (1), fig. 4, p. 24.

Fig. 103. (a) Iron caltrops discovered at Ting-Chhin Shan, Mien Hsien, Shensi, from Chu-Ko Liang yù Wu-Hou Tzhu Pien-Hsieh Tzu (1). (b) Caltrop unearthed at the site of the Han city of Chhang-An, Sian, from Wang Zhongshu (Wang Chung-Shu) (1), fig. 156.
In the Han dynasty, the sandy approaches to the watchtowers in the Gobi desert were carefully raked smooth to form 'heavenly fields' (thien thien'). The soldiers assigned patrol duty had the unpleasant responsibility of checking the sandbanks of 'fields' each morning for signs of intruders and reporting them to
higher authorities. We find evidence of a similar practice in the Chinese heartland: scouts sent out from the city at dawn were to examine the roads and strategic locations outside the walls for tracks. If they discovered any, they were required to signal back by means of flags to their fellows standing on the city walls. In the Thang, these ‘fields’ were called ‘earth rivers’ (thu ho’).

The anonymous Byzantine Treatise on Strategy recommended that similar precautions be taken to warn off enemy approaching a camp. Caltrops were scattered in front of the ditch surrounding the camp in a wide band twelve and a half metres wide. Further out, stakes were hammered into the ground between which thin cords were stretched. On these cords bells were hung. The idea was that if the enemy approached at night, the tinkling of the bells would warn the defenders. This technique can, however, have only been effective on calm nights. If the wind was blowing, the sound of the bells probably only served to mask the stealthy arrival of raiding and scouting parties.

Dummies (i jén) were also placed in the important and vulnerable locations outside the moat to deceive enemy scouts and raiders at night into wasting arrows on them.

This subterfuge was not infrequently practised in Chinese military history. One of the first cases is recorded for the year -555, when the army of Chin set up streamers (phei) along the defiles in the hills and marshes with no men under-
Fig. 106. Ground-plan of Chin-Kuan, Chien-Shui, Han dynasty, from WW, 1978, 1, figs. 12, 13.
neath them and had its chariots decked with flags drive out with the men on the left real and the men on the right dummies, followed by other carts dragging brushwood to stir up the dust. This show of 'force' tricked the marquis of Chhi into ordering a retreat. Considerably later in +915, Liu Hsiin, who was well-known for his stratagems, tried to trick the Sha-Tho Turkic leader Li Kho-Yung the Prince of Chin (Chin Wang), by placing straw men and flags and pennons on the walls of Chin-Yang, when the city was actually defended only by old and young. Li, however, saw through the ruse.

Such a ploy was recommended by the Byzantine military text *Strategikon* attributed to Maurice, but probably written by an experienced field commander between +575 and 628. At the beginning of a siege, the attackers were encouraged to bring close to the walls their most physically impressive men and their best equipped horses, while keeping the less well endowed farther away where the defenders could not see them clearly. The defenders were also to be deceived into believing that the besiegers possessed many armed men: those without coats of mail were to wear the hoods of those who did so that all might be thought to be completely equipped. In addition, the camp of the attackers was to be located far enough away from the city walls that the defenders might be deceived into thinking that all the objects in it were soldiers.

Wherever possible, ditches and wells outside the walls were to be blocked up to deny the enemy access to clean drinking water. If there were any that could not be filled in, they were to be poisoned using the crushed leaves of *Daphne genkwa* (*yuan*), *Illicium religiosum* (*mang* or *mang tshao*), two year old *Aconitum fischeri* ('crow's beak' *wu hui*), and *Xanthoxylum piperitum* (*chiao*), which were to be grown in advance by border prefectures (*pien hsien*). This practice of poisoning water sources is known to have been occasionally adopted, although Franke doubts its efficacy especially when an entire river is said to have been polluted in this way. He suggests that 'maybe what was meant was simply to throw dirt and refuse into the wells or watering places to make the water undrinkable for men and horses, thus weighing down the enemy's logistics'. Nevertheless, as he points out, the tactic was claimed to have been successful in at least three famous cases,

*a Tzu Chuan, Duke Hsiang's year 18, ch. 39, pp. 146-15a (Shih San Ching Chu Su ed.); Legge (ii), pp. 476, 478.
*b Tzu Chih Thung Chien, ch. 269, pp. 8792-3.
*c Dennis (2), pp. xv–xx; cf. Dennis (1).
*d Dennis (2), Book X, p. 106; cf. Dennis (1).
*e Mo Tzu, Tao Tsang ed., ch. 15, p. 21b; Sun T'ang's (2), ch. 15, pp. 37a–b; Tshen Chung-Mien (2) pp. 151–2; Yates (3) fragment 136, pp. 591–3. Hsiao Chi (SPP ed.), ch. 9, p. 12a, states that 'there is nothing in the world more inauspicious/evil than Aconitum fischeri.'
when the Chin poisoned the Ching1 river in -559,8 in the Sui wars against the Turks in +600,b and when Liu I2 threw poison into the upper reaches of the Ying River3 to harass the Jurchen armies attacking the Sung.c The \textit{WCTY} also preserves the Mohist recommendation that well water be poisoned,d so it does not seem too improbable that this tactic was resorted to, even if whole rivers were not polluted with chemicals.

Philo of Byzantium also recommended poisoning the waters to deny them to the enemy using ‘death inducing drugs’ (ταίς τανασίμους φορμάκοις),e apparently consisting of mistletoe (ἰξός), salamanders, viper and asp venom, naphtha (ναφταλιος) from Babylon, and fish oil.f Aeneas Tacticus, it would appear, also devoted sections of his work \textit{Military Preparations} to this topic and to the bringing of products inside the walls as well as rendering the countryside unfit for enemy cavalry to move on, but unfortunately it is no longer extant.g

Waters outside the walls were also ‘mined’ with sharpened bamboo arrows (chu chien4) one foot (chhih) long. Placed generally 5 inches (tshun) below the surface of the water, they were arranged in ‘fields’ 12 feet (2 pu) wide, with some arrows being placed deeper down.h The outer side of the moat was also mined with three rows of arrows of which the outer faced out and the inner in.i These, of course, were similar to the Liu Thao’s ‘earth nets’ and the Mohist and Han fort-stakes we have described above.j

In addition, all other potential access routes to and in the city were carefully blocked. These might have included large hills, mountains and woods, ditches and drains, hillocks and grave-mounds, \textit{chiin}5 and \textit{mo}6 pathways between the fields,k gates in the outer walls (kuo mên7), and gates inside the wards in the city or town (yen8).l All personnel were required to have distinguishing badges (hui9) and marks (chih10) so that the numbers and identity of those travelling back and forth

a Tsu Chuan, Duke Hsiang11 year 14 (Shih San Ching, Chu Su ed.), ch. 32, p. 136; Legge (11) p. 460, 464; Couvreur, (1), p. 296.
b Su Shu, ‘Chhang-sun Shêng12 chuan’, ch. 15, p. 9b (Po Na ed.); Chavannes (14) p. 50; Julien (12), p. 6.
c Sung Shih, ch. 366, p. 5a (Po Na ed.).
d ‘Chhien Chi’, ch. 12, p. 7b.
e Garlan (1), p. 342: 103. 31-2, D91.
f Garlan (1), p. 309: 90. 15-20, B53.
g Aeneas Tacticus (1) VII. 3-5, Aeneas the Tacticus, pp. 48-9.
h This is our interpretation of the clause ‘the long and the short (arrows) intermingled’.
i Mo Tsu, Tao Tsong ed., ch. 13, p. 21a: Sun I-Jang (2) ch. 15, p. 37a; Tshên Chong-Mien (3), p. 149; Yates (15), Fragment 131, pp. 58.4-5
j Chhu Shih-Pin (1), pp. 188-99, identifies the deer horn (lu chiao13) with these arrows, but he is probably mistaken.
k Traditionally, the \textit{chiin} has been interpreted as running North–South and the \textit{mo} as running East–West, or \textit{vice versa} (Hulswit (6), p. 174, D. 136. note 2).

1 樊
2 劉
3 顔
4 竹
5 孫
6 章
7 常
8 順
9 章
10 阎
11 長
12 龍
13 鳳
14 翼
15 任
16 貞
could be carefully monitored and all places which could provide cover of a hideout could be known to the authorities.

Once an attack was ascertained to be imminent, the defenders resorted to a 'scorched earth' policy, bringing everything that could be transported inside the walls. All else was burned or otherwise destroyed in order to deny the enemy as much material as possible. Evacuation of outlying settlements and towns was also deemed necessary, if it was felt that they could not be satisfactorily defended. As the Wei Liao Tzu\(^1\) puts it:

The local braves [hao chih\(^2\)] and mighty warriors [hsiung chih\(^3\)], hard armour, and sharp weapons, stiff crossbows and strong arrows should all be brought inside the outer walls. Then gather the contents of the underground storage pits and granaries, destroy and break them down and bring (the contents) inside the protected enclosure.\(^b\)

And the Mo Tzu states:

When the invaders approach, quickly gather in the metal vessels, bronze and iron, and other material that can be used to assist in the defence from all the outlying districts. First of all register the inessential items in the houses and dwellings of the central government and the government buildings, and the size and the length of the timbers and (calculate and record) the total amount.

When the emergency begins, get rid of them all first. When the invaders press close, cut down the trees: although there may be requests and petitions (to spare them), do not listen to them. When bringing in the brushwood, do not pile it irregularly like a fish trap. (The piles) must face the road so that they are easy to remove. Timber and wood that cannot be completely brought in (to the city) should be burned so as not to let the invaders be able to use them. The piles of wood should be consonant with the length, size, quality, and shape of each (variety). (The wood from) outside each of the four sides of the city wall should be piled inside (its respective) side. All large pieces of timber should, in every case, have holes made for ropes and then they should be piled together.\(^c\)

All private property, including timber and wood, tiles and stones, from the people's houses was to be handed in to the authorities on pain of execution for disobedience.\(^d\) Their unhusked and husked grain supplies, cloth and silk, metal and cash, oxen, horses, and other domestic animals were also commandeered, although the officials were required to value them at the fair market price and give the owners a contract (chhüan\(^4\)) with the chief of the defence.\(^e\) After the end of the hostilities, the government was required to return all unused material

\(^a\) H. Franke (24), pp. 132-4.

\(^b\) Phien 'The Power of Defence' ('Shou Chhüan\(^4\)).

\(^c\) Tao Ts'ang ed., ch. 15, pp. 20a-1b; Sun I-Jang (2), ch. 15, pp. 35a-b; Tshên Chung-Mien (3), pp. 147-8; Yates (5), fragment 128, pp. 577-9.

\(^e\) Tao Ts'ang ed., ch. 15, p. 19a; Sun I-Jang (2), ch. 15, p. 32a; Tshên Chung-Mien (3), p. 142; Yates (5), fragment 125, p. 572.
and pay for what had been consumed. Each of the officials was responsible for gleaning the area in his jurisdiction and handing it in to his superiors.\(^{\text{a}}\)

The firewood that had been so gathered, as well as thatched houses inside the walls, was carefully plastered with mud to prevent enemy fire-arrows from setting it alight.\(^{\text{b}}\) Some of the timber, however, was submerged in water, whether wells or ditches is not stated, likewise to prevent its destruction by fire.\(^{\text{c}}\) Much of this timber would have been used to build fortifications and the various engines of defence which we will shortly describe: the text specifies that lac trees (\textit{Rhus vernifera}) (\textit{chhi}'), catalpas (\textit{chia}'), mulberries (\textit{thung}'), and chestnuts (\textit{li}') of an appropriate size and strength be cut into crossbars and posts.\(^{\text{d}}\)

Furthermore, the livestock that had been collected, oxen, sheep and goats, chickens, dogs, ducks, geese, and swine, were all killed and their flesh flayed. The remaining skin, hide, sinews, horns, fat, skulls and feathers were all stored for use in the defence: sinews and horn, for example, were raw material for the bows of crossbows, and the skins and hides could provide protection for vulnerable buildings and doors, and be stretched over wood frames to form screens. Of course, killing the animals at the outset of the siege would also save the precious rations from unnecessary depletion.\(^{\text{e}}\)

As for the population from outside the walls, the officials were obliged to assign them quarters inside the city. Those who had friends or relatives were given permission to lodge with them. The others were relocated in such government buildings and offices and private mansions and houses as had been previously inspected and approved by the officials.\(^{\text{f}}\)

Undoubtedly, the displaced population would not be lodged in the headquarters or barracks of the officials in charge of the defence. For these were very carefully protected by double or triple rings of walls and roads, with overlooking towers and doors which penetrated through the buildings in a confusing manner,\(^{\text{g}}\) and no one who did not have permission was allowed to move back and forth between these barracks and the rest of the city.

One difference that is evident between Roman legionary camps and ancient

\(^{\text{d}}\) Tao Tsang ed., ch. 15, p. 22a; Sun I.-Jang (2), ch. 15, pp. 38a-b; Tshêng Chung-Mien (3), pp. 152-3; Yates (5), fragment 139, p. 597-8. We follow Tshêng's emendation of \textit{chhi}' for \textit{li}', Sun's suggestion of \textit{chia}' for \textit{thung}', and Tshêng's interpretation of \textit{li} for \textit{thung}.
\(^{\text{f}}\) Tao Tsang ed., ch. 15, pp. 18b-19a; Sun I.-Jang (2), ch. 15, pp. 31b; Tshêng Chung-Mien (3), p. 142; Yates (5), fragment 124, p. 570.
\(^{\text{g}}\) Tao Tsang ed., ch. 15, p. 21b; Sun I.-Jang (2), ch. 15, p. 37a; Tshêng Chung-Mien (3), p. 151; Yates (5), fragment 135, p. 590.
Fig. 107. Ground-plans of four Roman military hospitals, from Anne Johnson (1), fig. 117.

Fig. 108. Model of the legionary hospital at Vetera, Lower Germany, from Anne Johnson (1), fig. 118.
Chinese forts and cities lies in the treatment accorded to those injured in battle, who suffered from a debilitating disease, or who succumbed to an epidemic, a not uncommon occurrence when supplies ran short. The Romans constructed elaborate, well-appointed and well-stocked infirmaries or hospitals, often locating them in a quiet part of the camp (Figures 107, 108), but the Chinese did not erect any special buildings for the wounded. They expected them to be cared for in the regular barracks or houses to which they had been assigned, even though the officers did visit them frequently, bringing with them offerings of wine and meat, very special treats which had the added benefit of binding the wounded to the officers symbolically as well as physically: wine and meat were the offerings shared after sacrifices to the ancestors in ancient times.

Later military manuals often provided lists of recipes for the treatment of wounds and diseases for both men and horses, but still no hospitals are recorded. Detailed lists of the material which was to be stored in advance also appear in such manuals. The Thang Thung Tien's is a good example:

<table>
<thead>
<tr>
<th>The Five types of grain</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dried grains (chhio pi)</td>
<td>Iron</td>
</tr>
<tr>
<td>Fish</td>
<td>Coal or charcoal (than)</td>
</tr>
<tr>
<td>Salt</td>
<td>Pine trees (sung)</td>
</tr>
<tr>
<td>Hemp and silk cloth</td>
<td>Birch trees (hua)</td>
</tr>
<tr>
<td>Medicinal drugs</td>
<td>Artemisia (hao ai)</td>
</tr>
<tr>
<td>Contraptions</td>
<td>Lard</td>
</tr>
<tr>
<td>Weapons</td>
<td>Hemp</td>
</tr>
<tr>
<td>Hemp or grain stalks (chieh)</td>
<td>Leather</td>
</tr>
<tr>
<td>Straw (kao)</td>
<td>Felt (chen)</td>
</tr>
<tr>
<td>Mao* rushes*</td>
<td>Redbud (ching)</td>
</tr>
<tr>
<td>Ti reeds*</td>
<td>Jujube or brambles (chi)</td>
</tr>
<tr>
<td>Lu reeds*</td>
<td>Bamboo or wooden screens (pi li)</td>
</tr>
<tr>
<td>Wei reeds*</td>
<td>Cauldrons (fu)</td>
</tr>
<tr>
<td>Lime or ashes (hui)</td>
<td>Boiling pans (hu)</td>
</tr>
</tbody>
</table>

a Anne Johnson (1), pp. 159-61; figures 17, p. 160, and 18, p. 161.

c For example, Thai Po lin Ching, ch. 7, pp. 174-81. It was, however, a serious offence under Thang law not to provide medicine for the sick, and a detachment of an army on the march of over 300 men had to be accompanied by a doctor (Yang Té-Ping (1), p. 488).

d Ch. 157, p. 80a.

e Possibly this is to be identified with camel grass (*Andropogon Schenckanthus*).

f Possibly this is Kaoliang (*Andropogon Schenck Brol. var. vulgaris*).

g Possibly both lu* and wei* are the common reed, *Phragmites communis.*
Basins (秠èn')
Jars (呮éng²)
Thundersticks (lei mu³)
Spades (chhiao*)
Axes (fu²)
Hammers (chui⁶)
Drills and chisels (tsao¹)
Knives (ta²)
Saws (chhu⁴)
Long axes
Long knives
Long hammers
Long sickles (chhang lien¹⁰)
Long ladders (chhang thi¹¹)
Short ladders
Large hooks (ta kou¹²)
Metal chains (lien so¹³)
(Linked) flails (lien chia¹⁴)
Linked maces (lien pang¹⁵)
Plain maces (pai pang¹⁶)

And prongs (chhai kan¹⁷) (Figure 109) are also mentioned as being shaped like double-headed lances: they were used to push off counterweighted ladders (yün thi¹⁸) and men climbing the walls.²

Although a fuller treatment of Chinese weapons will be reserved for the third volume of this study, the nature of some of these weapons and contraptions and how they were deployed on the walls of the ancient city need to be considered here.

(iii) Weapons and other equipment

The equipment issued to the soldiers stationed on the walls ranged from sophisticated crossbows to long and short hand weapons, to agricultural implements and piles of whatever debris from inside and outside the walls could be gathered and stored. Wherever possible each man carried a shield (Figures 110, 111), which one source states should be 'no less than 2 feet 8 inches wide and no less than 3 feet 4 inches high'.³ No doubt, if the city or town could afford it, the soldiers also wore protective armour, made either of hardened and lacquered leather or even iron chain-mail. This protection made its first appearance towards the very end of the Warring States but reached its apogee in the Six Dynasties period.⁴

Since it was most desirable for the defenders to keep the attackers from reaching the top of the wall, the most important weapons for them were those that were long: very occasionally, however, swords are mentioned, no doubt for use in hand-to-hand combat, should the besiegers succeed in scaling the walls. Several decorative bronzes of Warring States date depict scenes from siege warfare and there we
Fig. 109. Chhii Kan prong, from WCTYCC, ch. 12, p. 36b.

Fig. 110. Shield from the state of Chhu (lacquer, from tomb 406), approximately \(\frac{1}{2} \) size, from Chung-Kuo Kho-Hsueh Yuan Khao-Ku Yen-Chii So (9), plate 2.

Fig. 111. Shield from the state of Chhu (lacquer, from tomb 406), approximately \(\frac{1}{2} \) size, from Chung-Kuo Kho-Hsueh Yuan Khao-Ku Yen-Chii So (9), plate 3.
see both attackers and defenders wearing the typical Warring States short bronze swords at their waists (Figure 112). Nevertheless, most of the fighting is being waged using long ko³ halberds.

The Mohist texts, however, mention chi² halberds (Figure 113), and iron than (?)³ spears, 16 2/3 and 14 1/2 feet long. One each of the latter three weapons was to be issued to each man. Then there were long axes (ehhang ju⁴) (Figure 114) with handles 8 feet long, long hoes or mattocks (ehhang zu³)⁴ linked flails (lién chhui⁸) (Figure 115), long hammers (ehhang chhui⁷), with heads 1 foot long and handles 6 feet long (Figure 116), choppers (chuо⁸), whose heads were sharpened at both ends, long sickles (ehhang lién⁹) (Figure 117) 8 feet long, and curved hoes (kou chhū/chü¹⁰) (Figure 118). To repair the walls shovels or spades (chhaa¹¹) (Figure 119) and tampers (chu¹²) were provided,⁴ as were other implements which have not as yet been identified. And fire-lances (huo tsuan¹³) the height of the city walls were ready to set ablaze engines that reached the foot of the wall. In the course of the following pages, we will encounter some other specialised weapons such as the short spears used in underground warfare.

Large piles of small and large stones, broken pottery, bricks, caltrops (chi li¹⁴), wooden or iron spikes that could be thrown from the walls to impede the advance of infantry and cavalry (Figures 103a and b) were placed every 138 metres at the base of the walls, and on the top of the walls each man was to be provided with a supply of these items: the requirements vary, but some men at least were issued 100 of each missile for use as the occasion demanded. While the heavier stones would have been fired by the trebuchets, the smaller would have been flung by hand: these were also known as ‘thunder stones’ (lei shih¹⁵).

Vessels for holding sand, gravel, and iron were made from unfired tile containers and it is possible that these contents were actually heated, or as in the case of iron, melted¹ before being hurled at or dropped upon the enemy below. The sand could also have been used to help extinguish fires started by the enemy.

a See also pp. 447-8, 459 below.

b Yin-Chhüeh-Shan Chêng-I Hsiao-Tsu (4), slips 772-4.

c Yates (5), p. 130, note 199. These may be the same as the chhang (?⁴) of the Lin-I text which is said to have a ten-foot handle and be 4-foot-long. The latter measurement must refer to the blade.

d Mo Tzu, Tao T’ieh ed., ch. 14, p. 5a; Sun I-Jang (2), ch. 14, pp. 6a-b; Yates (5), pp. 138-40.

e Wang Chung-Shu (Wang Chung-Shu) (1), p. 123, illustration p. 134, figure 156, and p. 247, note 6, provides a Han example. Cf. Institute of Archaeology, Chinese Academy of Social Sciences, Hsü Chhüeh-Chhüeh Fu-Chhüeh Pao-Kao, in preparation. Another caltrop was also discovered at Ting-Chhün Shan²⁶, Mien Hsien²⁷. Shensi (Chu-ko Liang Yu Wu-Hou Hsin Chhieh Tzu (1), p. 67, illustration no. 24). Cf. Shih Wu Chi Yuan Chi Lei¹⁹ (1969 facsimile reproduction of 1447 ed.), p. 673, where a commentator correctly points out that caltrops did not make their first appearance in Sui Yang-T’s⁵ campaigns in the north east at the beginning of the + 7th century as the Shih Wu claims.

f WCTY/CC, ch. 12, p. 63a, illustration p. 62b.
Fig. 112. Siege and naval warfare depicted on a Warring States period vessel from Shan-Piao-Chên, Chi Hsien, Honan, from K. C. Chang (1), fig. 131; Kuo Pao-Chûn (3), fig. 11.

Fig. 113. Han representations of the use of halberds, from Hayashi (6), figs. 10-29, 10-25, 10-24, p. 199.
Fig. 114. Long axes from various Han sites, from Hayashi (6), figs. 6-63, 6-64, 6-65, 6-66, 6-67, 6-68, p. 123.

Fig. 115. Linked flail, from <i>WCTY/CC</i>, ch. 13, p. 14a.
able stoves (*hsing lu*) (Figures 120, 121) were placed every 30 paces (41.4 metres) along the walls and two small stoves were provided for each side. The former could have been used to light the torches below the parapet at night and heat or melt the missiles, while the latter could have been the means for the orderlies to prepare food for the soldiers standing guard above. Two orderlies cooked food for each ten-man platoon and one orderly was assigned to each officer. They were confined to a specific geographical location and not joined to the unit itself or the officer. The Platoons and officers were moved frequently, but the orderlies were not to follow them. This rule was no doubt intended to limit the possibility of treachery and collusion between the soldiers and the orderlies.

Then there was an endless variety of water containers: bowls and basins, pots and calabashes, made of pottery and leather, with covers and handles of worn-out coarse hemp. These could provide drinking water for the soldiers as well as, perhaps more importantly, being the means to extinguish fires started by the enemy. Later in the imperial period, some vessels and large spoons were reserved for use with human excrement and urine gathered from the latrines. This was boiled on the stoves before being hurled at the enemy. Not only could this physically injure the enemy, but could spread disease among them, and make the attack an odoriferous as well as a dangerous undertaking. The Mohist texts make no mention of this particular tactic, but perhaps their sense of decorum restrained them from recording it.

Each of the piles of material had its own distinctive flag, either coloured or with a design emblazoned on it to make it easy to identify the locations of each pile from

Ma Tzu *Tao Tsang* ed., ch. 15, pp. 5ab; Sun I-Jang (2), ch. 15, pp. 98-10a; Yates (5), fragment 76, pp. 427-9.

1 行鍘
Fig. 117. Sickles from various Hansites, from Hayashi (6), figs. 6-35 to 6-41, p. 119.

a distance and also to enable the chief of the defenders to determine when a sufficiency had been reached. One passage of the *Mo Tzu* describes the scene:

In general, the standard procedure for defending cities is: Make grey-green flags for wood; make red flags for fire; make yellow flags for firewood and fuel; make white flags for stones; make black flags for water; make bamboo flags for food; make grey goshawk flags for soldiers who will fight to the death; make tiger flags for mighty warriors, make double rabbit flags for brave (?) soldiers; make youth flags for fourteen-year-old boys; make
Fig. 118. Curved hoes, from Hayashi (6), figs. 6-25 to 6-27, p. 117.

Fig. 119. Spades and blades, from Hayashi (6), figs. 6-7 106-10, p. 114.
grasping arrow flags for women; make dog flags for crossbows; make forest flags for chi halberds; make feather flags for swords and shields; make dragon flags for carts; make bird flags for cavalry. In general, when the name of the flag that you are looking for is not in the book, in all cases use its form and name to make (the design on) the flag.

On the city walls, raise the flags. When the officials in charge of preparing the equipment have brought a sufficiency of material, then they are to be lowered.¹

¹ Mo Tzu, Tao Teang ed., ch. 15, pp. 3ab; Yatse (5), fragment 61, pp. 337-90; Sun I-Jang (2), ch. 15, pp. 3ab instructions for a similar system were given in the Thang: see Thung Tsen, ch. 152, p. 80b.
This is a fascinating passage in more ways than one: the colour symbolism is obviously influenced by Five Phase (Wu-Hsing) theories, and it clearly shows that the defenders had books to which they could refer to decide the colour and design of the individual flags. The remains of these manuals are the very texts which we are now using as source material today. The sight of these flags, together with the different colours and sizes of flags which were raised at the locations of the headquarters of the various ranks of officers, must have been indeed impressive. It is hard to imagine now, looking at the few remaining metres of hang thu wall protruding from the Chinese earth, that forests of flags once swayed there, mighty walls and towers surrounded tall timbered halls and palaces and the lesser houses of the gods, and the great arcuballistae and trebuchets roared as they battered the massed hosts of enemy surging towards the walls. But yet indeed it was so.

There seem to have been few additions and innovations to the basic repertoire of defensive weapons and equipment by Thang times. The list of essentials given by Tu Yu in his Thung Tien encyclopedia has already been given above. Here we need only to describe the thundersticks (lei mu or mu lei) (Figure 122), of which there were two varieties. They were cylinders made of wood, undoubtedly sawed sections of tree trunks, 5 feet (chhih) long and of either 1 foot (chhih) in diameter or six or seven inches (tshun). Although Tu does not say so, it is clear from the illustration in the later Sung encyclopedia Wu Ching Tsung Yao, that these cylinders were covered with small spikes, but whether these were fashioned of wood or iron is not revealed. Probably they were either thrown from the walls, and rolled down the slope outside to cut down the enemy or placed inside the walls along strategic roads as barricades. By Sung times, several other similar devices had been invented: first, the ‘clay thunderstick’ (ni lei) was made from sticky clay combined with 30 catties (chin) of pig bristles (chu tsung mao) and hair from the tails and manes of horses (ma wei mao lieh). The mixture was pounded together and dried in the form of cylinders 2 or 3 chhih in length and 5 tshun in diameter (Figure 124).

Next, was the ‘tile thunderstick’ (chuan lei) of the same shape as the wooden thunderstick, but made of fired tile, 3 chhih 5 tshun long and 6 tshun in diameter. The illustration (Figure 125) shows this to be octagonal in shape, but the text

* Seepp. 274–5 above.
* Ch. 152, p. 800A.
* WCTT/GC, ch. 12, p. 22a; Illustration, p. 21a.
* WCTT/GC, ch. 10, p. 28b, illustrates a ‘Wooden flying ladder that avoids thundersticks’ (pi lei mu fei thii), but unfortunately there is no accompanying written explanation. The name and the illustration both imply, however, that it was a ladder that would ride over the thundersticks that were rolled down the walls, probably by means of the small wheels located at the top of each side of the ladder (Figure 123).
* WCTT/GC, ch. 12, p. 22a; Illustration, p. 21b.
30. MISSILES AND SIEGES

makes no reference to such a design.\(^a\) Then there was the ‘cart leg thunderstick’ (chù chiao lei\(^1\)) constructed from a single wheel to which a short axle and vertical wooden pole were attached. A rope was tied to the top of the pole and the other end of the rope was wound round a windlass (chiao chü\(^2\)) placed on the top of the walls.\(^b\) When the enemy swarmed up the walls, the wheel was dropped over the

\(^a\) WCTY/CC, ch. 12, p. 29a; illustration, p. 29b.

\(^b\) The windlasses deployed on the walls may have been similar to that found in the copper mine at Thung-Lü-Shan, Hupei, and reconstructed by Chinese-archaeologists (Hsia Nai and Yin Wei-Chang \(\dagger\), p. 7). See Figures 197–198.
crenels to the ground and wound back up using the windlass. As it was retrieved, the wheel knocked off the men scaling the walls (Figure 126).

Finally, the ‘night prong thunderstick’ \(\text{yen chha lei}^1 \), also called the ‘enemy detainer’ \(\text{liu kho chu}^2 \), was made from a cylindrical section of poplar wood 10 \(\text{chhih} \) long and roughly 1 \(\text{chhih} \) in diameter, in which barbs were inserted all around such that they projected 5 \(\text{tshun} \). Wheels 2 \(\text{chhih} \) in diameter were affixed on axles to both ends and two iron chains were fastened to the axles between the cylinder and the wheels. The chains met at an iron ring: another iron chain linked this ring to a windlass mounted on the walls. When a direct frontal assault (an ‘ant-like approach’ \(\text{i fu}^3 \)) began, the cylinder was dropped over the parapet to the ground and the windlass was turned to raise it up again. Just like the ‘cart’s foot

\(^1 \text{WCTY/CC, ch. 12, p. 22a; illustration, p. 21b.} \)

\(^2 \text{留客住} \)

\(^3 \text{蟻附} \)
thunderstick', it spiked the enemy soldiers climbing up, forcing them to leap to their deaths (Figure 129).

By Sung times, several different types of caltrops had been developed. As in earlier times, both caltrops could be made from both wood and iron (Figures 103a and b), but now the three-pronged variety, a Han example of which we illustrated above, was called the 'iron water-chestnut' (*thieh ling chiao*) (Figure 130). Large quantities of these spikes were scattered in the waters outside the walls to inhibit the progress of men and horses. These waters could include the

* *WCTY*/CC, ch. 12, p. 18a; illustration, p. 17a.
* *In fact, this type had been so named by the middle of the Thang dynasty (TPYC, ch. 4, p. 85 (TSCC ed.)).
* *癙巖角*
Fig. 129. Night prong thunderstick, from WCTY/CC, ch. 12, p. 21a.

Fig. 130. 'Iron waterchestnut' (below) and 'hoof-graspers' (above), from WCTY/CC, ch. 12, p. 17b.
moat, if there had been a drought and it was shallow; they were also distributed on the banks of nearby streams to block off those routes of approach. 'Deerhorn wood' \((lu\ chiao\ mu)^1\) was chosen from any (naturally) misshapen branches or timber, cut into sections several feet long, and buried more than one \(chhih\) in the ground outside the city walls, to impede horses (Figure 131).^a

The 'earth stopper' \((ti\ si^2)\), on the other hand, was a flat board of wood \(3\ tshun\) thick and \(2\) or \(3\) \(chhih\) long and wide into which barbed nails were hammered. These were placed on all strategic roads leading to the city.\(^b\)

Finally, the Sung artisans constructed seven-inch-square 'hoof graspers' \((chhou\ thi^3)\) out of four pieces of wood to which barbed iron nails were fixed horizontally (Figure 130).\(^c\) These, too, were contraptions to stop penetration by cavalry.

The Sung encyclopaedia also provides the dimensions of several other specialised weapons used by the defenders, one of which was mentioned by Tu Yu in the Thang dynasty.\(^d\) This latter was the pole-prong \((chhai\ kan^4)\) which had a shaft 20

^a\ WCTT/CC, ch. 12, pp. 18ab; illustration, p. 17a. Chhu Shih-Pin (1) (Shou Yu Chhi'), pp. 198-9, suggests that the 'deer-horn (wood)' was the same as what is called in the Han a 'sharp wooden stake' \((chien\ mu\ chang^5)\). He is probably mistaken in this identification, but he could be correct in identifying the latter with the stakes planted in rows outside the glacis of the desert forts (see above p. 264).

^b\ WCTT/CC, ch. 12, p. 18a, illustration, p. 17a.

^c\ WCTT/CC, ch. 12, p. 18a, illustration, p. 17b.

^d\ See above p. 275.

\(^{1}\)鹿角木 \(^{2}\)地礦 \(^{3}\)捍蹄 \(^{4}\)轂竿 \(^{5}\)尖木槍
Another was the pole-hook (kōu kan⁵), which was shaped like a lance (chhiang⁴) and had curved blades on either side of the shaft. The head was two feet (chhih¹) long and sheathed in leaves of wrought iron to which iron spikes in the shape of cockspurs were attached. The illustration (Figure 132) is probably not very accurate.

Next was the axe for chopping hands (tŝho shou fu⁵) with a straight handle 3.5 feet (chhih) long and a horizontal blade 4 inches (lshun⁶) long, 4.5 inches thick, and 7 inches wide. Four blades 4 inches long were also inserted into the handle near the head. Its main function was to cut off the hands of enemy climbing the city wall and to smash enemy towers that had been pushed up against the walls (Figure 133).

Finally, the defenders employed three different types of lances. The first was a 'projecting lance with pommel' (kuai thu chhiang⁷): its shaft was 25 feet (chhih) long and it had a two-foot iron blade at the top which was quadrilateral and shaped like the ears of wheat (mai sui⁸). The horizontal pommel was located at the lower end of the shaft (Figure 134).

The 'scratch lance' (chua chhiang⁹) had a shaft 24 feet (chhih) long, to which a one-foot iron blade was attached at the head and behind this four linked barbs 2 feet long were placed. The illustration in the Wu Ching Tsung Tao does not represent this latter feature, but in the chapter devoted to offensive devices it does appear (Figure 135).

The 'bladed lance with pommel' (kuai jên chhiang¹⁰) was also 25 feet (chhih) long and had a two-foot blade at the upper end. The pommel on this weapon is specified as being 6 inches (tshun) long (Figure 134).

(iv) Walls, roads and moats

We have already discussed in a previous volume the evolution of wall-building techniques and the development of Chinese architecture, but since that section was published Chinese archaeologists have made a number of important discoveries and excavated several major early Chinese cities. Understanding of the evolution of the form and structure of cities has, therefore, been significantly increased in the detail. Nevertheless, what we said before still holds true: 'There was... no distinction through Chinese history between the feudal castle and the town; the town was the castle, and was built so that it could serve as a protection and refuge, as well as the administrative centre, of the surrounding countryside. Towns and

* WCTY/CC, ch. 12, p. 37b; illustration, p. 36b.
* WCTY/CC, ch. 12, p. 37b; illustration, p. 36b.
* 'Chhien Chi', ch. 12, p. 37a; illustration, p. 36a.
* 'Chhien Chi', ch. 10, pp. 22a. We will describe the offensive lances below.
* 'Chhien Chi', ch. 12, p. 37a; illustration, p. 36a.
cities in China were not the creation of burghers and never achieved any degree of autonomy with regard to the State.\(^a\) Towns and cities did, however, perform an additional extremely important economic function beginning in the Eastern Chou period through the Han dynasty and again from the late Thang on. By the end of the imperial period some cities and towns were indeed primarily economic, rather than administrative centres. Hankow, for example, whose population probably exceeded the million mark in the nineteenth century, seems to have been founded by traders and to have reached enormous size without any significant involvement or presence of central government authorities, although eventually local administrators were assigned to control it and tap its resources. It was a type of city much more similar to those found in the west than had previously been thought possible by earlier scholars of Chinese society.\(^b\)

\(^a\) Vol. 4, part 3, p. 71, cf. Chang Kwang-Chih (1), p. 69, who notes that even the earliest Chinese cities were a means for the ruling class of gaining and maintaining political power. For the Eastern Chou period, Chang Hung-Yen (2) has argued that the cities were equivalent to the state and that loss of the cities was tantamount to losing the entire state.

\(^b\) Rowe (1); cf. Max Weber (3); G. Wilkam Skinner (1), (2), (3).
It would be redundant here to expatiate on the building techniques, and too lengthy to give detailed resumés of all the archaeological reports, for they are exceedingly rich and numerous. Suffice it to say that it is now known that terre pisé or stamped earth wall construction seems to have begun in the Lung-Shan1 period of the late neolithic (approximately the latter part of the third millennium) and have developed in the lower Yellow river plains. Some of the earliest walls have been found at Chhêng-Tzu-Yai (Figure 136), Hou-Kang, Wang-Chhêng-Kang,4 (Figure 137) and Phing-Liang-Thai,5 (Figure 138), and the walls of the middle Shang city at Cheng-Chêng6 (Figure 139) have been studied in detail and

1. This is the type site for the Lung-Shan culture and was discovered by Wu Chin-Tîng in 1926 and excavated in 1930-1931. K. C. Chang (1), p. 156; K. C. Chang (1), p. 248 (4th ed.); Fu Su-Nien, Li Chi et al. (1), Fu Su-Nien, Li Chi et al. (2); Ma Shih-Chih (2), p. 60. As can be seen from Figure 136, the walls were battered (sloping on both sides and narrowing towards the top), a feature that lasted throughout Chinese history: perpendicular walls were very rare (although one appears on a Han silk painting (Fu Hsi-Nien, p. 137, figure 4-14, 3rd ed.). On a visit to the site in the summer of 1992, Chang Hsueh-Hai kindly told Robin Yates that this information is incorrect. The early archaeologists had uncovered, and illustrated in their figure, the Eastern Shih-Shih, and not the Lung-Shan fortification. A corrected site report will be published by Chang shortly.

2. K. C. Chang (1), p. 280; Ma Shih-Chih (2), p. 60; Yin Ta (1), pp. 54-5. The walls were constructed on a ridge above the Huan7 river, An-Yang, Hopei, above the remains of a Yang-Shao settlement. K. C. Chang (1), pp. 267-70.

3. The site is situated one kilometre west of Kao-Chhêng Chên, Têng-Fêng County, on a ridge at the confluence of the Ying-Shui3 and Wu-Tu-Ho7 rivers on the southern foothills of Mount Sung9 and was discovered in 1977. The ground plan of the city was roughly rectangular with a north-south dividing the city into two sections, eastern and western. This is a form which was popular in Eastern Chou times. Ma Shih-Chih (2), p. 60; Sugimoto (1), p. 149-51; Honan Shêng Wên-Wu Yên-Chiu So, Chung-Kuo Li-Shih Po-Wu Kuan (1), pp. 1-2; An Chin-Huai (3); An Chin-Huai (4). K. C. Chang (1) (4th ed.), p. 737. This site may be Yang-Chhêng, either the capital of Yù,7 the founder of the Hsia dynasty, or where Yù fled from Shun's son, or where he lived, but some scholars doubt this identification (Yang Pao-Chhêng (1), Ching San-Lin (3), Liu Chhih-I (1), pp. 1-2; An Chin-Huai (3), Ma Shih-Chih (1), pp. 60-1; Sugimoto (1), pp. 149-51; Honan Shêng Wên-Wu Yên-Chiu So, Chou-Khou Ti-Chhi Wên-Wu Kho (1), pp. 1-2; K. C. Chang (1), (4th ed.), pp. 262-7 and figure 226, 266. Cf. Tshao Kuei-Tshên (1), who argues that originally the name of the site was Wan-Chhii15. Tu Chung-Shêng (3); Ìü Wei-Chhao (2), p. 53.

4. Discovered in 1975 on a terrace 3-5 metres above the west bank of the Tshai-Ho7 river, Huai-Yang21 County, Honan, the ground plan is roughly rectangular and the area inside the walls is approximately 43,000 square metres. A guardhouse was apparently constructed on both east and west sides of the southern gate, on the inside, and 0.3 metres below the surface of the road passing through the gates, three pottery water-drain pipes were laid. This is a feature of other archaeological sites, but is not mentioned in the Kao-Chhêng Chên. Ma Shih-Chih (2), pp. 60-1; Sugimoto (1), pp. 149-51; Honan Shêng Wên-Wu Yên-Chiu So, Chou-Khou Ti-Chhi Wên-Wu Kho (1), p. 1-2; An Chin-Huai (5) provides a detailed analysis of the walls and shows how sophisticated they had become. Cf. Wheatley (2), pp. 31-5; Sugimoto (1), pp. 163-6; K. C. Chang (1), pp. 331-337. Tu Chung-Shêng (3); Ìü Wei-Chhao (2). Ching San-Lin (1, 2) has disputed the date of these Cheng-Chou walls, claiming that they were erected in the Sui-Thang period, but his arguments have been challenged by Yang Yû-Pin (1). It is important to note that many of the handicraft workshops and dwellings of the common people at this site and others of comparable date (Shang through Western Chou) were located outside the main walls. Presumably the artisans and people retreated inside the walls when danger threatened. Goi Naohiro (1), pp. 13-15. However, in a recent private conversation, Robin Yates was told that a much larger outer wall has been discovered. The artisans and common people, therefore, may have lived inside this outer city. Details of the discovery are eagerly awaited.

1. 虎山
2. 城子崖
3. 後岡
4. 頭城
5. 平根臺
6. 鄭州
7. 吳金鼎
8. 涿
9. 安陽
10. 厲陽
11. 周村
12. 鄭州
13. 穎水
14. 五渡河
15. 瀏山
16. 陽城
17. 萬
18. 西
another smaller Shang town has been excavated at Phan-Lung-Chhêng further south in Hupei province.a

a The town lay to the west of Lake Phan-Lung, had a perimeter of roughly 1,000 metres and was oriented 20° east of north. The walls formed a rough square, 290 metres north-south and 260 metres east-west. The local inhabitants claimed that there were gates in all four sides of the town and at the south-east corner, at least, there was a moat 10 metres wide. In summer and autumn, when the floods came, the city could be surrounded on three sides. Kuo Tê-Wei and Chhêng Hsien-I (2); K. C. Chang (5), pp. 51 and 161; Bagley (1); Hupei Shêng Po-Wu Kuan (4); Hupei Shêng Po-Wu Kuan and Pei-Ching Ta-Hueh Khoa-Ku Chuan-Yeh, Phan-Lung Chhêng Fa-Chüeh Tui (1); Ma Shih-Chih (2), p. 61; Lan Wei (7); Kuo Ping-Lien (1); K. C. Chang (4th ed.), p. 335. Another early smaller town, that lasted from roughly the second period of the Shang Yin-Hsi stage to the middle of the Western Chou, has been found in Shensi province occupying two terraces on the eastern bank of the Wu-Ting River, a tributary of the Yellow River. It formed an irregular rectangle, 493 metres east-west, and 122 to 213 metres north-south, with a total area inside of 67,000 square metres (Chang Ying-Wên and Lii Chih-Jung (1)). Yu Wei-Chhao (2), p. 53; Goi Naohiro (1), pp. 15–16.

1 瘳陵城
Fig. 138. Ground-plan of the Neolithic city of Phing-Liang-Thai (left), ground-plan of the south gate and its flanking guard rooms (right), from WW, 1983, 3, pp. 27-8, figs. 16, 18.

Fig. 139. Ground-plan of the city walls of the early Shang city at Chêng-Chou, from K. C. Chang (1), fig. 289, after An Chin-Hua (5).
Another early city, which could be the remains of Hsi-Po\(^1\) of Thang\(^2\), the founder of the Shang dynasty, was discovered in the summer of 1983, west of the city wall of Yen-Shih Hsien\(^3\), Honan. The Lo river\(^4\) has destroyed the southern wall, but the dimensions of the other three walls are impressive: the west wall is approximately 1710 metres long, the north wall 1230 metres long, and the east wall 1640 metres long (Figure 140). Generally the wall ranges from 16-25 metres in width and survives to a height of 1-2 metres.\(^\text{a}\)

Not all city walls were, however, constructed of stamped earth. Where stone existed, it was also incorporated into the walls, or was the primary building material. Such use of stone has been found especially in northern and northeastern sites.\(^\text{b}\)

The capital of one of the major states of the Chou dynasty, that of Lu\(^4\), Confucius' home, has been extensively surveyed and excavated, the walls receiving particular attention from the archaeologists.\(^5\) Located at Chhi-Fu Hsien\(^6\), Shantung, it is now clear the Chou people occupied the town immediately following their conquest of the Shang or shortly afterwards and that they lived side by side with the indigenous conquered I\(^7\) peoples. What is truly remarkable is that the two groups kept their own burial customs and therefore their cultures distinct over hundreds of years afterwards. The city walls seem to have conformed to the surrounding terrain and have used local rivers and an original marsh on the south side for the moat. The form of the city plan (Figures 141, 142) is most distinctive for slightly north of centre was apparently a walled palace precinct. It was probably the quarters of the aristocratic descendants of the Duke of Chou\(^8\), who were enfeoffed here, and was the "chhêng\(^9\)" (inner city). The mass of their followers and the indigenous population lived between the palace and the outer wall ("kuo\(^10\)") which had distinctively rounded corners, probably because of the courses of the river-moats. The outer walls may have been built by the Chou on an earlier, pre-Conquest line of defences and were extensively rebuilt and added to in the course of the centuries (Figure 143).\(^d\)

The height of the city’s prosperity must have been in the Springs and Autumns

\(^\text{b}\) Ma Shih-Chih (4), p. 65; Chang Ying-Wên and Lü Chih-Jung (1); K. C. Chang (1) (3rd ed.), p. 189; Thung Chu-Chhêng (1); Yu Wei-Chhao (8), p. 53.

\(^\text{c}\) Shantung Shêng Wên-Wu Khao-Ku Yen-Chiu So (1); Thien An (7), Tian An (= Thien An) trans. by David D. Buck (1); Chang Hsueh-Hai (1), trans. by David D. Buck (1); Li Xueqin (Li Hsieh-Chhin) (1), pp. 140–3; Wheatley (2), p. 146; Sugimoto (7), pp. 168–74; Tu Chêng-Shêng (3).

\(^\text{d}\) Excavation at site 506 revealed six distinct walls which had been successively repaired and constructed from later Western Chou to Western Han, cf. Wang En-Thien (7). The general layout seems to have conformed to the ideal city plan presented in the "Khu Kung Chi"\(^11\) (Yu Wei-Chhao (2), p. 37).
Fig. 140. Ground-plan of the Hsia or Shang city at Yen-Shih, Honan, from Chung-Kuo She-Hui Kho-Hsieh Yüan Khao-Ku Yen-Chiu So Lo-Yang Han Wei Ku-Chhêng Kung Tso Tui (r), fig. 2.

and Warring States periods, before it was conquered by the state of Chhu\(^1\), for the Han city, and the modern city, are smaller in size and located in the southwest corner of the original enceinte.

The outer perimeter, 11,771 metres in circumference, is punctuated by eleven gates, three each located in the north, east, and west sides and two in the south. Of these, the most distinctive was the Eastern Gate in the south wall (site T601). Thien An describes it in the following terms:

The Eastern Gate along the southern wall (site T601) has surviving wall remains on both sides. The eastern remains are now 7 metres high, and those on the west are 2 metres. The road through the gateway was 36 metres long and 10 metres wide. It was aligned slightly west of south at 185 degrees. On both sides of this gate are platforms of rammed earthen
Fig. 141. Plan of the capital of the state of Lu, Chhu-Fu, Shantung, from Shantung Sheng Wên-Wu Khao-Ku Yen-Chiu So (3), fig. 3.
Fig. 142. Excavation areas of the capital of the state of Lu, Chhii-Fu, Shantung, from Shantung Sheng Wên-Wu Khao-Ku Yen-Chiu So (r), fig. 2.
Fig. 143. Cross-section of the east wall, Chhü-Fu, site of the capital of the state of Lu, at excavation site T505, from Shantung Shêng Wên-Wu Khao Ku Yen-Chiu So (t), fig. 18a.
construction. The surveyed surface of each is 58 metres north to south and 30 metres across and a metre in height* [see Figure 144].

The road was a major highway, for it led directly to the Rain Dance Platform (Wu-yü thai)\(^1\) 1.7 kilometres to the south and, to the north, to the palace in the centre of the city. The original gateway must have been impressive indeed, for undoubtedly on top of the platforms wooden gate-towers would have been constructed and the entire gate protected by portcullis and other devices which we will presently describe.

Most Chinese cities were square or rectangular and oriented to the cardinal points, although there were some variations,\(^b\) emphasising that they were religious centres, as well as centres for secular administration, and were symbols of the eternal order of the cosmos.\(^c\) But this is not an aspect that concerns us here; we will return to it in the third volume of our study. And there were certainly variations in the structure of cities in different regions and states. For example, the

* Thien An\(^f\), trans. David D. Buck\(^f\), p. 13.
\^b A notable example of such irregularity is the remains of the town now known as Tso-Ching-Chhêng\(^2\), Huang-Phi county\(^d\), Hupei province (figure 145), which probably originally belonged to the state of Chhu, dating from the middle of the Springs and Autumns period (Huang-Phi Hsien Wên-Hua Kuan\(^f\)), cf. K. C. Chang\(^g\), p. 67.
\^c Wheatley\(^2\) especially pp. 419–59; Vandermeersch\(^1\); Keightley\(^6\); K. C. Chang\(^g\),\(^10\), Arthur Wright\(^11\); Sen-dou Chang\(^1\),\(^2\).

\(^\) 雨雨臺 \(^2\) 作京城 \(^3\) 黄陂縣
people of Chhin did not bury their dead within the walls of their capital as did the residents of the Chhu capital at Chi-Nan\(^1\),\(^4\) and as did those of the Lu Capital, which suggests a different attitude toward death and the dead.\(^5\) The walls of the Chhin capitals at Yung\(^6\)\(^\text{\&}\) and Yüeh-Yang\(^7\) are far smaller and narrower than those of their rivals, which may imply either that they were not as advanced technically as their neighbours in the Central States or that their military organisation was designed to defeat their opponents in the field and they did not rely on a passive defence. But such variations are also not relevant here. Without more ado, therefore, let us turn to a discussion of walls, moats, and roads in siege warfare.

Although the inner and outer walls were obviously of crucial importance to the defence of the city, the surviving fragments of the Mo Tzu are not particularly enlightening as to the height and width of the walls, the depth of their foundations, and height of the crenellation recommended for different sizes of towns and cities.

Yüan Khang\(^4\) (fl. + 40) records a base width of 2 chang\(^5\) 7 chih\(^6\) (c. 6.24 metres) and a height of 4 chang 7 chih (c. 10.85 metres) for the walls of the Lesser City of Wu (Wu Hsiao-Chhêng\(^7\)) and the heights of 12 chih (c. 2.77 metres) for Chhi Hsiang\(^8\) and 2 chang 7 chih (c. 6.24 metres) for the main walls and 17 chih (c. 3.93 metres) for the outer walls of Wu-Hsi\(^9\). But it became customary to speak of walls 5 chang or 50 feet (c. 11.56 metres) high,\(^f\) which merely indicated that the walls were very high, and it seems quite unlikely that the customary ritual

\(^1\) Hupci Shêng Po Wu Kuan (1, 2). Chi-Nan has been excavated with impressive attention to detail. One of the most remarkable features of the defences were the water gates. Chhên Hsien-l has provided the excavation report of that in the southern wall (\(r\)), pp. 341–9, cf. Sugimoto (\(r\)), pp. 174–81, which permitted boats to pass through the walls into four streams running through the city (figures 146, 147 and 148).

\(^2\) In the Han dynasty, the ritual prescriptions advocated the dead he buried outside the walls, but this was not adhered to in the earlier period: Sugimoto (\(r\)), pp. 189–90; Akiyama Shingo (\(r\)).

\(^3\) Shensi Shêng Yung-Chhêng Khoâ-Ku Tui (\(r\)), pp. 7–11; cf. K. C. Chang (1), p. 345; Shensi Shêng Shê-Hui Khoâ-Hsueh Yüan-Khao-Yen-Chhê So Fêng-Hsiao-Tui (\(r\)). The west wall was relatively well preserved and measured 3,000 metres long, 4.3–15 metres wide and the remaining height was 1.65–2.05 metres. The southern wall had been mostly destroyed by peasants digging it and by the Tung-Fêng reservoir. Only three sections, therefore, were discovered with a length of 1,800 metres, a remaining width of 3.4–7.5 metres and remaining height of 2.7–3.5 metres. The western wall, which did not have a river flowing past it like the other sides, was protected by a moat approximately 2,000 metres long, 12.6–25 metres wide and in one place was found to be 5.2 metres deep. cf. Li Xueqin (Li Hsiel-Chhêrl) (1), p. 220 (figures 149, 150).

\(^4\) Chung-Kuo Shê-Hui Khoâ-Hsueh Yüan-Khao-Yen-Chhê So Yüeh-Yang Fa-Chhêrl Tui (\(r\)). The city was roughly rectangular, 3,500 by 1,610 metres. The south wall was 1,840 metres long and 6 metres wide with a remaining height of 0.4 to 0.6 metres. There were probably three gates in both east and west walls and two in the north wall. One of the south gates was excavated and found to be oriented to 344°. A road passed through it 13 metres long and 5.5 metres wide (figure 151). On the west side were the foundations of a gatehouse that projected slightly beyond the city wall. The dimensions of these stamped-earth foundations were 15 metres north–south by 4 metres east–west by 0.35 metres deep. The eastern gatehouse had been badly damaged by water (figure 132). The excavators record the Chang-An Chhêrl\(^6\) as saying that originally the walls were 15 feet (chih) high.

\(^5\) Yüeh Chhêrl Shu (SPPT ed.), ch. 2, p. 1b.

\(^6\) For example, the Chhin statesman Li Sau mentions this figure in a memorial to the Second Emperor (Shih Chi, ch. 87, p. 31; Bodde (1), p. 41).
sumptuary regulations limiting the height of the walls according to the rank of the aristocrat who held the city were ever actually put into effect.\(^a\)

The *Chiu Chang Suan Shu*\(^b\) gives the lower width of a city wall as 4 chang (c. 9.24 metres), the upper width as 2 chang (c. 4.62 metres), and the height as 5 chang (c. 11.65 metres);\(^b\) these dimensions may have been typical for the Han, although Hotaling believes from an analysis of Han Chiang-An\(^2\) and Lo-Yang\(^3\) that 'there is a distinct possibility that the walls were built to satisfy a formula which stated: “the base of the wall shall be twice as wide as its height”.\(^c\) This formula is,

\(^a\) The *Wu Ching II*\(^a\) quoted in the Ying Tsao Fa Shih\(^4\), ch. 1, p. 10, states that the walls of the Son of Heaven’s city were to be 9 jên (72 chih) high, those of a duke (kung\(^7\)) or marquis (hou\(^8\)) to be 7 jên (49 chih) high, those of an earl (fu\(^9\)) 5 jên (33 chih) high, while those of viscount (tszu\(^10\)) or baron (nan\(^11\)) only 3 jên (19 chih) high.

\(^b\) Ch. 5, p. 22; Vogel (t), p. 44.

\(^c\) Hotaling (t), p. 12.
however, different from that given in later Chinese military manuals, which state that 'the height shall be twice that of the base width and the base width shall be twice that of the upper width, if the city wall is 5 chang high, the base width is 2 chang 5 chhiih and the upper width 1.25 chang' a.

a Thang Tien, ch. 152, p. 800a; Hu Chien Ching, ch. 6 (Phim 56) ('Chu Chheng'), p. 15; Tai Po Yin Ching, ch. 6, p. 103. This formula seems to have been followed, more or less, in the Thang (Fu Hsi-Nien (1), p. 196).
Fig. 147. Vertical and horizontal cross-sections of the passage of the Hsin-Chhiao river through the southern wall of Chi-Nan city, site of the capital of the state of Chhu, from Hupéi Sheng Po-Wu Kuan (1), fig. 11.
Fig. 148. Vertical and horizontal cross-sections of the water-gate in the southern wall, Chi-Nan city, from Hupei Shéng Po-Wu Kuan (r), fig. 12.
This narrowing of the base width in the formula may have been the result of a more consistent use of bricks to face the wall from Han times on, for the bricks may have helped to retain the earth in the wall. Although stamped earth construction was remarkably solid, sometimes even achieving the consistency of modern con-
crete, yet at the same time poor construction methods coupled with the oversights of incompetent supervising engineering officials and the rapidity with which walls had to be constructed when an enemy was approaching, could obviously open the possibility for defects in the finished product. The Chhin even wrote into their legal statutes that if walls collapsed within one year of construction, the Controller of Works (Ssu-khung) and the Gentleman (Chiin-tzu) actually in charge of the work were held guilty of a crime and the corvée labour conscripts were required to rebuild them, a task which was not to be counted as statute labour.

Although the texts are fragmentary, it is possible that the Mohists recommended that the wall-walk on top of the wall be no less than 17 chhih (ca. 3.93 metres) or 18 to 24 chhih (ca. 4.14 to 5.52 metres) wide. These figures are close to those found in the Chiu Chang Suan Shu but considerably less than those in the later military manuals. As we have seen in the archaeological records there was a very wide disparity in the size of city walls in different parts of China and at different periods of time; it is probably not wise to conclude that the Mohists insisted on a specific height and width. Whatever could be repaired and strengthened, given the limits of men and material and time, was to be: the strategists were more concerned with the size of the upper width on which men and defensive engines were positioned. Insufficient width at the top could prevent deployment of essential machines, inhibit movement of troops along the walls, and be awkward to fight from, thereby rendering the defence inefficient or even ineffective.

Both sides of the top of the wall were provided with parapets (tieh), the height of which is given as 7 chhih (c. 1.61 metres) for the outer and four chhih (c. 0.92 metres) for the inner in one passage. Another states that the embrasures (pi ni) were to be 3 chhih wide and 2 chhih 5 tshun high. The parapet in many texts is
also called the 'woman's wall' (nü chhiang) because of its smaller size relative to the main wall (the husband), but both terms 'woman's wall' and 'parapet' could refer to low earth walls or ramparts erected outside the main wall, in other words, fausse-brayes.

\[nú chhiang\]

\[fü chhiang\]

\[pi ni\]

\[pi xü\]

\[pi t\]

\[Shih Ming 'Shih Kung Shih' (TSCC ed.), ch. 5, p. 85. The glossary also states that the crenels called 'peepers' (pi ni) because you can peep through the opening at unusual happenings outside the walls and 'helper' (pi xü) for it he ps or supplements the height of the city wall.\n
\[see p. 329 below.\]
By late Warring States times, a device had been invented to protect the men firing out of the embrasures. This was called the 'revolving window' (chuan yuō) and quite a large number of these wooden objects have been discovered in recent archaeological excavations of Han forts in the Gobi desert. They are stated to be approximately 41 cm long and wide and to have a hole in the middle of a central cylinder which is high on the inside and low on the outer. At the bottom of the cylinder is a small chock which allows for an angle of rotation of approximately 110°-120° (Figure 153). The 'windows' were fixed into the embrasures and whenever the archer inside wished to fire, he or his helper rotated the central cylinder open to the correct width and released his bolt. The attackers would find it extremely hard to fire directly through this protective device and injure the defending soldiers. Despite its obvious effectiveness and advantages, however, the use of this device seems to have been dropped by the end of the Han dynasty, for we have no textual or archaeological evidence for it in later times. Shutters similar to the Chinese devices were, however, attached in the embrasures and windows of Western mediaeval castles and walls and fine reconstructions are preserved at s'Gravensteen in Ghent (Figure 154) and suggested for Carcassonne (Figure 155). Indeed, fragmentary evidence for the attachment of wooden shutters to the windows of towers, closed battlements, and in the crenellations along battlemented walls in the ancient Greek tradition has been carefully gathered by A. W. Lawrence, and so it is more than likely that engineers and architects at both ends of the Asian continent had conceived of these practical devices at roughly the same time.

About 3 chih (ca. 0.69 metres) below the parapet, torch holes (chüeh hsüeh) excavated in the body of the walls, wider at the outer end and sufficiently large to accommodate torches made from firewood 4.5 chih (ca. 1.04 metres) and 2 wei (c. 6.93 metres) apart as seemed appropriate for the local conditions, the height of the

* Yin-Chhüeh-Shan Han-Mu Chu-Chien Chêng-Li Hsiao-Tsu (4), slips 799–800, p. 28; the text states that one was placed every 20 paces (ca. 27.72 metres), but this was probably written when the devices were relatively new. Possibly the device was also called wên in the Mo Tsu and chuan lu in the Chu-Yen Han slips (Yates (3), pp. 432–8).

b The earliest examples to be discovered, albeit in a fragmentary condition, were by the Sino-Swedish expedition (Sommarstran) (1), pp. 308–9). More recently, others were found by the Kaou Chü-Yen Khao-Ku Tui (1), p. 6; Yates (3), pp. 432–8.

Yates (3), p. 433: Chu Shih-Pin (1), pp. 190–1 and Loewe (18), pp. 295–6, argue that the device was called the 'revolving shooting machine' (chuan shék), but this may not be correct.

d Hughes (1), p. 62; de la Croix (2), figure 37 (after Viollet-le-Duc): Toy (2), pp. 196–7. s'Gravensteen was begun in 𝑝 𝑏 1 7 9 0 by Philip of Alsace.

A. W. Lawrence (2) pp. 410–18.

Mo Tsu, Tao Tsang ed., ch. 14, p. 4 h; Yates (5), fragment 9, pp. 128 and 135.
Fig. 151. Ground-plan of the second Chhin capital of Yüeh-Yang, from Chung-Kuo Shé-Hui Kho-Hsueh Yüan Khao-Ku Yen-Chiu So Yüeh-Yang Fa-Chueh Tui (1), fig. 2.
Fig. 152. Plan of the south gate of the Chhin capital of Yüeh-Yang, from Chung-Kuo Shé-Hui Kho Hsüeh Yuan Khao Ku Yen-Chiu So Yüeh-Yang Fa-Chueh Tui (7), fig. 5.

Fig. 153. 'Revolving window (chuan yu)', Kansu Provincial Museum, Lanchow. (Photograph Robin D. S. Yates.)
wall and terrain over which it traversed. These torches were lit at night to provide illumination of the glacis outside the walls. Without them, the enemy could easily sneak up to the base of the walls and launch a surprise attack under the cover of darkness. They were therefore an essential part of the wall defences.

By Thang times a slightly different method of illumination had been developed. The Thung Tien describes the techniques in the following way: large torches made from pine (sung) were hung from the top of the walls by iron chains every 150 feet so that they dangled half-way down the walls. On top of the wall a watchdog (ching chüan) was placed which was supposed to bark if it saw or heard men

* Ch. 14, p. 94; Yates (9), fragment 11, p. 142-4. Sun I-Jang (2), p. 331. The newly discovered texts give the distance between the torch holes as 10 paces (ca. 3.86 metres) (Yin-Chiieh-Shan Han-Mu Chu-Chien Cheng-Li Hsiao-Tsu (4), slip 799, p. 28).

1 通典 2 松 3 警犬
climbing up the walls. Inside the city, lard or oil torches (chih yu chü) were lit as night fell at crossroads, on important roads, and at doors and gates, and these were supposed not to be allowed to go out all night.°

Finally, the Mohists recommended that twelve hidden drains (yu tou²) be constructed beneath the walls every 100 paces (138 metres). They were to be 3 chhih wide and 4 chhih high, but they do not seem to have been coordinated with the

Fig. 155. Carcassonne; reconstruction, after Viollet-le-Duc, of Visigothic tower, c. + 450. from de la Croix (2), fig. 37.

° Ch. 15:7, p. 860e. Guard dogs were also kept in the beacon stations and forts along the Han northwestern frontier, where they were provided with kennels and specific individuals were charged with feeding them (Chih Shih-l'in (7), pp. 203–5 and Lao Kan (7)), pp. 45–7, who also notes that of the three types of dogs in ancient times, guard dogs, hunting dogs, and dogs that were raised to be eaten; only the former two were ever given names.

² Yates (5), fragments 6, pp. 93, 109 note 140, and pp. 113–14. This practice of burying drains beneath the gates goes back to prehistoric times: pottery drains 5 metres long consisting of pipes 35–45 centimetres long were found beneath the southern gate of Phing-Liang Tai (K. C. Chang (1) (4th ed.), p. 267). See Figures 157–8 for drains and pipes beneath gates and walls of Han Chhang-An. The drainage system for the great city of Lin-Tzu, the capital of the state of Chhi, was quite elaborate, though not as extensive as the roads that criss-crossed the length and breadth of the city (figure 156) (Lin-Tzu Chih Chhi-Kuo Ku-Chêng I-Chih Po Wu Kuan (7)).
gates and no specific suggestions appear encouraging drains to be buried beneath the roads leading through the gates.\(^b\)

Directly inside the walls, at their base, all buildings were removed and a road was constructed either 20\(^a\) or 30\(^b\) paces (\(pu\)) (c. 27.72 to 41.58 metres) wide. At the side of this road wells were sunk and latrines with walls 8, 10, or 12 chhih high were constructed. Usually these walls and latrines were spaced 30, 50, or 100 paces

\(^a\) Yin-Chhueh-Shan Han-Mu Chu-Chien Chêng-Li Hsiao-Tsu (4), slip 808, p. 28.

Fig. 157. Brick drain-hole buried under the Sian-Mên gate, Chhang-An, from Wang Zhongshu (Wang Chung-Shu) (1), fig. 9.

Fig. 158. Ceramic water-main pipes buried under the city wall of Han Chhang-An, from Wang Zhongshu (Wang Chung-Shu) (1), fig. 10.
(c. 41.58, 69.3 or 138.6 metres) apart, but other distances are recorded; sometimes, indeed, the latrines were located directly below privies built on the walls above for the convenience of the soldiers manning the parapet. At others, two walls were placed by the stairways leading to the top of the walls. Water was permitted to be thrown from the top of the walls but only after a special flag had been waved; these were spaced every 10 chhih along the walls. No cry equivalent to that of 'gardez l’eau' appears, however, to have been allowed. At the wells iron water buckets and other pots were placed for the convenience of the drawers.

Along the road the piles of material needed for the defence were also laid. Thus, the ancient Chinese perceived the advantage of what the Romans called the pomoerium, whose origins in the West go back as far as the Nubian forts protecting the approaches to Egypt along the upper course of the Nile in the early dynastic period (Figures 159–160). In -397 the Greek colony of Selinus won its independence again and rebuilt its defences after the Carthaginians had laid siege to and captured it in -409. The street plan was grid-like, running north–south and east–west, and the pomoerium wide except in the northern section where buildings interrupted its course. It could have been Chinese had not the city been shaped like a pear (Figures 161–162). The pomoerium was later adopted by medieval town-planners, the beautifully preserved Montagnana in Italy providing a most conspicuous example (Figure 163).

Stairways spaced every 50 paces (c. 69.3 metres) gave access to the top of the walls from the road. The steps in one case are said to have been 3 chhih long and wide and 2 chhih 5 tshun high and the stairway 60 chhih long. This might indicate that the distance from the road to the top of the walls was 50 chhih (60 - 3 x 2.5 chhih) (i.e. 11.55 metres or 37.89 feet high), but we cannot be sure of this. No one was permitted to climb up and down the stairs without special credentials, nor were they likely to be permitted to carry weapons with them when they went to the latrines. Guards were stationed at the stairs to ensure that these rules were strictly followed.

Gates were constructed along the encircling road as well as in the alleys in the wards inside the walls and the main roads of the city, which were probably built in

a Yin-Chhuch-Shan Han-Mu Chu-Chien Cheng-Li Hsiao-Tsu (4), slip 808, p. 28, states that the walls should be located 600 paces (ca. 831.6 metres) apart and no more than 20 paces (ca. 27.72 metres) from the wall. The latrines, on the other hand, were spaced every 20 paces apart and not more than 15 paces (ca. 20.79 metres) from the wall.

e Mo Tsu, Tao Tseng ed., ch. 14, p. 4a; Yates (3), fragment 8, pp. 121, 126.

g The newly discovered text states that: 'Those who go down to the latrine must be gagged; if two men go together, they are to be executed' (slip 809) (Yin-Chhuch-Shan Han-Mu Chu-Chien Cheng-Li Hsiao-Tsu (4), p. 28). Likewise, Aeneas Tacticus (1) urges the ramps leading down from the walls be closed off so that if traitors seize a part of the wall over which the enemy could climb, they would be forced to leap to the ground inside the walls, a very dangerous undertaking, and thus the advantage of surprise would be taken away from them (Aeneas the Tactician, pp. 112-15).
Fig. 159. Ground-plan of the fortress on the island of Askut, from Badawy (1), fig. 102.
a grid system. Two men were also required to guard each gate and only those with authorised tallies were permitted to pass through, disobedience to the orders being punished severely, even with death. In this way, the Mohists built a honeycomb of defence works throughout the city, making it extremely difficult for an enemy to achieve the quick surrender of the besieged even after a breach in the walls or gates had been created and their soldiers had penetrated into the heart of the populated sector.b

b. Some sense of what the honeycomb looked like can be gained from a fragment of a Han tomb mural discovered at An-Ping, Hopei (Figure 16.1) (Chinese Academy of Architecture (4), p. 45).
Similarly, and perhaps following the Mohists' lead, the state of Chhin seems to have developed a system of controlling criminal activity in their towns and cities which was later adopted and adapted by the Han.\(^a\) This system of \textit{thing} or 'posts' was probably also useful in times of military emergency for the officials\(^b\) assigned to duty in the posts had the responsibility of catching thieves, watching pedestrians, and guarding the city gates. Inside the city itself, the posts were tall multi-storied buildings and appear to have had jurisdiction over the principal streets,\(^c\)

\(^a\) Kao Min (7).

\(^b\) These officials included the chief of the Post (\textit{thing chang}) and below him two runners (\textit{thing tse}), one called the 'Father of the Post' (\textit{thing fu}) and the Thief-catcher (\textit{chiu ta}). In the Chhin, these urban posts were part of the county (\textit{hsien}) administrative hierarchy, while under the Han, they were placed under the district (\textit{hsiang}) administration. In the Chhin the official in charge of all the posts in a county was called the Bailiff of the Metropolitan posts (\textit{tu thing se}).

\(^c\) This is the implication one might draw from one of the new Chhin documents. Cf. Hultswé (6), EB, pp. 188-89; McLeod and Yates (1), pp. 140-41.
while out in the countryside posts were located every ten li ('miles', i.e. about every 6 English miles) and had the additional function of being stops in the postal system, and therefore could have provided advanced warning of an enemy's approach.

Just how early the construction of a grid system for the main roads and wards within the city began is very hard to determine, for, generally speaking, the archaeologists have not been able to locate many of the large streets, let alone the small alleys, in the early cities they have excavated. Nevertheless, it is clear that both Han Chhang-An and Lo-Yang, as well as the later capitals employed this

* It may have been as early as the neolithic and bronze ages (Ho Yeh-Chü (?)). When the Greeks began to use the grid system for their street plans is easier to determine: it was after the destruction of the Persian invasions in the early fifth century, and the system is associated with the name of Hippodamus (Wycherley (1), pp. 15-35). The Romans, of course, were even more rigid in their application of grids for street plans than the Greeks were, especially for those towns based upon original *castra*. In mediaeval European times, this regular and symmetrical system reappeared in new towns built by royal fiat, such as Aigues Mortes, which was constructed in the middle of the thirteenth century as a port at the mouth of the Rhône from which the crusader army could embark for the Holy Land (Sournia (1)) (Figures 165-166).
system, which only began to break down with the expansion of commercial activity in the Sung.\(^4\) Even later on, many of the important administrative centres, especially in North China, maintained this archetypical pattern, although it must always be remembered that the grid system was only ideal. There were many variations in the size of wards and in their location due to the presence of rivers,

\(^4\) Wang Zhongshu (Wang Chung-Shu) \((1)\), chs. 1 and 2; Bielenstein \((3)\); Ho Ping-Ti \((3)\); Wright \((3)\); Schaefer \((14)\); Wang Chung-Shu \((3)\) \((2)\); Yü Wei-Chhao \((3)\) \((2)\); Li Yu-Chhun \((2)\); Hsu Chin-Hsing & Tu Yü-Shêng \((1)\); Chung-Kuo Hsüeh-Yuan Khao-Ku Yen-Chiu \(An\) Kung-Tso Tui \((1)\); Hiraoka Takeo \((1)\) vol. 6, 7, \((1)\) Figure 167; Ma Hsien-Hsing \((1)\), pp. 212-245; Xiong Chuenoi \((9)\); Tung Chien-Hung \((10)\); Lo Tzu-Hsin \((11)\); Steinhardt \((1)\); Su Pai \((1)\); Chung-Kuo Shê-Hui Hsueh-Yuan Khao-Ku Yen-Chiu \(So\) Lo-Yang Kung-Tso Tui \((1)\).
canals, ponds, parks, government buildings, palaces, temples, and markets, and other such features built for the convenience of the administration and the population.

Miyazaki Ichisada argues that in the Han dynasty, there was only one entrance to the wards inside the towns and cities; it was called a 履 or 履门 and was relatively low, being only raised in height if an individual with high rank dwelled within the walls. Permission was given only to those whose fief was reckoned at 10,000 households or more to have a private entrance onto the main street. In a later article, however, he reinterprets the evidence somewhat differently in the

\[\text{Footnotes:}\]

- Markets in the early period were located within the walls of the towns and cities. They were square, walled, and usually had a storied tower in the centre in which the market official and his minions had their offices. The official had the responsibilities of opening and closing the market, ensuring fair prices, and collecting taxes. Merchants were organised into groups of five, who were mutually responsible for their behaviour. The stalls were apparently constructed in parallel rows leading onto two main thoroughfares in the centre of whose junction the officials' tower was erected (Figures 68, 169, 170) cf. Yates (6), Liu Chih-Yuan (7).
- Miyazaki Ichisada (2), pp. 73-5 (570-1). In the Pre-Chhin period, if a ruler wished to honour or visit a worthy living inside the ward, he could order the gate to be raised in height to permit his wheeled carriage to pass through.
Fig. 166. Ground-plan of Les Aigues-Mortes, from Sournia (I).
Fig. 167. Ground-plan of Thang Chhang-An, from Hiraoka Takeo (4).
30. MISSILES AND SIEGES
Fig. 168. Rubbing depicting a Han-period market scene, excavated at Kuang-Han, from Liu Chih-Yuan (7), fig. 1.

Fig. 169. Rubbing depicting a Han-period market scene excavated at Pheng Hsien, from Liu Chih-Yuan (7), fig. 2.

Fig. 170. Rubbing depicting a Han-period market scene, excavated at Hsin-Fan, from Liu Chih-Yuan (7), fig. 3.
light of the discovery of a Han dynasty village in Hopei province. Miyazaki claims that the ward, still surrounded by low walls, was divided into a northern and a southern part, each with its own entrance onto the street. A partition kept the two sections apart in which another door, called a *yen*¹, was constructed, permitting access between the segments. This system broke down with the collapse of imperial authority at the end of the Han, to be re instituted under the Wei dynasty in the form of the *fang*² ward system. Neither the Wei, nor the Thang, which continued the Wei’s system, were able to maintain as strict control over the population at large, however, because most of the people were now located in the countryside. The towns were no longer largely inhabited by those who made their living in the agricultural sector, but rather by artisans, merchants, the well-to-do, families with high status, and others. Thus, although the walls of the *fang* were taller and more substantial, the government was powerless to prevent the excavation of more gates in the wards, usually one in each wall, and could not stop the people from moving about with greater freedom. Eventually, the ward system had to be abandoned entirely towards the end of the Thang and into the Sung dynasty, as the commercial activities in the cities rapidly increased.

Although Miyazaki’s argument concerning the evolution of wards may, in general, be accepted as factual, Chun-shu Chang has pointed out that, from his analysis of materials in the wooden documents from the northwest, even the Han dynasty wards could be entered from all directions, not just from the north and south, as Miyazaki believes. Geographical locality must have had much to do with the choice of plan and it would be wrong to presume that all Han villages and wards had the same physical form.

The Mohists seem to have been particularly enthusiastic about a defence ‘in depth’ and to have encouraged the construction of as many obstacles to the attackers’ progress as possible. A sense of the complexity of the defence can be gathered from the following passage from the section on Flags and Pennons:

When the enemy approaches and attacks from outside the moat in front, those on the city walls facing the lines drum three times and raise one pennant. When (the enemy) reaches the middle of the encircling water, they drum four times and raise two pennants. When they reach the brushwood fence, they drum five times and raise three pennants. When they reach the *phing* wall [*phing yüan*³], they drum six times and raise four pennants. When they reach the woman’s wall [*nü yüan*⁴], they drum seven times and raise five pennants. When they reach the main city wall, they drum eight times and raise six pennants. When they have climbed more than half way up the main city wall, they drum incessantly. At night use fire (torches) in the same fashion.

¹ Mêng Hao, Chhên Hui, and Liu Lai-Chhêng (i).
² Miyazaki Ichisada (6).
³ Chun-shu Chang (i), pp. 212–14.
⁴ Chun-shu Chang (i), pp. 212–14.
When the enemy withdraws, immediately drop the pennants in numbers similar to those of the advance, but without the drums.

Of these defence works, it will be noticed that only the moats and large walls have been uncovered by archaeological excavations and that many cities either diverted rivers around the walls or were located close to the banks of local watercourses. Some, we have seen, even had the rivers flowing right through the heart of the city. One wonders, therefore, whether the Mohist prescriptions were merely airy theorising or whether the excavators have overlooked the remains of the smaller walls. Perhaps, however, they have simply been reabsorbed into the Chinese earth.

Nevertheless, it is clear that the Chinese, although they knew of the dry ditch, which they called a huang, did not dig the series of dry ditches characteristic of Roman fortifications which usually extended up to 60 Roman feet (17.75 metres) beyond the battlements, although in some cases in Britain the ditches reached 46 metres beyond the main wall, beyond effective javelin range (25-30 metres), especially on those sides which were the most exposed. A good example is Whitley Castle, Northumberland (Figure 171). There were two main types of Roman ditch, the fossa fastigata, V-shaped in cross-section with a narrow channel running down the centre either intended to break ankles or the unintended result of cleaning the ditch, and the fossa punic, which had an almost vertical outer face and a sloping inner face that permitted the defender on the walls clear view into the bottom of the ditch, thus preventing the attacker from finding shelter from the missiles prior to launching a final assault on the walls (Figure 172). Sometimes, also, branches of thorn trees were placed in the ditches to make the assault even more treacherous (Figure 173), and holes called lilia (Figure 174) were dug directly in front of the walls of the fort like animal traps. Probably these would have been concealed with branches and grasses so that the enemy would not know where it was safe to plant his feet. One reason for the Chinese not to adopt these kinds of outworks may have been precisely because they were committed to an active defence, to meeting the attackers outside the main walls.

The dimensions of the moat varied over time and obviously depended on the availability of manpower, the local terrain and the proclivities of the men in charge of the defence. The Mo Tzu itself mentions a moat 15 chhih (ca. 3.47

† Hayashi Minao (6), p. 172.

‡ Anne Johnson (1), p. 49, and figure 28. It is worth observing that, subsequently, the Normans not infrequently made use of or adapted the earlier Roman fortifications: Pevensey, Exeter, and Cardiff being good examples (Platt (1), cf. Stephen Johnson (1)).

§ Anne Johnson (1), pp. 47-8. She notes that the number of ditches depended on the precise conditions of terrain. More ditches were added to protect weak spots and where there was a steep scarp, ditches could be eliminated altogether. The optimum depth of the ditches was between 1.2 and 2.7 metres and it was common to observe odd numbers for the widths, 9, 11, 13, 17 feet (pp. 48, 49).
30. MISSILES AND SIEGES

Fig. 171. Aerial view of the fort at Whitley Castle, Northumberland, showing the multiple ditches, from Anne Johnson (1), fig. 28.

Fig. 172. Profile sections of fossa fastigata and fossa punica ditches, from Anne Johnson (1), fig. 26.

Fig. 173. Branches of thorn-trees placed as obstacles in defensive ditches. (After Anne Johnson (1), fig. 33.)
metres) deep and 12 chhih (ca. 2.77 metres) wide, whereas the Chiu Chang Suan Shu, perhaps more realistically, gives the dimension of a typical section as being 15 chhih wide at the top, 10 chhih wide at the bottom, 5 chhih deep and 70 chhih long. The Thang Thung Tien, on the other hand, speaks of the moat being 20 feet wide, 10 feet deep and 10 feet wide at the bottom. Much wider moats have, however, been recorded by Chinese archaeologists, as we have previously noted.

Although freezing must have posed a problem for moats in north China, those in the south probably never froze over, especially if they were part of a flowing river. So, given that the terrain in which towns were built was often flat, that water was essential for Chinese-style agriculture, and that adequate drainage and flood control were crucial for the successful production of local crops on which the city population depended for economic survival, it is additionally not surprising that the Chinese opted for a system of moats and walls, rather than the Roman dry ditches, although we will encounter one example of the latter below.

The second of the defences mentioned in the Mohist passage translated above is...
the brushwood fence (fan'). Sun I-Jang suggests that this barrier was located in the moat,\(^a\) but it is more likely, in our opinion, that this is the same as the 'brushwood tie' (chhai chuan\(^2\)) whose specifications are given in another passage of the Mo Tzu as follows:\(^b\)

Clear away and bind together the trees and timber, ordering that there be a sufficient (quantity) to make a 'brushwood tie'. Rope together the front face and use a tree a chang 7 chhih (c. 3.93 metres) tall (as a measure) to make the outer face. Build it up lengthwise and crosswise tying it with brushwood and plaster the outer face with durable mud so as not to let water leak in. Order the breadth and thickness be capable of protecting a city

\(^a\) Sun I-Jang (2), p. 358. If he is right, this fence would be similar to the barrier erected in the middle of the moat defending Paestum in the fourth century (figure 175) (H. Schläger (1), p. 188; Carlan (1), p. 254 and figure 21. p. 252; Adam (1), p. 114).

wall more than 3 chang 5 chhih (c. 8.09 metres) high, and fill it in with brushwood, wood, earth, and twigs. The reason for this procedure is the emergency. Well in advance, join together the long and short pieces in the front face and order that it be capable of supporting mud sufficient to make a parapet. Plaster the outside well so that it cannot be burnt or pulled out.

This fence might also have been constructed when it was not possible to build a regular wall out of stamped earth, either because the enemy were too close at hand or because there were insufficient numbers of men and women to carry out the other preparations as well as the erection of the small wall.

In later times, when there was no opportunity to construct regular fortifications, wooden palisades (mu cha') were erected either of round or square shape and of a height suitable to the terrain. They too were equipped with a parapet and the whole construction was plastered with mud to prevent its destruction by fire. The gates were equipped with portcullises (hsüan men) and the whole palisade was protected by a moat or ditch and chevaux-de-frise (chü ma). The rebel Hou Ching built such a palisade around the Liang capital of Chien-Khang in the winter +548–549 to prevent the besieged from leaving the city and to hinder supplies and reinforcements from entering, whereas the extremely successful frontier general Tuan Chiang in +168 had a thousand of his men construct a wooden barrier 120 chhih (ca. 27.72 metres) wide and 40 li (ca. 16.56 kilometres) long in Hsi-Hsien in the northwest marches to intercept fleeing Chhiang tribesmen whom he was pursuing. Numerous other similar examples of the construction of such fences are found in the historical records.

It is interesting to observe that similar palisades were erected around forts on level ground in northern Honshu by Japanese generals who were intent on extending their control over the Ezo in the +8th and +9th centuries. Several of these generally square forts have been excavated since the 1930s. One palisade, however, at Hotta no Saku, Semboku county, Akita prefecture, was oval, and ran for 3.6 kilometres round the outer perimeter, while palisades protected two small hills, the sanctum within the fort (Figure 177). Whether or not Japanese generals...
Fig. 176. Chevaux-de-frise. Note that in this illustration the artists have replaced the wooden stakes with spears, from WCTYCC, ch. 10, p. 34b.

Fig. 177. Outer palisade offset at Hotta no Saku, Semboku County, Akita province, Japan, from Motoo Hinago (1), fig. 20.
and engineers were influenced by Chinese practice is unclear. It is, however, quite possible, for Japanese emissaries, including many monks, visited Thang China and could have heard of the technique long in use there, and brought the idea back with them.

On the other hand, of course, the Japanese may simply have turned to the most readily available material and constructed the palisades because their fierce and threatened enemies were pressing upon them. But the technique was certainly very unusual for the Japanese, and from all accounts was not repeated in later times as it was in China.

The next two defences, the phing yuan¹ wall and the woman's wall (nü yuan²), most probably were two small barricades erected behind the brushwood fence and in front of the main walls. Usually, however, both terms were alternative names for the parapet (tieh³) on top of the main city wall. This latter term also seems to have been used for these small outer walls in another passage, where it is recommended that these 'extended battlements' (yen tieh⁴) be 6 chhih and in some sections 4 chhih wide. Another picket fence (chu⁵) is also mentioned here and in both walls splint frame supports are erected to hold up military crossbows and revolving shooting machines.a

Immediately following the question on city walls in the Chiu Chang Suan Shu is another concerning a small wall (yuan⁶). This may refer to a similar wall to those in the Mo Tzu passage, although the height is considerably larger, 12 chhih, and the lower width is 3 chhih and the upper 2 chhih, and there is no mention of a parapet.b

In the Six Dynasties period, this type of supplementary wall seems to have also been given the name 'rampart wall' (lei chheng⁷), and by Thang and Sung times a low wall located between the moat and the walls had become commonplace. This was known as the 'sheep-horse wall' (yang ma chheng⁸). The dimensions of this wall varied considerably. The Thung Tien suggested that the wall be placed 50 chhih away from the main walls and be 6 chhih wide and 5 chhih high with a parapet (nü chhiaang⁹) on top.d The Thai Po Yin Ching, on the other hand, recommended that such 'sheep-horse walls' be constructed around all beacon stations (feng sui thai¹⁰) of a size that was convenient and appropriate to the circumstances.e

The Sung military encyclopaedia Wu Ching Tsung Yao, however, considered that the wall should be larger. It could be from 8 to 10 chhih high with a parapet reaching 3 chhih above that. The gate in it was to be on the opposite side to that of

b Ch. 5, p. 22.
c * Tsu Chih Thung Chien, ch. 144, p. 448t, under the year +501.
d Ch. 152, p. 800a.
e Ch. 5 (Phien 46), p. 107; cf. Thai Phing Yü Lau¹¹, ch. 333, p. 6b, text attributed to the Wei Kung Piao Fa¹².

¹ 鏑 ² 墻 ³ 堡 ⁴ 塗 ⁵ 増
² 壁 ³ 城 ⁴ 馬城 ⁵ 壁
¹¹ 太平御覽 ³ 城 ⁵ 驗城 ⁶ 緯會戶
the round or square barbican (wéng chéng, literally 'jar wall') protecting the gate in the main wall. If the gate of the barbican is on the left, that in the "sheep-horse wall" should be on the right. This arrangement was intended to keep any enemy who broke through the first gate in the line of fire from the defenders on the barbican and main walls for as long as possible (Figure 178).

More than thirty years ago, the Japanese scholar Hino Kaisaburō published an important study of the 'sheep-horse wall' in Thang and Sung times, the result of his poring over historical texts for twenty years. His conclusions are of considerable interest, for they show that the 'sheep-horse wall's' development was intimately connected with the evolution of the commercialisation of society from the +8th to the +11th centuries.

After the end of the Han dynasty, many outer walls (kuo) of towns and cities fell into disrepair and only the inner citadel was protected by walls. The 'sheep-horse wall' therefore filled an important gap in the defences for not only did it keep cities located in low ground from being flooded, but also provided the main line of defence in many instances, principally because much of the population chose to live outside the main walls; seizure of the 'sheep-horse wall' was nearly tantamount to taking the city itself, for the defenders became demoralised and some even defected to the besieging army.

The reasons that so much of the population took up residence outside the walls were several. Among these reasons should be mentioned first: the people moved because the house and land taxes inside the walls were heavy, rather than because the land was limited. Secondly, as the traffic trying to pass through to the markets inside the walls grew heavier, it became profitable for merchants to establish shops in the areas adjacent to the roads leading through the gates. Third, it was dangerous, although profitable, to sell certain goods monopolised by the government inside the walls, but it was safer to deal in these unlawful commodities, such as salt, iron, copper, calf skins, etc. outside the walls away from inquisitive official eyes. Fourth, certain products such as grain (mi) and cash (chhien) could not be legally taken out of the city once they had been brought in. Fifth, it was hard to evade the tax or customs imposed by the officials on goods passing through the

1. *Chhien Chi*, ch. 12, p. 3a.
2. For the identification of the parts of the city wall defences in this figure, see Hsu Po-An and Kuo Tai-Heng, *T 'i*, p. 17.
3. Hino Kaisaburō points out that the wall could also be called *yang ma jǐn* and *yang ma chǐng*, but he does not know the origin of the term.
4. This observation has been confirmed by many site analyses by modern archaeologists. The latter cities are often smaller than those of Warring States date and occupy only a portion of the original area.
5. In serious floods, however, even the sheep-horse wall could prove to be no protection. In 953, for example, the wall outside Hsiang-Chou was overwhelmed by the combined waters of the Yangtze and Han rivers and the flood reached a depth of fifteen feet inside the inner city, drowning an untold number of victims and destroying all the grain supplies in the granaries (*Wu Tai Hsi Yoo*, ch. 11, p. 139).
gates, and, sixth, people were often detained for questioning by the officials at the gates. For all these reasons, the areas outside the gates became centres of commercial activity: it was safer and more lucrative to engage in trade there.

Gradually these locations attracted permanent residents and the population outside the main walls eventually in many cases outstripped in size that within the walls.

'Sheep-horse walls' were, therefore, constructed for the defence of different size cities and towns, from the major metropolises of national importance such as Thai-Yüan fu a to regional centres such as Ho-Yang Chou b, Hao-Chou c and Tshai-Chou d, and county towns such as Liu-Ho e.

Nevertheless, 'sheep-horse walls' were not the only protection for post-Han cities. From the Northern and Southern Dynasties period, many cities, both within the Chinese heartland and on the frontiers, possessed both inner and outer walls. The inner city was known as tzu chhêng f and the outer as lo chhêng g, which by

a Tzu Chih Thung Chien, ch. 269, p. 8801, for the year +916.

b Tshê Fu Yuan Kuei, ch. 400, p. 24a (p. 4764); Tzu Chih Thung Chien, ch. 262, p. 8537, for the year +900.

c Chiu Wu Tai Shih, ch. 117, p. 9a, for the year +957. (Po-na ed.)

d Tshê Fu Yuan Kuei, ch. 346, p. 15a (p. 4100).

e Sung Hui Yao Chi Kao, tshê 190, 'Fang Yü' Huai-Nan Tung Lu*, p. 1b.
Thang times could also be called *lo kuo* (Figures 179, 180), and these terms occur more frequently in the historical records than *yang ma chêng*. Later Ming and Chhing local histories quite frequently record that the inner and outer wall configuration of some towns and cities that had survived through the centuries originated in the Sui and Thang dynasties; some even claimed they dated as early as the Chin.

Later in the Thang dynasty, as the power and authority of the central government declined after the An Lu-Shan rebellion, some cities in the provinces even came to build a third enceinte inside the inner city. This was called the *ya chêng* and it was where the local military leader’s forces were stationed and whence he ruled the surrounding region. With the collapse of the Thang, certain of the independent warlords were strong enough to declare themselves emperors in their own right and, as a conspicuous gesture of their newly arrogated status, they changed the inner cities into their own private palaces. Such a transformation took place at Pien-Chou, the modern Khâi-Fêng, Honan, under Chu Chhian-Chung, the founder of the Liang dynasty in +907, a city which later became the capital of the Northern Sung dynasty. Indeed, the Sung continued the system it had inherited and inside the inner city of many provincial centres troops were barded; armories and storehouses were located there as were other administrative offices. But we are moving too far from the matter at hand, the actual physical features of the defence.

The *Wu Ching Tsung Yao* suggested that the moat of a city be dug approximately 30 paces (*pu*) (150 ‘feet’) away from the walls over which a drawbridge (‘fishing bridge’ (*cho chhiào*)), which we will describe shortly) was laid. On the inner bank of this moat, the ‘sheep-horse wall’ was to be erected, approximately 10 paces (50 ‘feet’) away from the main walls, which were to have crenellations (‘woman’s walls’ (*nî chhiang*)) every 10 paces. On both the walls and the ‘horse-face’ (*ma mien*) projecting towers (see below pp. 386ff.) were built flat-topped wooden hoards or balconies (‘enemy balconies’ (*ti chêng*)); these hoards were to be placed on the corner towers (*ti thuan*), the barbicans, and other towers (*ti lou*) along the walls. These evidently had windows through which the soldiers on duty could fire their weapons. On top of these hoards, small exposed rooms (*pai lu wu*) were erected.

The latter were made out of bamboo or strips of elm or willow and woven into a

a Kuo Hu-Sheng (*1*). Occasionally the term *chin chêng* ‘metal city walls’ is used for *tzu chêng*. Some cities were located on naturally defensible sites, so little effort was needed to protect them. Chhao-Ho (*1*). Sinkiang, for example, had no need for outer walls on three sides because the sheer cliffs were a more than adequate protection (figure 181).

b Fu-Chou (*1*). An example (Kuo Hu-Sheng (*1*), p. 66g).

c ‘Chhien Chi’, ch. 12, p. 2b.
kind of tent that was then smeared with lime (*shih hui*¹) to protect it from burning. There was a door and a window and it was large enough to hold one watchman who was to keep the enemy under close scrutiny. The sides were protected by bamboo screens held in place by posts and inside the watchman was furnished with jars of liquid mud (*ni chiang*²) and hemp mops (*ma tha*³) to fight fires set by the enemy.⁴

The towers were built on top of the ‘horse-face’ foundations like the hoards on the walls, and the latter were recommended to be 7 feet (*chhih*) high in the front, sloping to 5 feet high in the rear. Each ‘room’, really each section, was to be one

¹ *Chhien Chi*, ch. 12, p. 59a.
² 石灰
³ 泥漿
⁴ 魚塚
pace (5 feet) wide and 10 feet deep and this was to hold approximately 20 soldiers. If the city walls were wider, however, the rooms were to be deeper. Across the top of the sections, large boards called *tha thou mu* were laid and these fitted into double posts. The floor was also laid with timbers (*ti fu*) and the whole hoard projected 3 feet from the wall itself. Usually there were two double posts per section, but up to four could also be used. To protect the wood from stone and arrow missiles, a three-foot covering of earth was tightly packed down on top and a solution of lime was also plastered on. The rest of the wood was covered with wet felt and the exposed parts of the posts and floor timbers were covered with fresh oxhide to guard against fire arrows (Figure 182).

* *Ch'ien Chi*, ch. 12, p. 9ab; illustration, pp. 8ab.

1 梯頭木
2 地楅
But we are getting ahead of ourselves, and must return to the early ditches. The Mohists in Warring States times recommended that a supplementary dry ditch or moat (fu hao) be dug inside the walls to a depth of 15 chhih (c. 3.47 metres) and filled with firewood. Should the enemy be able to break through all the outer walls, this was to be set ablaze to act as one more barrier protecting the innermost sanctum of the town or city, the quarters or palaces of the ruler, officials, or defenders, which were themselves surrounded by double or triple walls, surmounted by towers, and roads, and guarded by soldiers particularly conspicuous for their loyalty and honesty.

The earliest example of this kind of protection afforded the ruling élite in the town or city may be found at Chêng-Chou², Honan. The northeastern section of the Middle Shang city inside the massive hang thu walls contains a number of large stamped earth foundation platforms for palaces and other high status buildings, together with quantities of valuable objects of jade and bronze, ceramics and oracle bones and sacrificial pits. A ditch appears to run along the northern side of this quarter and, in addition to providing drainage for the buildings, it may have also possessed a military function.

2. 鄭州
Nevertheless, the excavators are not as yet sure whether this is the case. To make a definite characterisation, it will be necessary to discover whether the ditch passes all round the precinct and to determine its precise relation to the gate in the north wall through which a major artery apparently runs to the west of these important buildings.

So far, however, too few detailed excavations of later city sites have been undertaken to clarify whether the Mohists' recommendation about this internal dry ditch was adopted regularly into town and city defensive planning. Here again we await further archaeological work to resolve a problem in ancient siege warfare.

(v) Gates

The Mohists urged that great care and attention be paid to the gates of a city or town, for they were the most vulnerable part of the defences, not only from the actual physical point of view in that they could be burned or forced open with rams from the outside, but also because they could be sabotaged and even opened from within by a traitor among the defenders' own ranks.

For the latter reason, the Mohists laid an interdiction on those guarding or standing at the gates, forbidding them to carry axes, adzes, chisels, saws, or hammers. They further issued specific rules governing the organisation and behaviour of those detailed to guard the gates. The men were divided into sections under no more than two officers, and each of the five-man squads were held mutually liable for each other's actions and for those of the other squads on all four sides: if a soldier committed an infraction, his squad-members were all punished, as were the twenty other soldiers in the surrounding squads as well. Abandonment of one's post without permission resulted in immediate execution. The soldiers all had to eat at their posts so that they could not intermingle with the general citizenry, and be tempted into treachery. In the daytime, the colonel of the gate (mén wei) inspected the guards three times, and in the evening, when the drum beat the curfew and the gates were closed, he inspected them once. In addition, the head of the entire city, the Mohist Defender (shou), sent special envoys to examine them at frequent intervals and reported the names of absentees to higher authorities.

1. An Chin-Huai (5), p. 44.
2. The ground-plan of the city (Figure 139) does not mark the ditch.
3. Tseng Kung-Liang and his associates in the Sung held that if you wanted to attack a city, it was essential to know the names of the general in charge of the defence, as well as those of his aides-de-camp and the men guarding the gates, so that they could be besuborned by spies (WCTY, ch. 15, p. 15a). cf. de la Croix (2), p. 10; F. E. Winter (1), p. 205.
4. Aeneas Tacticus (V.2) remarks that Leuco, the tyrant of the Cimmerian Bosphorus (Sea of Azov) from -393 to -333, dismissed those of his gate guards who had fallen into debt by gambling with dice or who were engaged in other nefarious activities, and strongly recommends that such guards be wise, discreet, and prosperous, and with a stake in the city, such as having wives and children there, and not be indigent or under some other pressure which could be used to influence their behaviour (V.1).
When the gates were still open, before the enemy had actually invested the city, the gate guards had the duty of inspecting the credentials of all those who passed through: those without the proper tallies (fu) and passports (chuan) were immediately arrested. The fascinating history of these credentials, with their ramifications for the development of the Western European state in the Middle Ages, will occupy us in a separate section of these volumes, and so we will pass on to a description of the physical structure of the gates without further comment.

The vertical posts and horizontal crossbars of the gates were reinforced with iron rings and welded, and further wrapped in metal sheets or welding metal (ku chin) or iron. The exact process is unclear because of the textual difficulties, but it may have been akin to the welding of hard and soft steels we have already encountered elsewhere. The crossbars (kuan) were wrapped with quadruple layers of sheet iron, and two-foot long doorbars (kuang kuan) each had a lock and key (kuan) which was sealed (feng) with the Defender’s seal (yin). The precise difference between the crossbars and the doorbars may perhaps be seen from the representations of granaries of Han date from Pheng Hsien and Chi-Nan illustrated in Figure 183: the doorbars may be the vertical struts into which the crossbars fitted. Unlike in the Han granaries, however, the crossbars fitted into the jambs, and the Defender ordered men on appropriate occasions to inspect the seals covering the locks and to measure the depth of penetration of the crossbars into the jambs, to ensure that no tampering had taken place. The technique of covering the door with sheet metal probably continued in later centuries and may perhaps be represented in Hsiao Chao’s wonderfully detailed Southern Sung painting of a gate, part of his larger composition Chung Hsing Chêng Ying Thu (Figures 184, 185).

To protect the gates against an attack by fire, the balconies or galleries (i.e. hoards) above the gate were plastered with mud and stocked with two-litre vessels made of hemp fibre (chih shui ma), and leather basins (ko phen) and other larger containers (chui/ghhui) of six-litre capacity. In addition, and presumably this was for towns and cities unable to provide the material or skilled workers to apply sheet iron to the gates, the leaves of the gates, the posts and pillars were all to be drilled half a foot deep and a peg (i) driven into each hole. The
pegs projected two inches and were one inch wide and hammered into rows 7 inches apart. All the wood was then plastered with mud to guard against fire. The provision of water containers suggests strongly that at this early date the Chinese had not yet discovered the effectiveness of boiling oils in siege warfare, for water would not extinguish such fires, and no indication is given for any other method of combating flames started by the enemy.

This technique of plastering the woodwork was taken to superb heights of sophistication in Japan where it was known as dozō-zukuri ('stuccoed storehouse construction') and integrated into the Japanese architectural aesthetic. The most famous example is Himeji-jo, where every timber except for one small part of one grille window in the inner section of the castle is thickly plastered with white

* We have much to say on this topic of inextinguishable fires in the section on gunpowder, to which the reader is referred. cf. Finó (1) notes that in the west, structures that were targets of attack by oil fires or 'Greek fire' were often covered with fresh rawhide or protected by material soaked in highly acidic solutions such as vinegar or fermented urine, and that sand and dust were the most effective means of extinguishing such fires. As we shall see, many of the later Chinese siege engines were so protected, which implies that oil fires may have begun to be used in Han times.
Fig. 184. Detail from the southern Sung painter Hsiao Chao's *Chung Hsing Chêng Ying Thu*, from Hsieh Chih-Liu (2), plate 66.

Fig. 185. Detail from the southern Sung painter Hsiao Chao's *Chung Hsing Chêng Ying Thu*, from Hsieh Chih-Liu (2), plate 65.
fireproof mud. The effect is so brilliant that the castle has come to be known as Shirasagi-jō or White Heron Castle (Figures 186, 187, 188).

In addition, the technique of covering the doors with sheet metal and hammering iron nails through it into the woodwork underneath was also adopted in Japan, the Ishikawa Mon, Kanazawa-jō (Figure 189) being a particularly impressive example in one of the few remaining genuine castles dating from the late +16th and early 17th centuries, the period of intensive castle development.

In addition, the Mohists ordered that all gates and doors in the city be drilled through when the invaders arrived, and all the apertures covered with two flaps to which ropes 4 feet long and as thick as fingers were attached. Presumably this was to permit the defenders to fire bows and crossbows through the openings, and to push out spears, halberds and swords if the enemy succeeded in reaching the gate and set to work chopping it down with axes, prying it open with crowbars, or smashing it with rams.

In fact, in +548, Yang Khan, the stalwart captain of the defence of the Liang capital Chien-khang, the modern Nanking, against the rebel Hou Ching had to drill such holes through the leaves of the Tung-i gate and personally killed two of the men who were chopping it down. The other attackers thereupon retreated.

We shall return to this famous siege later in our story.

Again, the same technique of drilling the leaves is to be found in the later military manuals, such as the *Thai Po Yin Ching*, which advocates 'several tens of holes' be drilled and in the *Wu Ching Tsung Yao* compendium, Tseng Kung-Liang and his associates observe that some experts advocate drilling the gates if there is no portcullis gate, and the ensuing 'pepper-pot' gate was called the 'hidden gate with drilled leaves' (*tsuo shan an men*) (see Figure 190). We must now examine the nature and construction of the portcullis gate.

(a) *The portcullis gate* (*hsian men*)

This gate was held aloft in times of peace and released by a trigger mechanism (*shên chi*) when an enemy threatened to attack. It gave additional protection to the main gates. Somewhat surprisingly, in early times it would appear that there were two leaves to this portcullis gate, which were each 20 feet tall and 8 feet wide,
both carefully plastered no more than 2 inches thick to guard against fire damage. While the dimensions certainly provide evidence for the size of city gates in late Warring States times, it surely would have been safer to have a single 16-foot-wide leaf, which could not possibly have been prised open by a determined besieger.

Nevertheless, representations of gates on Han tomb tiles and in the contemporary pottery tomb models of fortified houses and towers (ming chhi1 "vessels to the eye of fancy" as Legge so charmingly translated the term, really 'spirit vessels') are preponderantly of the double-leaf type, and so we cannot lightly dismiss the evidence of the Mo Tzu text. Unfortunately, the archaeological excavations of the foundations of the gates of Han Chhang-An2 have not, to our knowledge, revealed the presence of portcullis gates, although they must surely have been an integral part of the imperial capital's defences.8 the earliest notice of such gates occurs in

1 For a discussion of Han Chhang-An, see Wang Zhongshu (Wang Chung-Shu) (1), pp. 1-10, and especially figures 5, 6, 7, 20-3 for the foundations of several of the city gates. Possibly the grooves in the side of the Hsuan-Phing Men gate (figure 106) were originally intended for portcullises, but Wang makes no mention of them in his discussion, pp. 7-8.
Fig. 188. Stucco walls, window, loophole shutters and iron grilles of the Nuno Mon (Tenth Gate), Himeji-jo, show the thoroughness of the fireproofing. (From Motoo Hinago (1), fig. 65.)

Fig. 189. The iron-studded doors, Ishikawa Mon of Kanazawa-jo, from Motoo Hinago (1), fig. 78.
The northern gateway of the Hsian Phing-Mên gate of Han Chhang-An. The carriage-tracks were left during the Sui dynasty, +581 to +618. (From Wang Zhongshu (Wang Chung-Shu) (1), fig. 22.)

- 66, when Tzu-Yüan¹ of Chhu attacked Chêng with six hundred chariots. The army entered first the Chieh-Thieh gate², possibly in a wall far out in the country, then the Shun gate³, possibly in the outer wall, and reached the market, situated at a cross-roads (khuei mên⁴) outside the gate through the main walls. Here they faltered, for they found that the Chêng defenders had not released the portcullis gate and there were individuals speaking Chhu dialect passing to and fro through

¹ 子元 ² 桔楌門 ³ 純門 ⁴ 錫門
30. Missiles and Sieges

351

the gate. Afraid that a relief force from the states of Lu, Chhi and Sung was fast approaching and that the numbers of the men of Cheng inside was considerable, they decided to beat a hasty retreat and retired during the night.

The Chhu dependency of Pi-Yang also boasted of the device in -563. If such a small town could afford this defence, how much more so the glory of the Han? Certainly such portcullis gates were a feature of many later cities – for example the great Ming gates of Nanking where grooves in the wall down which they slid can still be seen today.

The Thang *Thai Po Yin Ching* called the portcullis gate a 'double gate' (*chhung mên*), while later in the Sung the *Wu Ching Tsung Yao* recommended that this 'shield board' (*phai pan*) be built out of elm or sophora wood and be covered with fresh oxhide and iron plating (*thieh yeh*). It was to be raised and lowered by means of two iron chains placed at either side and attached to a windlass. The gate was to be situated 5 feet away from the main gate and fall into a specially dug trough, also plated with iron. The outside was plastered as a protection against fire and heavy timbers propped against the inside as additional supports (Figure 192).

(b) The shape of gates

There is very little in the textual evidence concerning the shape of the gates and the gate-houses in early times: certainly nothing is said in the *Mo Tzu* on the topic.

Archaeological excavations have, however, revealed that there were at least four different types of gates. Type I, which was chronologically the earliest, consisted of merely an opening in the trace of the walls. Such entrances to the city can be seen at Yen-Shih (Figure 140) and at Cheng-Chou. At Phing-Liang-Thai the south gate is relatively more sophisticated for the opening has been deliberately narrowed by the erection of gate-houses on either side of the passage-way, in which, no doubt, guards were stationed to check all those passing in and out of the city (Figure 138). Possibly a wooden gallery or balcony stretched over the entrance, but now all traces of any such construction have been irrevocably lost.

Type II seems to have begun in Western Chou times and is characterised by the construction of long stamped-earth foundations on either one or both sides of the entrance, projecting beyond the wall either just to the outside or to both inside and outside, creating a long tunnel in between. Presumably on top of the foundations

* Duke Chuang, year 28; Legge (11), pp. 113, 115; *Shih San Ching Chu Su* ed., ch. 9, pp. 17a–18a; Couvreur (1), vol. 1, p. 197; cf. Tu Chêng-Shêng (7), p. 656.
* Duke Hsiang, year 10; Legge (11), p. 327. *Shih San Ching Chu Su* ed. ch. 31, pp. 42a–43a. Couvreur, vol. 2, p. 25a. Khung Ying-Ta comments here: 'suspended gate: you plait planks as wide and as tall as the gates, and install a closing mechanism to suspend the gate up in the air. If there are invaders, you release the mechanism and let them down.'
* Ch. 4, p. 81; this also is the form that appears in the *I Ching* 'Hsi Tzhuhsia', quoted in *PTSC*, ch. 11, p. 2b.
* Ch. 14, p. 14a; illustration, p. 13a.
some kind of wooden gate-towers were erected and again wooden balconies may well have spanned the opening above the passage-way through which the traffic passed in and out of the town. Chhü-Fu¹, the capital of the state of Lu,² has foundations on both sides of the gate extending both inside and outside the walls (Figure 144), as does Yueh-Yang³, the one-time capital of the state of Chhin⁴ (Figure 152). Later versions of such gates could even have three separate passage-ways; probably the centre was reserved for the emperor and the two side gates were kept for ordinary traffic, one for the entrance and one for the exit.

Type III apparently began in the Han dynasty and the word yin⁵ may refer to this type. A supplementary wall projected out from and round the gate as a protection for it. The term appears in poem 93 of the Shih Ching⁶, where a line in the first stanza reads 'I went out by the eastern gate' (chhu chhi tung mên⁷) and the parallel line in the second stanza reads 'I went out by the yin and tu⁸.' The term tu apparently meant 'a tower on the city wall' (chhêng thai⁹) and yin probably the

¹ 曲阜 ² 魯 ³ 楚陽 ⁴ 秦 ⁵ 閬
⁶ 诗经 ⁷ 出其東門 ⁸ 出其閫闗 ⁹ 城壕
angular curved projection outside the wall. Other interpretations suggest that *yin* could just mean a double or portcullis gate, with *tu* the term for the tower above the gate: so *yin tu* could mean ‘the portcullised gate’.

Possibly the former interpretation should be understood as some kind of turn in the wall at the gates to make it more difficult for the attackers to gain access. This is the design of the Company Headquarters of Chia Chhii of Han date recently excavated along the northwestern lines (Figure 104) and a similar construction is reported protecting the entrance to the Han Chi Lu Sai (Figure 193). It would be a type of curved or round barbican (‘jar wall’ *wèng chhêng* or ‘moon wall’ *yieh chhêng*), which is recorded in the texts from Thang through Ming times. This, the fourth type, was a barbican built according to the size of the main city walls and the configuration of the terrain, which we have encountered above (Figure 178). A fine example still stands outside Chhii-Fu, Confucius’ home town in Shantung province.

In the Chii Yen slips, the terms *wu* and *hou* appear. Scholars disagree as to the precise meaning of these terms, especially as they cannot be distinguished clearly in any given instance, but they seem to refer to the towers and walls of the forts and watch-stations. Loewe takes the *wu* as referring to the tower and *hou* as the wall, but Chun-Shu Chang prefers to understand *wu* as meaning the walls in general. The curved outer wall, he says, was known as the outer *wu* (*wai wu*) and the main walls protecting the inner sanctum were called the inner *wu* (*nei wu*), (Figure 194).

Among the most conspicuous advantages of this design was that large battering-rams could not be brought up by the attackers to beat upon the main gates, for a long ram simply would not fit between the outer wall and the gates. In addition, the attackers would be exposed on all sides to fire from the defenders standing on the walls above.

At the other end of the Asian continent, the Greeks developed great skill in constructing gates that would expose an attacker to the largest amount of firepower from the defenders and inhibit his movements within the confines of the gate-house. At Miletus on the Asia Minor coast, the engineers broke up the straight line of the walls, dividing it into small sections set at angles to each other. At the ends of certain of these sections, they constructed postern gates protected by

a Shih Mee Shih Chuan Su, *tsheh* 9, ch. 7, p. 85; cf. Karlgrae (1), no. 483 and Tuan Yü-Tshai’s comment on *yin* in the *Shuo Wên* dictionary (Ting (1), pp. 5312b-5313b), and Tanaka Tan (1), pp. 153-4.

b Hou Jen, Chhii (3), pp. 177-180 and figure 16. At Chi Lu Sai the width of the entrance itself was 3 metres, being located slightly to the west of centre in the south wall. The dimensions of the curved protecting wall were 14 metres north-south, 20.5 metres east-west, and the gap in the eastern wall permitting access to the main entrance was 2.5 metres wide. Thus the eastern wall was 18 metres long.

c *WCTYCC*, ch. 12, pp. 3b-4a, illustration, ch. 12, pp. 5a-5b.

square towers that jutted out from the walls. These had exactly the same effect as the Chinese 'curved walls' and permitted the defenders to sally out at will to fall on the attackers. The angled wall sections also permitted the defenders maximum coverage of the ground in front of the walls and there is very little 'dead' ground at all (Figures 195, 196).

At Messina, the famous gate of Arcadia is composed of a perfectly round courtyard surrounded on all sides by dressed stone walls. The outer portal is additionally covered by two stone towers placed on either side of the entrance. It would have taken an intrepid besieger indeed to force the inner gate while at the mercy of the defenders manning the walls above him (Figures 197, 198). The design is similar to the gates à tenaille which are to be seen in many of the most famous fortifications, such as the citadel of Euryalus defending Syracuse, which held out against the Athenians (Figure 199), and at Mantinea (Figure 200). The gates along the Long Walls between the Piraeus and Athens, on the other hand, have rectangular courtyards, but they served the same function (Figures 201, 202).^a

Like those of the Greeks, the gates built to protect late Roman towns show a far greater variation of ground-plan, design, and construction than the Chinese. All the evidence suggests that the Romans abandoned square-shaped gates and towers rather early because of their relative vulnerability to concerted battering by heavy rams,^b but these square and rectangular 'Andernach' gates are to be

a F. E. Winter (1), pp. 205-33; Adam (1); A. W. Lawrence (2), pp. 288-99, 302-42.

b Vegetius (1), IV:1; Stephen Johnson (2), p. 40.
found in the provinces (Figure 203). Although most gates have been rebuilt or destroyed, originals have survived in Spain where the usual arrangement was to have narrow passage-ways protected by semi-circular flanking towers\(^b\) (Figure 205).

The main Aurelian gates in the walls of Rome ‘were double portalled arches, flanked by projecting semi-circular towers’, with ‘large U-shaped windows’ on the first floor. Single passage-ways protected by the same type of towers were erected for the less important access routes into the city\(^c\) (Figure 204).

\(^a\) Stephen Johnson (1), p. 48, illustration no. 21.
\(^b\) Stephen Johnson (1), p. 44.
The defences for gates constructed on the Roman model to protect towns and cities in the western and northern provinces against the raiding northern tribesmen were mostly of U-shape (for example, at Pevensey, Nantes, Yverdon, etc.), but polygonal towers were also not uncommon (Cardiff, Salona, Split, etc.) (Figures 206, 207). In addition to making the flanking towers less vulnerable to

Stephen Johnson (1), pp. 45-50.
rams, the polygonal and U-shape limited the amount of dead ground in front of the approaches to the entrances, and also probably assisted in deflecting missiles hurled at the defenders.

At Carcassonne, the development in the shape of the towers can perhaps be observed, thanks to the efforts at preservation and reconstruction by the indefatigable Viollet-le-Duc. The Visigoths captured the original Roman castellum in
Fig. 200. Gate à tenaille, Mantinea, from Adam (I), fig. 55.

Fig. 201. The Sacred Gate in north-west Athens in the Kerameikos District, from Adam (I), fig. 52.

Fig. 202. The North Gates of the Athenian Long Walls, Peiraeus section, from Adam (I), fig. 53.
+436 and proceeded to refortify it according to the requirements of the new age.

Turning it into one of their major bastions in the southwest of France, it is said that they erected semi-cylindrical towers on the square Roman bases, a feature which survived the major programme of building by the French in the twelfth century, after the citadel had been recaptured from the Arabs.

* de la Croix (2), p. 34
This conclusion is doubted by some scholars, however, who are not disposed to accept Viollet-le-Duc's enthusiastic attributions. So much rebuilding has taken place, they argue, that it is impossible to be so definite in assigning a date to the foundations that goes back as far as later Roman times. The castellum simply was not that important before the Visigoths to have such massive defence works: most of the foundation work on the inner towers was the work of the new masters of southeast Gaul, not the Romans, and much of their masonry work was rebuilt and repaired by the French in the 13th century. *

Certainly there were variations among the Chinese fortifications of pre-Han date, but we will have to await more detailed excavations and further research to determine whether any variation comparable to that of the Greeks and Romans developed in the Chinese tradition, other than what we have posited above. It is unlikely, however, that polygonal and U-shapes were possible when stamped

* Poux (1), (2), Blanchet (1) cf. Grimal (1).
earth and rubble formed the core of the walls and bricks and dressed stones were only employed on the facing.

What the city gates looked like may be seen in Figures 208, 209, 210, and 211. Figure 208 is a Han miniature fired pottery model of what is probably a city gate with a single entrance. The gate is guarded by four halberdiers: two stand outside the entrance and two more are stationed within the gate itself. Apparently the entrance is framed with square, possibly stone, pillars carved with a geometrical design, on which a similarly carved stone lintel rests. This lintel in turn partially supports an overhanging eave. Above this, on either side, are two towers, each with a single window, between which a hoard or covered walkway is constructed. The stairs inside leading up to the towers seems to be schematically represented on the face of the model. Decorating the outer face of the gate are a number of rectangular and square plaques, whose designs include a four-storey gate-tower, three cavalrymen firing their bows over their shoulders in the Parthian fashion, two chariots or carriages, leaf and ring motifs, and in the centre a type of thao-thieh mask, which may have had some apotropaic meaning.

If city gates were so decorated in reality, this would parallel the practice of the

* Yuan Tê-Hsing (2), vol. 1, p. 304. This model is currently held by the British Museum.

1 thao-thieh
Romans who also endeavoured to make the walls and towers more aesthetically pleasing by placing the bricks in geometrical patterns (Figures 212 and 213).\(^a\)

In the stone rubbing illustrated in Figure 210 dating from the Han dynasty, the hoard between the gate-towers has been transformed into a separate, although slightly lower tower,\(^b\) whereas there is no such construction between the four-storey double-entrance gate-tower of the eastern gate of the Hsien-Ku (Han-Ku) pass\(^1\) (Figure 211).\(^c\)

\(^a\) Stephen Johnson (2), figures 1 and 2.

\(^b\) Chhang Jên-Hsia (1), plate 52.

\(^c\) Hayashi Minao (6), p. 173, and 4,36, p. 68. Chavannes (25), plate 1. He suggests that the rubbing may be a representation of the famous story of Meng-Chhang Chun\(^*\) who was fleeing from the state of Chhin in ca. -299.

The pass was only opened when the cocks crowed at dawn. Arriving at night, he found the gates closed, preventing his escape. One of the members of Meng-Chhang Chin's entourage imitated a cock-crow so cleverly that all the neighbourhood cocks answered and the gates were opened to let them through.

As far as we can determine, there have been no reconstructions of gates from the Han to the Thang dynasties, but it might be possible now that archaeologists have begun to excavate foundations of such gates; see, for example, Chuug-Kuo Shé-Hui Kho-Hsueh-Yuan Khao-Ku Yen-Chiu So Lo-Yang Han Wei Ku-Chhêng Kung-Tso Tui (1).
Fig. 208. Han fired pottery model, probably of a city gate, from Yüan Tê-Hsing (1), vol. 1, p. 304.

Fig. 209. Han relief showing city gate, from Yüan Tê-Hsing (1), vol. 1, p. 309.
Fu Hsi-Nien (r) has gathered together much information about later Sui and Thang gates for his reconstruction of the Hsüan-Wu¹ and Chhung-Hsüan² gates of the Thang imperial Ta-Ming Palace³. Figure 214 provides a good conspectus of different types of city gates from Western Wei to Five Dynasties times and Figure 215 examples from Sung and Yuan paintings. His reconstructions of the gates (Figures 216, 217, 218) certainly seem convincing, given his careful analysis of all the relevant archaeological, textual, and pictorial evidence.

(vi) *Bridges and sally-ports*

To return to the ancient fortifications: 30 feet outside the gates, the Mohists recommended a trench be dug, 1.5 feet deep if the town was located on high ground, and down to the water level, if it was on low, and this obstruction was filled with sharpened stakes. Over this trench a ‘releasable bridge’ (*fa liang*⁴), possibly only wide enough for a single file of men, was to be constructed, and covered with brushwood and earth to conceal its presence. The bridge had some kind of trigger mechanism, possibly related to that of a crossbow, or consisting of a simpler mechanism: underneath may have been a pole which was inserted into a hole at the defenders’ end and held in position by a pin running through it at right angles.
When the trigger or pin was pulled, the bridge rotated, depositing all who stood on it into the ditch, where they would be impaled by the stakes, and captured, or suffer a slow and painful death. The idea was to try to entice elements of the enemy onto the bridge by engaging them beyond, pretending to be defeated, and fleeing across the bridge. When the enemy pursued, the bridge was ‘fired’ or released, and the leaders unceremoniously revolved into the trench. Their fellows, horrified at the fate of their brave comrades, would abandon the siege in fright; or so the Mohists hoped.*

Interestingly enough, the *Book of Lord Shang* places women in charge of releasing

* This bridge appears in several places in the Mohist chapters: *Tao Tsang* ed., ch. 14, p. 16b, 10ab etc.
Fig. 212. Decorative brickwork on wall of Roman fort at Le Mans, the Tour Magdeleine, from Stephen Johnson (2), fig. 1.

Fig. 213. Detail view, showing patterning in wall-fence of the Tour du Vivier, Le Mans, from Stephen Johnson (2), fig. 2.
30. MISSILES AND SIEGES

the trigger mechanism of the bridges. In Lord Shang’s system, women were organised into one of three armies for the defence of a city under attack.\(^*\) But the most famous occasion of its use was when the King of Chhin tried to keep the well-known, albeit minor, philosopher Yen Tan Tzu\(^1\) from leaving the Chhin capital

\(^*\) Duyvendak (3), p. 250, translates the passage quite erroneously: he has the women ‘pull down the supporting beams’, which makes nonsense of the machine.

\(^1\)燕丹子
Fig. 215. Sung- and Yiian-period city gates, based on contemporary paintings, from Fu Hsi-Nien (1), fig. 5.

Fig. 216. Reconstruction of the Chhung-Hstian Gate, Ta-Ming Kung, Thang dynasty, viewed from the northern (outer) side, from Fu Hsi-Nien (1), fig. 16.
30. MISSILES AND SIEGES

Fig. 217. Reconstruction (side view) of the Hsuan-Wu Gate, Ta-Ming Kung, from Fu Hsi-Nien (1), fig. 17.

Fig. 218. Reconstruction (aerial view) of the Hsuan-Wu and Chhung-Hsitan Gates, Ta-Ming Kung, from Fu Hsi-Nien (1), fig. 19.
Hsien-Yang. He attempted to lure the philosopher onto the bridge in order to capture him and force him to stay, but the latter was too cunning, refused, and so made good his escape. Hsien-Yang was located only a few miles away from the later Han capital of Chhang-An, and so we would expect that similar arrangements of trenches and revolving bridges would also have been constructed in front of its city gates, but the excavators are silent on the point. Perhaps if they had looked for them, they might have found some traces.

The bridge was still part of the defences in Sung times, for the WCTY describes and illustrates it (Fig. 219), but how much later it continued to be constructed is hard to say. The defences of the gates in the later period we are studying, however, did undergo considerable modification and improvement. Most notable was the addition of the bastion (weng chhêng?) seen in Fig. 178, built in a semi-circle round the gate as an additional protection. But before we turn to this Thang innovation, we need to add a few more remarks about gates and bridges in the early period.

Apart from the main and secondary gates, the Mohists also advocated the construction of sally-ports (thu men) every 150 feet along the walls. These continued to be part of the normal defences of a city up to the Sung dynasty and they featured in a number of sieges during that time, although we forbear to give precise dates and occasions. The Sung manual WCTY does not recommend any fixed number to the ports, but does provide significant details of construction. The city wall is to be excavated to within one foot of the outer face, in such a way that the work cannot be detected by the enemy; the sally-port is to be 7 feet high and 6 feet wide, with supporting pillars (phaï sha chu) on either side and crossbeams over the top to prevent any collapse of the walls. A small hole was drilled through the outer face to act as a spy hole for watching enemy movements. When they appeared off guard, surprise or irregular troops (chhi ping) broke down the remaining barrier and rushed out in a sortie. The regular soldiers on the wall would naturally assist their fellows down below with whatever means they could, stones, arrows and blood-curdling yells.

If the sortie was not successful, of course, the sally-port became itself a weak point in the defence perimeter, and would have to be guarded extra carefully. But we do not have any further information to assess the threat that such gaps posed to the defenders, nor how they remedied the situation. In Byzantine time, sallies were also encouraged for we read in Maurice’s Strategikon:

small, narrow doors should be cut into these towers opening to the side toward the right of the siege engines drawn up by the enemy, so that our infantry can go out through
these side doors and attack while safely covered by their shields and supported by the troops on top of the wall; in this way, they will be able to force the enemy to pull back their equipment. These small doors should have gates so they can be secured when necessary and not remain open.a

By Sung times, a second type of drawbridge had been developed called the 'fishing bridge' (cho chhia). The details of construction are not entirely clear, but it does seem to have been made of planks of elm or Sophora wood laid over a trench or moat dug approximately 15 feet in front of the gate. It was raised by means of two iron chains attached to two iron rings fastened onto the bridge. They met at a third ring bound to a hemp rope which in turn was tied to a wrought iron windlass (?) (thieh chuan shu), probably mounted on one of the wall-towers. Apparently, when raised, the bridge rested between two large posts each 25 feet tall. Unfortunately, the illustration in the WCTY (Fig. 220) is not at all helpful for visualising this bridge, because the posts, windlass and wall-tower are all missing, and the artist has depicted not the three rings, but four, and substituted two hemp ropes for two iron chains and one hemp rope.b We propose a solution rather as in Fig. 221.

Should the enemy manage to cross the various trenches, break down the gates, and smash through the portcullis, the Sung engineers had one more trick up their sleeves: the 'knife cart for blocking up gates' (sai mên tao chhē) (Fig. 222) which must have been held at the rear of the gate for any such eventuality. No measurements are given for this machine: presumably it was custom-made to fit precisely each particular gate.c In function, it was similar to the wooden parapet (mu nū thou) (Fig. 223) made of boards 6 feet high and 5 feet wide mounted on two wheels, which was rolled along to fill any holes in the crenellation made by stones thrown by the besiegers' trebuchets or by their hooks, of which more anon.d

If this movable wooden parapet was not available, the holes could also be filled by the 'leather matting' (phi lien) made out of tough water buffalo hide 10 feet

a Dennis (2), p. 109.
b WCTY/CC, ch. 12, p. 10b; illustration, p. 10a.
c 'Chhien Chi', ch. 12, p. 20a; illustration, p. 19a.
Fig. 220. Drawbridge or 'fishing bridge', from *WCTYCC*, ch. 12, p. 10a.

Fig. 221. Tentative reconstruction of the Sung drawbridge or 'fishing bridge'.

Hemp rope

Wrought iron windlass

Third iron ring

Iron chain

Fishing bridge

Iron ring

Most

There would probably have to be a pivot line too
30. MISSILES AND SIEGES

wide and 8 feet high, suspended by seven rings from a pole like a mediaeval showercurtain\(^*\) (Figure 224).

(vii) **Towers**

The variety of towers recommended to be erected on the walls is bewildering; clearly, the Mohists expected the defenders to select only those which seemed

\(^*\) II'CTY/CC, ch. 12, p. 33b; illustration, p. 33a.
appropriate to the conditions and means of a city. In the Lin-I texts, we find references to 'projecting towers' (chhu lou⁴) which are placed every 200 paces (276 metres) along the wall, and 'advancing and moving towers' (chin hsing lou²) every 300 paces (414 metres), from which one could 'see far into the distance beneath the city wall and outside the city wall', with ordinary towers (lou³) every 50 paces (69 metres). It is possible that the chin hsing lou was actually mobile, for the term hsing⁴ often refers in the Mohist texts to such mobile constructions. Then we find towers constructed at each of the corners and on each face another especially 'high look-out tower' (hou wang chih lou⁴), from which the defenders could 'watch the enemy's goings and comings, entrances and exits'.¹

The extant text of the Mo Tzu provides further details. The corner towers were to be double or multi-storied, with each storey possibly 15 feet (3.46 metres) high in which four commandants or guards (wei⁶) were posted.⁴ Every 41.4 metres there was to be a 'tower for sitting and watching' (ts'o hou lou⁷), which projected 4 feet (0.92 metres) out from the walls, was 4 feet long and 3 feet (0.69 metres) wide, with an unspecified height. It was made from planks of wood, battened closely together on three sides, and covered.⁵ Possibly this small look-out post was constructed for those keeping an eye on the base of the walls: their duty would be to ensure that no enemy soldiers had surreptitiously reached the walls and were beginning to mount a direct assault either digging away at the walls or scaling them. Next, every 138 metres was a lung tshung⁸ watchtower rising 50 feet (15.55 metres) from the ground. It was to be three stories high, narrowing towards the top, presumably to present less of a target to enemy artillery, and, at the base, had a front face 8 feet (2.45 metres) and rear face 13 feet (3.90 metres) wide. If the height from the ground is taken literally, then the walls cannot have always been the standard 50 feet high that we saw above was the ideal. But perhaps the 'ground' here refers to the base from which the tower rose: in other words it could refer to the top of the wall and the combined height of wall and tower was 100 feet (200.1 metres).

Every 138 metres an earthen (thu⁹) tower was built. This may have been the same as the 'protecting tower' of the newly discovered texts,⁷ and the 'standing tower' (li-lou¹⁰) said to be located every 276 metres along the wall, which was 20 feet (6.67 metres) long, and projected 5 feet (1.52 metres) from it. This 'standing

¹ Much of the following discussion is based on Yates (5), pp. 89-90.
² Yen-Chhüeh-Shan Han-Mu Chêng-Li Hsiao-Tsu (4), slip 801, p. 28.
³ The text says 5 feet (1.52 metres) but this seems too low: we suggest a graph shift has been dropped from the text.
⁴ These men may have been officers in charge of the defence, or watchmen, whose duty was to observe enemy movements.
⁵ The open side probably faced towards the inside of the city.
⁶ Yen-Chhüeh-Shan Han-Mu Chêng-Li Hsiao-Tsu (4), note 29, p. 29.
tower' is said to be 25 feet (7.58 metres) ‘from the centre of the city wall’. Exactly how this last phrase is to be interpreted is unclear. If the measurement is taken from the centre of the top of the wall, it implies that the upper width was greater than the 20 feet mentioned as an example in the Chiu Chang Suan Shu, of a wall which was 50 feet high. Nevertheless, it probably looked something like the rather crude drawing of a Chinese banner preserved on a fragment of a pictorial bronze tien of Warring States discovered at Liu-Li-Ko, Hui Hsien, Honan (Figure 225).

Next, the Mohists recommended a ‘wooden tower’ (mu loun) be constructed every 138 metres along the wall, which was to project 12 feet (2.77 metres) from the walls and whose front face was to be 9 feet (2.07 metres) long. This tower was 7 feet (1.62 metres) high, just large enough for a man to stand up in. This tower also may have been the same as the ‘projecting’ and ‘standing’ towers.

Finally, mention is made of open-topped lu towers, four feet (0.92 metres) wide and 1.85 metres high, placed every 600 feet (138 metres), multi-storied ‘khung-yung’ towers’ raised every 50 paces (69 metres), and the ssu towers we encountered above.

All these towers were protected by rush screens or curtains (chieh mu), which we will describe presently.

In addition to the towers on the wall, it is also possible that special small posts (thing) were built to house the officers in charge of sections of the defences. These officers were called ‘post-commanders’ (thing wei) and were each responsible for 100 paces (138 metres) of wall. Each post had walls 14 feet (3.2 metres) high and 4 feet (0.92 metres) thick, suggesting that it was built from stamped earth. The entrance door was narrow, and consisted of two leaves which could close independently. The officer himself was expected to be one who was ‘thoroughly honest, loyal, and trustworthy, and who could carry out his responsibilities’.

It should be noticed that the Mohist texts are totally reticent about the precise details of construction of the towers. This is not surprising, for, as we have remarked, they were writing for those who knew what they meant. There was therefore no need to elaborate upon the size and numbers of the timbers, nor the bricks and tiles that might be needed for the sides and roof. Later manuals do not even bother to record the distance between the towers. Nevertheless, we can gain an impression of the complexity of the construction from the 13th-century mathematical manual studied by Libbrecht, the Ssu Shu Chiu Chang, although we must acknowledge that since this work is fifteen hundred years later, it probably reflects much greater sophistication in design and construction than was present in the
wall towers of Warring States times, although they were complex enough, sometimes rising to six storeys, as can be seen from the numerous Han model watchtowers excavated from tombs in recent years and the representations of such towers on tomb-tiles (Figures 226–32).

Problem VII of the *Ssu Shu Chiu Chang* concerns itself with building a city wall with roofed towers (*lou lu*) in sixty locations. Each tower contained ten rooms and there was in addition to be a 'wall protecting the vulnerable point (*hu hien* (*chhiang*)*) 4 feet tall, 30 feet long with a thickness commensurate with that of the bricks (*chuan*)

* Libbrecht [1], p. 454; Ying T'ao Fe Shih’, ch. 16, p. 120.
Fig. 227. Green-glazed pottery tower-model with wide upper balcony, later Han dynasty, from Lo-Yang, Honan, from Yiian Tê-Hsing (.), vol. 1, p. 310.

Libbrecht provides a convenient table of the required material:

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Length</th>
<th>Diameter</th>
<th>Number used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Woni mu 'lying ox timber'</td>
<td>16</td>
<td>1.1</td>
<td>11 beams</td>
</tr>
<tr>
<td>2. Ta nao mu 'scratching brain timber'</td>
<td>20</td>
<td>1</td>
<td>11 beams</td>
</tr>
<tr>
<td>3. Khan hao chu 'watching the moat post'</td>
<td>16</td>
<td>1.2</td>
<td>11 posts</td>
</tr>
<tr>
<td>4. Fu hao chu 'supporting the moat post'</td>
<td>15</td>
<td>1.2</td>
<td>11 posts</td>
</tr>
<tr>
<td>5. Kuachia chu 'hanging armour post'</td>
<td>13</td>
<td>1.1</td>
<td>11 posts</td>
</tr>
<tr>
<td>6. Huu chü 'tiger crouching post'</td>
<td>7.5</td>
<td>1</td>
<td>11 posts</td>
</tr>
<tr>
<td>7. Yang huang pan 'upturned ferry board timber'</td>
<td>10</td>
<td>1.2</td>
<td>45 planks</td>
</tr>
<tr>
<td>8. Phing mien pan mu 'flat board timber'</td>
<td>10</td>
<td>1.2</td>
<td>35 planks</td>
</tr>
<tr>
<td>9. Chhua kua fang mu 'stringed hanging lath timber'</td>
<td>5</td>
<td>1</td>
<td>73 laths</td>
</tr>
<tr>
<td>10. Yang pan 'upturned boards' and Ssu pa chuan 'four-eight bricks'</td>
<td>45 planks</td>
<td>35 planks</td>
<td>73 laths</td>
</tr>
</tbody>
</table>

* This table is from Libbrecht's *Missiles and Sieges*. The items listed are materials used in the construction of fortified structures, particularly towers and fortifications, in ancient China. The table provides the length and diameter of each item, as well as the number used in the construction.
are built up together in three layers, and you calculate there are 600 pieces, and each piece uses half a chin¹ (ca. 1.3 litres) of mortar (hui²), and altogether 100 chin of paper pulp (chih chin³) is used. The wall bricks (chhiang chuan⁴) are 1.6 feet long, 0.6 feet wide, and 0.25 feet thick. The 'central board tiles' (chung pan wa⁵) are 7,500 in number.

Nails:
- 1 foot nails: 8
- 8 inch nails: 270
- 5 inch nails: 100
- 4 inch nails: 50
- ting-huan²²: 20

The last tower recorded in the early poliorcetic texts, the 'crossbow platform' (nu thai⁷), is only given a passing mention in the Mo Tzu, suggesting that it did not

¹ Libbrecht (1), p. 450, suggests these may be annular studs.
play a particularly prominent rôle in the defensive system of Warring States times. By the Thang, however, detailed specifications are found in the manuals and obviously erection of this forward bastion outside the walls was considered a valuable addition, if not a *sine qua non*, to the defence of any town or city.

No archaeological excavation of such an outwork has been undertaken to the best of our knowledge, but Dr Robin Yates has photographed what appears to be one outside the walls of Wan-Chhêng-Tzu¹ to the west of the last fort at the end of the Ming Great Wall, Chia-Yü-Kuan² in Kansu province (Figures 233, 234). The platform, a rough rectangle ca. 70 by 50 English feet, lies about a hundred metres north and east of the only city gate, which itself faces north, and is protected by an angular projecting wall we have identified as a *yin* or *wu* (Figures 235, 236).

¹ 彎城子
² 嘉峪關
According to the *Thai Po Yin Ching*, the height of the platform was to be equal to that of the city walls and be one hundred paces (ca. 500 feet) from the walls. Such platforms were to surround the city, being placed one hundred paces apart. The Wan-Chhêng-Tzu platform has suffered more extensive damage than the walls, standing only about two to two and a half metres above the desert floor, and so it is impossible to tell whether it originally had the same elevation as the parapet of the walls, which stand 4 to 5 metres high (Figure 237). The lower width of the

a Ch. 5, p. 107.

b Dr. Yates did not have any equipment with him when he visited the site, and so all the measurements are only very approximate and should be treated with caution.
Fig. 231. Heavily armoured crossbowman firing his weapon from the Han type II watchtower, Shan Hsien, Honan, from KKH, 1963, vol. 1, p. 139, fig. 28.

Fig. 232. Rubbing of a stone relief depicting three-story Han watchtowers with a cavalryman riding between them, from Chhang Jen-Hsia (1), fig. 53.

Platform recommended by the manual was 40 chhih with a height of 50 chhih and an upper width of 20 chhih. The top was protected by a parapet (nú chhiang') and could only be reached by a retractable ladder ('bent-knee soft ladder' chhî hsi juan thi') suspended from a hidden trapdoor (thung an tao'), which was rolled up after
Fig. 233. Crossbow-platform (?) protecting the entrance to Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)

Fig. 234. Crossbow-platform (?) protecting the entrance to Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)

Fig. 235. Entrance gate to Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)
Fig. 236. Walls of Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)

Fig. 237. Walls of Wan-Chhêng-Tzu, Kansu. (Photograph, Robin D. S. Yates.)
the five men assigned to the platform had all ascended. They were equipped with crossbows and protected by felt screens (*chan mu*). Provisioned with dry rations, water, and the means to start fires, their task was to shoot the enemy general leading the besieging army when he drew close to the defences.

The ‘crossbow platform’ recommended by Tsêng Kung-Liang in the Sung dynasty was somewhat more elaborate, containing two units of twelve crossbowmen, commanded by a corporal (*sui chiang*) (Figure 238). The height was not specified except that it was to be equal to that of the main city walls and it was to be narrower at the top than at the bottom, a feature also of the Thang platforms. It would seem that the platforms were also to be rectangular in shape, and the dimensions of *16 chhih* by *3 paces* (*15 chhih*) are also given, but whether this referred to the top or the bottom of the platform is not specified. Probably it was the top.

Unlike in the Thang, however, the platforms were linked to the main wall and to each other by a wide pathway or road (*khuo taot*), which is interpreted by the illustrators of the text as a walkway on top of a crenellated wall. Perhaps this wall is the same as the ‘sheep-horse wall’ that has been discussed above. Access to the top was by rope ladder (*shêng thi*) (Figure 239), and on the platform was constructed a type of two-storied room (*ti phêng*), the lower part of which was protected on three sides by soft felt screens and ‘hanging bell-boards’ (*chhui chung pan*) (Figure 240), 6 *chhih* long, 1 foot wide and 3 *ishun* thick covered with fresh oxhide. A hole was cut in these through which crossbows could be fired. This was the later version of the ‘revolving window’ mentioned above.

The upper room was protected by wooden shields (*li phai*) also on three sides and one unit was stationed in each room. As in the Thang, the main function of the marksmen was to shoot down generals leading the attack.

Another function of the crossbowmen was to be look-outs for the approach of the enemy. To this end, each platform was equipped with five flags (*chhii*) of five different colours in addition to one drum, bows, crossbows, thundersticks, trebuchet stones, and *huo pei* etc. When the enemy was observed, the flags were raised as a signal and a warning was shouted across to the sentries manning the main wall. They would raise their own flags in response. The colours followed the age-old symbolism found first in the *Mo Tzu*: green if the enemy came from the east, red if from the south, white if from the west, and black if from the north. The yellow flag was raised if the enemy withdrew.

We have seen above that some of the towers recommended by the Mohists projected from the top of the walls in order to enable the look-outs and other

* WCTYCC, ch. 12, pp. 7ab; illustration, pp. 6ab.
* WCTYCC, ch. 12, p. 28b.
* ‘Chhien Chi’, ch. 12, p. 12a; illustration, p. 11a.
30. MISSILES AND SIEGES

Fig. 238. Crossbow-platform, from WCTT/CC, ch. 12, p. 6a and b.

Fig. 239. Rope ladder, from WCTT/CC, ch. 12, p. 28b.

Fig. 240. 'Hanging bell boards', from WCTT/CC, ch. 12, p. 11a.
soldiers to see and cover with their fire the base of the walls. In addition, from at least Western Chou times, some of the gateways were protected by guardhouses that similarly projected out from the walls and were built on stamped-earth foundations. Beginning in late Springs and Autumns times, this latter type of construction began to be extended along the walls for all the towers: the towers projecting from the wall were built on square or rectangular foundations that were completely bonded to the wall itself. This came to be known as the 'horse-face' (ma mien') design.

The earliest archaeologically discovered example of this new design was reported in 1963 by Thao Cheng-Kang. The city, located south of the Fên-Ho² river in Shansi province, appears to have been constructed by the state of Chin³ as a military outpost whose function was to act as a bulwark against the Ti⁴ peoples who were trying to encroach upon Chin territory. Anciently called Chhing-Yüan Chhêng⁵, and now Ta-Ma-Chhêng⁶, part of it overlaid neolithic Lung-Shan culture remains, and the whole was almost square, with a 6⁰ orientation. The north wall was 980 metres long, usually 2–3 metres high – the highest elevation was 5 metres – and the upper width was 8–9 metres while at the foundations it was approximately 12 metres broad. The south wall, on the other hand, was 998 metres long, 11 metres broad and 4–6 metres high, and the east wall was 980 metres long, 6–10 metres wide and 2–6 metres high. All the sides had projecting 'horse-face' foundations. Although most were located on one side of a gate, some were not, and one appears to have been a later construction of Han date, because a pile of characteristically Han tiles were found at the site. Typically, the 'horse-faces' projected 15 metres from the wall and were 15 metres long (Figure 241).⁷

In addition, the Jên Min Jih Pao⁷ (People's Daily), 6 January 1987, reported another city said to date from the Western Han times and located in the northeast, in Manchuria. Judging from the remains, the archaeologists assign the city to the minority I-Lou tribe.⁸ The city is divided into eastern and western sections. A moat 6 metres wide surrounds the outer wall of the eastern city and it is the inner rectangular citadel, whose walls are 471 metres long, that has the 'horse-face' towers built along it, each 50–60 metres apart. The inner citadel is also protected by a moat 16 metres wide. The outer walls of the east city appear to be 3,894 metres long and the total area is 718,000 square metres. The western city is smaller, for the walls are only 861 metres long and the total area is 42,000 square metres. No illustration was published with this preliminary description, but hopefully this exciting discovery will receive due attention in the scholarly journals in the near future, for this is the earliest example of 'horse-faces' being along the whole length of the wall.

Some indication of what it must have looked like when the walls stood to their

⁷ Thao Chêng-Kang (r).

¹ 馬面 ² 河 ³ 晋 ⁴ 狄 ⁵ 清原城
⁶ 大馬城 ⁷ 人民日報 ⁸ 發夷族
original height can be gained from Figures 242, 243, which are frescoes in the Chhien-Fo-Tung (Caves of the Thousand Buddhas) dating from the Thang dynasty, one of which we have already illustrated in SCC Vol. 4, Part 3, Figure 728.

Many of the towns, cities, and forts, which have been discovered in recent years and which are attributed to non-Han peoples, have this type of 'horse-face' design and so it seems that this design was typically northern. We should also remember that the triangular bastion depicted in the Ma-Wang-Tui military map we have illustrated above (Figure 102) appears to have this design, so perhaps ma-mien
A good example is Thung-Wan Chhêng* in northern Shensi province on the northern bank of the Wu-Ting Ho river which was constructed in +419 by the Hsiung-nu leader Ho-Lien Po-Po† (Figure 244). The city’s walls were 2566 metres in circumference, the east wall being 737 metres long, the West wall 774 metres, south wall 551 metres, and the north wall 504 metres long. The west city was 2470 metres in circumference, the east wall being 692 metres long, the west wall 721 metres long, south wall 500 metres long and the north wall 557 metres long. The foundation of the west wall was 16 metres wide and 30 metres wide where the ‘horse-face’ tower bases projected. The whole city was aligned at 115°. In certain of the ‘horse-faces’ a square hole had been excavated in the centre to store provisions. The one in the south wall of the west city was 7 metres square and 6
Fig. 243. Defensive walls with horse-face towers in an illustration of the Lotus Sutra, south wall, cave 217, Tun-Huang (Thang dynasty), from Yuan Tê-Hsing (I).

metres deep with no entrances: evidently access was by ladder and the pit was divided into two storeys, an upper and a lower. The wall between the pit and the outer face of the 'horse-face' was 4 to 4.7 metres wide, narrowing towards the upper storey (Figure 245) [Shensi Shêng Wên-Kuan Hui (I)].

1 乾壊城 2 無定河 3 匈奴 4 赫連勃勃
Fig. 244. Ground-plan of Thung Wan Chêng, Shênsi, from Shênsi Shêng Wên-Kuan Hui (1), p. 226, fig. 2.
'horse-face' tower foundations were popular throughout the continental East Asian culture area and were not confined to northern Han Chinese and their immediate neighbours.

A sense of the outward appearance and inward organisation of later Han cities along the northern border can be gained from the magnificently detailed wall paintings found in a chambered tomb near Ho-Lin-Ko-Erh¹, Inner Mongolia. In Figures 246, 247, 248 and 249, we can see plainly that the outer walls were not given projecting 'horse-faces'; the small dots on the outside of the walls are intended to represent the crenellated battlements. Fan-Yang² county (Figure 246) is a fine example of an inner citadel located at a corner of the outer walls and it also suggests that inside the gate in the left wall a secondary, smaller wall was built, reminiscent of the constructions we have noticed the Greeks built to protect the entrances of their towns. The city of Ning-Chhêng³ on the other hand, primarily an administrative and military centre, is crowded with people inside the inner citadel. In the southeast corner of the city, just inside the east gate, is the walled market where, no doubt, the Han Chinese traded with the nomadic Wu-Huan⁴ and Hsien-Pi⁵ neighbours.⁶

It is also worth observing that outside the towns in the later Han, as law and order broke down, and as the northern nomadic peoples began to press in on the Chinese settlements, local élite landowners began to construct fortified manors where they could store their crops in relative safety. In some cases, they even built walls around their fields. Figures 250–254 depict a model of a massive and, one

¹ Nei-Mêng-Ku Tzu-Chih Chhü Po-Wu Kuan and Nei-Mêng-Ku Tzu-Chih Chhii Wên-Wu Kung-Tso Tui (1); Nei-Mêng-Ku Wên-Wu Kung-Tso Tui and Nei-Mêng-Ku Po-Wu Kuan (1); Lo Chê-Wên (3). Huang Shêng-Chang (3) places the date of this tomb no later than + 166; cf. Huang Shêng-Chang (2) and Chin Wei-No (2).
² 和林格爾
³ 繁陽縣
⁴ 廁桓
⁵ 鮮卑
⁶ 當代中國之際
Fig. 246. Fan-Yang county, from Nei-Mêng-Ku Tzu-Chih Chhü Po-Wu Kuan & Nei-Mêng-Ku Tzu-Chih Chhü Wên-Wu Kung-Tso Tui (1), p. 130.

Fig. 247. Ning-Chhêng county, from Nei-Mêng-Ku Tzu-Chih Chhü Po-Wu Kuan & Nei-Mêng-Ku Tzu-Chih Chhü Wên-Wu Kung-Tso Tui (1), fig. 3.
would think, almost impregnable manor from Yün-Méng¹ county, north of the Yangtse river,² whereas Figures 255 and 256, show one from Kansu in the northwest.³ The central watchtower here has six storeys and the model itself stands 105 centimetres tall. Such a building must have been visible for miles and have enabled the owner to gain early warning of approaching intruders.

Another interesting feature of the model is the flying galleries constructed between the upper storeys of the four corner towers. These were known as fu lōo⁴ and were obviously marvels of engineering skill, even though perhaps somewhat vulnerable to heavy siege artillery. But as the nomads probably did not have access to such equipment, they were probably appropriate for their location.

A stone rubbing illustrates another type of fortified farm (Figure 257). Here the living quarters of the owner are in one corner of the walled property, which is divided into four unequal parts. In at least three of these sections, agricultural

¹ Yün-Méng Hsien Wên-Hua Kuan Wên-Wu Kung-Tso Tsy (t); Yün-Méng Hsien Po-Wu Kuan (t).
² Kan Po-Wên (t).
³ Wang Tzu-Chin and Ma Chên-Chih (t), fig. 2.
activities are taking place and the possibly four-storied watchtower is placed halfway along the outer wall opposite the living quarters.\footnote{1}

It was into these types of buildings and into small fortified villages that the Chinese population for the most part retreated in the turbulent period accompanying and following the fall of the Han dynasty.\footnote{2} The cities and towns of the

\footnote{1} Chhang Jên-Hsia (1), plate 66.
\footnote{2} It was in the Three Kingdoms and Six Dynasties period that the terms shan (village) and wa (fortified village) appeared. We have seen above that wa initially meant the wall protecting the gate of forts and watchtowers along the northwest frontier in Han times. These later villages were most frequently constructed in naturally defensible sites, but so far none have been found and excavated by archaeologists. Cf. Miyakawa Hisayuki (2); Miyazaki Ichisada (4); Naba Toshisada (3); Chin Fa-Kên (1); Tanigawa Michio (1), pp. 102–10. Figures 258 to 265 illustrate examples of pottery models of fortified mansions found in Eastern Han tombs in Kuang-Chou province (Kuang-Chou Shih Wên-Wu Kuan-Li Wei-Yuan Hui, Kuang-Chou Shih Po Wu Kuan (1)).
Fig. 250. Model of a fortified manor, Eastern Han, Yün-Mêng county, Hupêi, from Yün-Mêng Hsien Po-Wu Kuan (1), fig. 1.

Fig. 251. Model of a fortified manor, Eastern Han, Yün-Mêng county, Hupêi, from Yün-Mêng Hsien Po-Wu Kuan (1), fig. 2.
Fig. 252. Elevations and ground plan of the model of the fortified manor from Yun-Meng county, Hubei, Yun-Meng Hsien Po-Wu Kuan (r).
So-called 'hundred leaf windows'; front and side views

1. Rear view
2. Cross-section of the rear
3. Cross-section of the front
4. Cross-section of the lower storey of the front tower and middle storey of the rear tower

Fig. 253. Elevations, ground-plan and details of the model of the fortified manor from Yun-Méng county, Hupeif.
Three Kingdoms and Six Dynasties were, as we have already indicated, much smaller in size than their Warring States and Han predecessors. Urban life and urban culture recovered its former vitality only with the reunification of China under the Sui and Thang dynasties.

(viii) Devices on city walls

Among the most important of the devices that were mounted on the walls were well-sweeps or shaduf (chieh-kao). They were used for three purposes: to suspend

Fig. 255. Model of a later Han fortified manor with a watchtower, Kansu. Note the flying galleries connecting the four corner towers, from Kan Po-Wên (r).

Fig. 256. Drawing of a fortified manor, Kansu, from Wang Tzu-Chin & Ma Chên-Chih (r), fig. 2.
Fig. 257. Rubbing of a carving, showing the structure of a further type of fortified manor, from Chhang Jen-Hsia (1), pl. 66.

Fig. 258. Cross-sections and vertical view of a model of a fortified manor, Eastern Han, from Kuang-Chou. From Kuang-Chou Shih Wen-Wu Kuan-Li Wei-Yuan Hui and Kuang-Chou Shih Po-Wu Kuan (1), fig. 263.
Fig. 259. Cross-sections and vertical view of a model of a fortified manor, Eastern Han, from Kuang-Chou. From Kuang-Chou Shih Wên-Wu Kuan-Li Wei-Yuan Hui and Kuang-Chou Shih Po-Wu Kuan (1), fig. 264.

Fig. 260. Cross-sections and vertical view of a model of a fortified manor, Eastern Han, from Kuang-Chou. From Kuang-Chou Shih Wên-Wu Kuan-Li Wei-Yuan Hui and Kuang-Chou Shih Po-Wu Kuan (1), fig. 265.
screens which shielded the walls from enemy missiles, to let down bundles of burning reeds onto the roofs of siege-engines at the foot of the wall, and to raise signals. The first and third of these applications were definitely part of defensive procedure by Warring States times, and the second may have been early, but is only recorded in later military encyclopaedias.

The matted straw or rush curtains (chieh mu) were eight feet long and seven feet wide. A rope was attached to the centre of the curtain with the other end tied to the long beam of the well-sweep (chhiao). As the enemy missiles fell, one soldier was ordered to raise and lower the curtain to keep them from reaching the walls. Under no circumstances was this defender permitted to leave his post when an attack had been launched.
Sun I-Jang suggests that these screens were the same as the hemp cloth curtains (pu man) mentioned in the Thang dynasty Thung Tien compendium, where Tu Yu wrote, 'Hemp cloth curtains. Make them out of cloth of double thickness. If you hang them by a light pole 8 feet out from the parapet, they will diminish the force of stones, and then stones and arrows will not reach the walls anymore.' He may well be correct, for the Shuo Wen dictionary of +100 defines man as mu, which appears to confirm his conclusion. The stones would have probably been those thrown by the trebuchets we have described above, but they could also have been smaller hand-thrown projectiles. Likewise, the arrows could have been fired...
by the multiple-bolt arcuballistae, or hand-drawn cross-bows, as well as ordinary bows, This screen is represented in Wu Ching Tsung Yao in Figure 266.a

The Thai Po Yin Ching provides the first description of the bundle of reeds (wei tsha⁴) suspended by the well-sweep,b but it is only in the Wu Ching Tsung Yao that the use of the well-sweep is specified for lowering it (Fig. 267).c The bundles were called ‘swallow-tail torches’ (yen wei chü²) because the reeds were split into two spurs (chhi³), so that they could ‘ride’ on the backs or tops of‘wooden donkeys’ (mu lu⁴), a type of tank with a pointed roof, which we will describe below.d The art was to place the torch so that each spur burned one side of the roof, catching the tank on fire and forcing the enemy occupants to abandon it and flee. Before the torches were lowered, they were soaked in oil (yu⁵) and wax (la⁶) to ensure that they

a ‘Chhien Chi’, ch. 12, p. 32a.
b Ch. 4, p. 83.
c ‘Chhien Chi’, ch. 12, p. 60; illustration, ch. 12, p. 60a.
would flame fiercely and, even after the reeds were consumed, the oil and wax would still continue to burn.

We will reserve discussion of the raising of signals to the third volume of our study on military technology.

There were at least four other types of screens employed in siege warfare during the Warring States period: the chhan¹ 'screen', the pi² 'cover', 'shield', the chhü³, the tha⁴ 'firescreen' and the lu⁵ 'pavis'. The chhan appears in the Chan Kuo Tse in the sentence: 'The people arrange screens and covers (pi²), raise rams and large pavises (lu⁵)', while the Huai Nan Tzu of the 2nd century avers: 'In latter-day warfare, the lung⁶ and battering ram are used to attack, the chhü³ 'shield' and the chhan 'screen' are used to defend.' Coupled with the tha firescreen, the chhü shield was considered absolutely essential for the defence of a town or city in the Eastern Chou. The Wei Liao Tzu categorically states: 'If the shields and firescreens have not been deployed, then, although you may have a city, you are without a defence.'

Notes

¹ Wei Chao defines chhü as 'screen', Kuo Yu, 'Wu Yu' ('SPPY ed.), ch. 19, p. 7a.
² 'Chhi Tshè', ch. 12, p. 436.
³ 'Fan Lun', ('SPPY ed.), ch. 13, p. 5a. The lung may have been either a ramp or a mobile tower, probably the latter. See our discussion on p. 284 below.
⁴ 'Kung Chhii'an' (Phinr. 2) (Kambun taitai ed.), p. 20.
The specifications of the chhü shield are provided in several different passages in the Mo Tzu, but the variations between them are slight, so we will present here only one example:

On the city walls: one shield [is to be placed] every 7 feet. The shield is 15 feet long, buried 3 feet, and separated 5 inches from the battlements. The pole is 12 feet long, the arms 5 feet long. Half-way down the posts, drill one hole with a diameter of 5 inches. The pole is to be drilled twice. The front end of the shield is to be 4 inches below the battlements and then it is right. When burying the shield [in the wall below the battlements] dig a hole and cover it with tile [when not in use?]. In winter, stop it up with horse manure. In all cases, wait for orders [before deploying the shields]. Alternatively, use earthenware tiles to make the hole.

Another passage calls the shields thi chhü, gives the length as 15 feet and the width as 16 feet, and further indicates that there were to be 258 such devices every li (c. 1,800 feet) along the wall. This corroborates the specification that the shields were to be placed 7 feet apart. We suspect that the reason that the shield is dubbed a 'ladder' (thi) is because the arms (pi) give the screen a ladder-like appearance when viewed by the defenders from on top of the wall. Since the distance between the shields, presumably calculated from the pole (fu), which is buried in the wall 4 inches below the battlements, is only 7 feet, it seems reasonable to conclude that the shields overlapped considerably, no matter which dimension was 'length' and which was 'width'. The gap of 5 inches between the inner side of the shield and the city wall was no doubt to allow the defenders to see whether any of the enemy had penetrated to the foot of the walls and were engaged in battering them down, mining them, or scaling them. It would also permit the defenders to shoot at such enemy soldiers with bows and crossbows and to enable them to drop stones, tiles, sand, and other objects on their heads. Whether these shields were deployed at night when the torches, inserted in holes only three feet below the battlements, were lit is hard to say. They were probably not, for the texts make no mention of plastering the shields with mud to prevent them from burning. Nevertheless, we are left in the dark as to the material used to stretch over the basic frame of the shield. It was probably some form of cloth or leather, because a completely wooden shield would be very heavy to manipulate, would probably require a greater depth to the hole in the wall into which the pole was inserted, and would use up too much valuable lumber. A tentative reconstruction of the chhü shield is offered in Figure 268.
While the chhū shield was a purely passive device for protecting the defenders from enemy projectiles, the tha firescreen was built for more destructive purposes. It was hung down over the side of the walls and set alight to burn attacking soldiers as they attempted an escalade. The Mohist engineers describe the firescreen in the following way:

Construct rope firescreens [lei tha] a 12 feet in both vertical and horizontal length. Make the crossbar above out of wood and plait them [sc. the ropes] out of thick hempen twine. Steep the ropes in mud and make iron chains with hooks at both ends, and hang them. When the enemy launches a mass infantry assault on the city walls, set the firescreens alight to knock them off; linked flails, sand, and stone should all [be used] to aid them.b

Clearly the upper portions of the ropes were made from hemp and steeped in mud to prevent them from catching fire. The ropes were fastened in turn to iron chains which carried iron hooks at either end: the upper end was linked to the rope

a Tšen believes that the lei tha are ‘thunder-stones’, rocks to be thrown from the walls, but this is incorrect.
b Tao T'ung ed., ch. 14, p. 18b; Yates (3), fragment 46, pp. 315, 322. Another passage indicates that the firescreens were to be 9 feet wide by 12 feet long.
and the lower attached to the crossbars from which the firescreens dangled. Possibly the ropes and chains were manoeuvred up and down by winches or well-sweeps operated by soldiers manning the parapet. It is unclear whether there were two chains per screen to give it stability or just one, for the text is silent on this point. The other soldiers on the wall were instructed to wield the linked flails to beat the enemy off the walls, pour sand into their eyes, and hurl stones onto them. The tha firescreen is reconstructed in Figure 269.

A slightly different arrangement is suggested by another passage which indicates that there were to be front and rear crossbeams. The front crossbeam was to be 4 feet long, to which a 26-foot rope was to be attached; presumably the other end was to be held by the defenders above. The screen itself was to be rectangular, 12 feet by 16 feet. When not in use, the screens were to be hung on frames so that the wind could dry them, making them easier to burn.

Given that there are front and rear beams, we suggest that this type of firescreen was meant to be hung horizontally rather than vertically and we present an illustration of our reconstruction of this type of firescreen in Figure 270. These screens were to overlap one foot on each side in the same way as the chhüi shields so that the enemy scaling the walls would have been faced with a solid ceiling of fire above their heads.

Let us now turn to the lu pavises and another type of screen known as ‘movable city walls’ (hsing chhêng) or ‘terrace city walls’ (thai chhêng). There is some confusion about the meaning of lu in the early texts and in the Han Chüi-Yen slips, for the word possessed several different references. Without doubt, the first meaning of lu, and the one that concerns us here, is that of a large shield or pavis. Tso Chuan records ‘Ti Ssu-Mi built a wheel of a large cart, which he covered with hides and used as a buckler. Holding this in his left hand, and carrying a halberd in his right, he took the place of a section of troops.’ In siege warfare, such large ‘covered pavises’ were used by the attacking army like a ‘cat’, when it was building a ramp up to the top of the city walls. The pavises were placed at the front end of the ramp to give protection to the engineers and the crossbowmen advancing up the ramp. What they actually looked like is hard to tell, but they may have resembled the large targets illustrated in Figure 271.

The ‘movable towers’ or ‘terrace city walls’ were employed in the defence against just such a ramp attack. Mo Tzu roundly chastises a general who mounts such an offensive for being stupid: the effort required to build such an enormous earthwork (it should be remembered that the city walls could have been at least

* Duke Hsiang’ year 10 (–569); Tso Chuan (Shih-San Chü ed.), ch. 31, p. 4b; Legge (11), pp. 443, 446; Couvreur (1), vol. 2, pp. 250–1.
* See below pp. 441–6.
* For ancient Chinese target magic, see Riegel (3).
30. MISSILES AND SIEGES

Fig. 269. Reconstruction of the vertically hung firescreen, from Yates (3).

Fig. 270. Reconstruction of the horizontal firescreen, from Yates (3).
Fig. 271. Representations of targets on Warring States pictorial bronzes. Large 'covered pavises' used in siege warfare may have resembled such targets. (From Weber (5), fig. 77.)
50 feet high) was sufficient only to exhaust the strength of the troops and was quite ineffective at causing damage to the city walls. Mo Tzu's 'movable towers', which were also deployed against counterweighted ladders were screens designed to give greater height to the city walls so that neither the ramps nor the ladders could reach the top. Mo Tzu unfortunately fails to specify the details of construction and the materials employed, but presumably the latter were a combination of wood and mud-soaked cloth or leather. The screens were either 20 or 30 feet high with a parapet added at the top 10 feet wide. When used against ramps, where the defenders would know for a long time beforehand the location of the attack, the 'movable city walls' were deployed in conjunction with wooden rams (chüi), which projected 20 feet from the city wall and were intended to keep the ramp from joining the wall.

Against ladders pushed up by the enemy, where the precise point of contact would not be known until a few minutes beforehand, the techniques of defence were more complicated. Mo-Tzu advocated a combination of 'movable city walls' and towers of various sizes separating them to meet the threat. The walls and towers were to be erected along the whole width of the enemy line and in between the two ends rush curtains (chieh mu') were to be positioned to protect the defenders. As in the case of the ramp, 20-foot rams were to be thrust out to try to keep the ladders from reaching the face of the wall. In addition, other battering-rams (ch'ung') were to be manned by platoons of ten soldiers each, while five-man squads wielding swords and wood drills (?) (chien') were to kill the enemy and cut down the ladders. Trebuchets hurled stones at the heavy ladders as they were being pushed towards the wall, and large quantities of arrows and stones, sand and ash, blazing firewood and boiling water were fired, thrown, rained and poured upon the heads of the attackers.

The defenders on the walls were also supplied with temporary replacements and reinforcements for parts of the walls and towers, should any of those be destroyed by long-range enemy artillery or pulled down in the course of a frontal assault. Among these devices are to be included the 'movable balconies' (hsing chan'), which were probably hung on the outside of the towers and walls, like mediaeval western hoards, the wooden predecessors of machicoulis, to protect crossbowmen firing at enemy climbing up the walls, and 'movable towers' (hsing lou') and 'terraces' (thai'), which were probably rushed to replace towers that had been smashed away or to locations where the enemy were raising counterweighted

See below pp. 441–6.

See below pp. 446–55.

Sun I-Jang (2), ch. 14, p. 32a, suspects that chien' is a mistake for cha' 'chopper', but this emendation is unnecessary, although possible.
ladders (yun thi) and earth ramps. The method of defence against these types of assaults we will detail below.

In addition, 'flying battering-rams' (fei chung) were mounted on pulley-wheels and were swung back and forth to smash siege engines such as the ladders when they were raised against the walls. In the Thang and Sung dynasties, the heads of these battering-rams were plated with iron (Figure 272). Finally, rams (chii), probably simply large tree-trunks or timbers, were thrust out beyond the walls to keep ramps, ladders, and other engines from reaching the walls.

Naturally, the defenders were fully equipped with long-range artillery, just as their opponents were. As we have provided details of the construction and history of these weapons above, we will confine our remarks to noting the distance apart that these engines were to be deployed. A number of alternatives are provided in the Mohist texts. The Lin-I texts suggest that large trebuchets (chih chih) capable of throwing missiles 50 paces (c. 69 metres) be deployed every 200 paces (c. 276 metres) along the walls, and the small revolving trebuchet (hui chih chih) be placed every 50 paces (c. 69 metres). The received text of the Mo Tzu, however, variously gives the distances for the (large) trebuchets as 50, 30 (c. 41.4 metres), and 20 (c. 27.6 metres) paces apart. Obviously, the chief of the defenders was left to choose how to locate the weapons, depending upon the overall condition of his supplies and defence works, and the nature and size of the besieging forces. By Sung times, however, the trebuchets were located behind the walls, with one man being stationed on the walls to direct the fire: no doubt the machines sitting immobile on the walls had proved to be too vulnerable. The Chinese did not develop casemates to house their artillery in the body of the towers or bastions as Western engineers did, as far as can be determined in the present state of research.

The wooden crossbows (mu nu), which fired bolts at battering-rams and watchtowers more than 69 metres from the walls were to be placed every 2.76 metres along the walls; so if the defenders had enough of them, every embrasure could have housed one. The new Lin-I texts, on the other hand, have windlass-drawn crossbows (chiao chang) deployed in batteries of fifteen. These could destroy covered towers or covers and pavises (pi lu) within 138 metres of the walls. Volleys of bolts fired by such batteries must have been quite devastating if they hit their targets. The last of these artillery pieces that should be mentioned is the revolving shooting machines (chuan shē chi). As we have described, these were six...
feet long and buried one foot in the top of the wall to provide stability. They were fired through the protecting cylinder of the revolving windows which were placed in the crenels 20 paces (c. 27.6 metres) apart.

(2) THE TWELVE TYPES OF ATTACK

The second section in the Mo Tzu¹ gives specific recommendations against twelve different types of attack. These are enumerated in a brief preface by Mo-Tzu’s chief disciple Chhin Ku-Li². The passage runs as follows:

Chhin Ku-Li asked the Master Mo-Tzu, saying, ‘According to the words of the sage, when the phoenix failed to appear, the feudal lords rebelled against the states of Yin and Chou: arms then arose in the world, the large attacked the small and the strong seized the weak. If I wish to defend a small state, how should I proceed?’

The Master Mo-Tzu said, ‘The defence against what types of attack (are you referring to)?’

Chhin Ku-Li replied, ‘What the modern generation usually uses to attack are:
Overlooks [lin⁴], Hooks [kou⁴], Battering-rams [chhung⁴], Ladders [thi⁶], Ramps [yin⁷], Flooding [shui⁸], Mines [hsueh⁹], Sudden Attacks [thu¹⁰], Khung-tung¹¹, Mass Infantry

¹ According to Pi Yuan¹¹, this statement may derive from Confucius in Book 9 of the Analects (Lun Yu¹), ch. 14, (Legge 2); cf. Waley (3), p. 140; Lau (4), p. 97.
Assaults [i-su\], Tanks [fên-wên\], and High Carts [hsien-chhê\]. I venture to ask, 'What can I do to defend against these twelve?'11

The Master Mo-Tzu said, 'My city walls and moat being in good repair, my instruments for defence prepared, fuel and grain sufficient, superiors and inferiors mutually affectionate, and having the support of the feudal lords who are my four neighbours, these are the means by which a state is held.'12

The texts of the defences against four of these attacks, hooks, khung-tung, tanks, and high carts, are no longer extant in the transmitted version of the Mo Tzu book, and only a few sentences of the defence against a fifth attack, that of battering-rams, has survived in the Thai Phing Yû Lan4 encyclopaedia.6 The defences against the remaining seven attacks are preserved in greater detail, even though much of the text is fragmentary and obscure, and we will describe them in order in the following pages. But before we turn to these fascinating techniques of the ancient Mohist engineers, let us review what may be gleaned about five of the machines, hooks, khung-tung, high carts, tanks, and battering-rams, from ancient military manuals and other sources

(i) Hooks

The chapter of the Liu Thao5 which enumerates the materiel needed by an army in the field6 includes the passage 'flying hooks eight inches long with claws four inches long, 1,200 items'6. The same term 'flying hooks' (fei kou\) is applied by Mao Yüan-I8 in his vast compendium of military knowledge Wu Pei Chih9 to a four-pronged hook attached to an iron chain which was knotted to a long hemp rope that was used by two men at a time to scale a city wall (see Figure 273).4 Possibly the Liu Thao's5 hooks could have been attached to similar iron chains and hemp ropes in the event of a siege and this is what the Mohists meant by 'hooks'.

The term may, however, have referred to a type of scaling ladder with a hook at the top, as Lu Tê-Ming10 interprets 'hook' in Ode 24 'Huang I'11 of the Shih Ching,12 which is the first reference to hooks and other siege engines in the Chinese records.6 But unfortunately kou thi13, the word Lu uses, appears in a number of other contexts and could be translated either as 'hooked ladders' or 'hooks and ladders'. 1

2 Ch. 336, p. 7b.
3 Phein 31 ('Chin Yung\'); Liu Thao Chih Chih, ch. 2, p. 31.
4 Ch. 104, p. 16a. An alternative name was the 'iron owl's talon' (thieh chihh chiao\).
6 For example, Kwan Tzu (Phein 17) ('Ping Fa17'), (K HCPT Ed.) Ishé 1, p. 8, translated by Rickett (1), p. 228, and (2), p. 275, 'when crossing mountain defiles [the troops] will not wait for hooks and ladders'.
7 夏 cooperating with each other
8 夏
targeting and hunting
9 高促进 approving and supporting
10 逝通晓 advancing and promoting
11 作
taking action
12 高	advancing
13 高	advancing
14 材料
material
15 高	advancing
16 桃花
peach blossom
Alternatively, the Mohist 'hook' may have been some vast curved blade attached to the end of a pivoting beam and mounted on a cart with which the attackers chopped away at the walls. Two such vicious engines, the Fork Cart (ta chhê¹) (Figure 274) and the Hungry Falcon Cart (ê ku chhê²) (Figure 275), are illustrated in the WCTY, and they must have struck panic into the hearts of all but the most doughty defenders. A third, called the 'Double Hook Cart' (shuang kou chhê³), consisted of a pivoting ladder built on a four-wheeled cart whose upper side struts terminated in long claws that would have sunk into the parapet so far that the defenders would have had great difficulty in dislodging them. But regrettably the texts accompanying the illustrations have been lost and we are ignorant of the specifications of these machines⁴ (see Figure 276).

Regardless whether the machines were invented as early as the Warring States period or not, they were definitely in operation by the time of the civil war between Tshao Tshao⁴ and Yiian Shao⁵ at the end of the Han dynasty. Chhên Lin⁶ (c. +160 to +217)⁷, one of the seven literary geniuses of the Chien-An⁸ period (+196 to 219), who drafted military despatches and pronouncements first for Yuân and then for his conqueror Tshao, vividly describes the 'divine hooks' (shên kou⁹) in his Rhapsody on a Martial Army (Wu Chiin Fu¹⁰). 'The hook carts [kou chhê¹] join the fray and the nine oxen [hauling each cart] turn and heave, bel-

* WCTY/CC, ch.10, pp.33a-33a.
* Shên Yu-Chhêng and Fu Hsiian-Tshung (†), pp. 5-6.
Fig. 274. Fork cart, from *WCTYCC*, ch. 10, p. 32b.

lowing like thunder, and furiously smash the towers and overturn the parapets ...’ Then the ‘flying ladders’ (*fei thi*), ‘movable overlooks’ (*hsing lin*), ‘cloud pavilions’ (*yün ko*) and the ‘buildings in the void’ (*hsü kou*) are rolled forward into the breaches so that the attackers can swarm into the city. Chhèn notes in his preface that these divine hooks, flying ladders and battering-rams are not found in the books of Wu (Chhi) and Sun (Tzu), nor in the stratagems of the *Three Plans* (*San Lüeh*) and *Six Bowcases* (*Liu Thao*).

8 *TPYL*, ch. 336, p. 8a. Chhèn Chi Shih Chi, *Han Wei Liu Chiao Pai San Chia Chi*, tshé 23, p. 2b. The latter text conflates the ‘movable overlooks’ and the ‘cloud pavilions’, and calls the ‘buildings in the void’ ‘spirit buildings’ (*ling kou*), cf. *PTSC*, ch. 118, pp. 3a–b. ‘Hook Cart’ (*kou chhè*) was also the name of the war chariot of Yü the Great, also known as Hsia hou Shih, the founder of the Hsia* dynasty (*Li Chi*), *Phien 14* (*Ming thang wei*), *SPPY ed.*, ch. 9, p. 201b. Su-ma Fa, *Kamfun Faikai ed.*, ch. 2, pp. (1–12), but the term *kou* should probably here be understood as ‘curved’ and refer to the shape of the box on the chariot, rather than to a weapon attached to it.
Two and a half centuries later, in +451, Emperor Thai-Wu² of the Wei² dynasty attempted to capture with the aid of hook carts Hsü-I³ which was guarded by Tsang Chih⁴ for Wên-Ti⁵ of the Liu Sung⁶. When the hooks crashed down on the towers and parapets to pull them down, several hundred of Chih's defenders tied ropes to each hook and held it fast so that the cart could not withdraw and wreak its destruction. At night, Chih let down soldiers in wooden troughs over the walls. They quickly chopped off the hooks and took them back inside the walls, thereby frustrating Thai-Wu’s engineers.

The rebel Hou Ching⁷, however, had greater success with them in the winter of +548-9, when he invested Tung-Fu Chhêng⁸, east of Chien-Khang⁹, the

Fig. 275. Hungry falcon cart, from WCTYCC, ch. 10, p. 33a.

modern Nanking1, the seat of the Liang2 government which he was trying to topple during the course of a long campaign.a The hooks, which were attached to 100-foot-high tower carts (\textit{lou chhê3}), were able to tear down the parapets and the city fell. Hou then put to the sword all those who tried to flee through the gates, and more than two thousand civilians and soldiers perished.b

The next month, after Hou had raised two earth ramps or mountains (\textit{thu shan4}) east and west of Chien-Khang to overlook the walls and the defenders had raised two counter-ramps, pressing into service as earth-movers even princes of the royal blood, he again used hook carts, now called ‘hook parapet carts’ (\textit{kou tieh chhê5}), together with ‘flying towers’ (\textit{fei lou6}), battering-rams or tanks (\textit{chhung chhê7}), ‘wall-climbers’ (\textit{lêng chhêng chhê8}), ‘hook parapet carts’ (\textit{kou tieh chhê9}) ‘step-carts’

\begin{footnotesize}
a Marney (1), pp. 135-58; Wallacker (4), p. 789. Although Hou Ching did succeed in capturing Chien-Khang on 24 April 549, he was assassinated while fleeing back north on 26 May 552, and the Liang dynasty was replaced by the Chhê16 on 16 November 557.
b \textit{Liang Shu11} (‘Hou Ching chuan’), ch. 56, p. 14a; Wallacker (4), pp. 47, 48-51. Accounts vary in other sources.
\end{footnotesize}
(chih tao chhê¹), and 'fire carts' (huo chhê²), each of which rolled on up to twenty wheels, in a massive attack on the Liang capital. Although the rebels were able to burn the great tower on the southeast corner of the city wall, the defenders themselves managed to set alight the siege engines and beat off the attack. Hou raised a third earth ramp but Liang sappers dug a mine underneath it and removed the earth so that the enemy could not stand and once again their engines were ignited by the defenders. Finally, the rebel forces withdrew behind the encircling wooden palisade (cha³) which they had erected.

(ii) Khung-tung

Absolutely nothing is known of the ninth machine or technique in Chhin Ku-Li's⁴ list in Mo Tzu⁵, khung-tung⁶, which literally means 'empty cave', for not one example of its use can be found in any ancient historical source. Sun I-Jang⁷ speculates that it was a form of mining.⁸ He may well be correct. The western of the four mountains that the Yellow Emperor (Huang-ti⁹) climbed after his victory and ascension to the throne, however, was also called Khung-Tung⁹. The attack may, therefore, have been some kind of scaling assault on the city walls allusive to the Emperor's mythical climb.

(iii) High-sided carts

We are, unfortunately, also totally ignorant of the techniques of the 'high-sided cart' (hsien chhê¹⁰) attack, for no passage of the Mohist defence has survived and there is no record whatever of its use in any historical source. We may infer, however, from Hayashi Minao's researches on the term hsien chhê that the cart itself had tall sides to ward off arrows and other missiles.⁴ We would suggest that it was an early form of armoured personnel carrier which transported soldiers up to the base of the walls, perhaps after the moat had been filled in by the mounding (yin¹) operation (Figures 279, 280).

Sun I-Jang offers an alternative interpretation of the 'high cart': that it was another name for the 'tower cart' (lou chhê¹²) mentioned in the year - 593 in the
Fig. 277. Movable sky cart, from WCTY/CC, ch. 10, p. 28a.

Fig. 278. Rake cart, from WCTY/CC, ch. 10, p. 28b.
Tso Chuana which could also have been similar to the ‘nest cart’ (chhao chhe2) in which the Viscount of Chhu3 was raised aloft to view the disposition of the Chin4 forces facing him in \(-574\).b The ‘nest cart’ continued in use through the centuries: both Li Chhi\texttt{iaan}5 and Tu Y\texttt{u}6d provide similar details of its construction in the Thang. ‘Plant a tall pole on an eight-wheeled cart. Above the pole, place a pulley-

a Duke Hsian', year 15; Legge (11), p. 396. A note appended to this passage, quoted in the \textit{TPYL}, ch. 336, p. 1a, and apparently by the Han commentator Fu Chhien4, defines it as a ‘cloud-ladder’ (\textit{y\texttt{u}n ti3}), which he considers to be a type of ‘overlook cart’ (\textit{lin chh\texttt{ao}t9}). There are some discrepancies between the \textit{TPYL} and the extant texts of the \textit{T\textit{so Ch\textit{uan}} here.

b \textit{Tso Ch\textit{uan}}, Duke Chh\texttt{eng} year 16; Legge (11), p. 396.

c \textit{TPYL}, ch. 4, pp. 79-80.

d \textit{Thang T\textit{ien}}, ch. 160, p. 846a, quoted in \textit{TPYL}, ch. 337, p. 2a.
wheel and raise by rope a box made of wooden planks that stops at the top of the pole. This is used to peer into the city. The planked box is 4 feet square and 5 feet high and has 12 holes arranged in the four sides. The cart can advance or retreat round the city walls and be positioned in a camp to provide a view into the distance.

The box of *WCTY*’s ‘nest cart’ is covered with fresh oxhide to ward off stones and arrows while the Ming illustration depicts the box with only four windows, one in each side (Figure 281). The twelve holes in the Thang boxes would certainly have provided greater protection to the watchman inside than this arrangement. The *WCTY* does, however, describe the ‘tower cart’ about which the two earlier texts are silent, calling it the ‘watchtower cart’ (*wang lou chhil*).

The cart has four wheels 3½ feet in diameter and is 15 feet long. The box is raised by a windlass to the top of the 45-foot pole which tapers from 1 or 2 feet in diameter at the lower end to 8 inches at the upper. Three sets of hempen ropes, fastened on either side of the cart, keep the pole in position: the upper of these ropes are 70 feet long, the middle ropes 50 feet long, and the lower 40 feet long, and they are all fastened onto rings attached to sharp iron stakes hammered into the ground. The pole itself has projecting wooden pegs all the way to the top to permit a soldier to climb up fast and easily, and the whole machine looks rather like the mast and rigging of a contemporary 11th century ship. As we can see, the Ming print accompanying the text does not present a perfectly accurate illustration of this Sung dynasty version of the early ‘tower cart’: the ropes were not wound round pulley wheels at the top of the pole (Figure 282).

We should, however, note before passing on to a description of the tanks that if the boxes on either the ‘nest cart’ or the ‘tower cart’ mentioned in the *Tso Chuan* were indeed raised by pulleys, then these military machines must have been among the earliest in China to use this tremendously important mechanical device.

(iv) Tanks

Tanks (*fên wên*) were probably developed in the early and middle years of the Warring States period — 5 to — 4 centuries, after it became common for states to be able to keep larger armies in the field for longer periods of time. The transmitted text of the *Sun Tzu* claims that if a good general repaired his pavises (*lut*) and tanks and readied his machines and devices, he would be successful in reducing a city in three months. If he used to ramp that mounded in the moat (*chüi yin*), it would take a further three months before he would gain the victory.

a ‘Chüen Chi’, ch. 10, pp. 31ab.
b ‘Chüen Chi’, ch. 10, pp. 21a; illustration, p. 20b.
c The text mistakenly states that the diameter at the bottom is 12 feet.
d *Phien* 3 (‘Mou kung’?) (Kuo Hua-Jo (2)), p. 53.

1 望楼车 2 橇辐 3 孫子 4 擇 5 距間 6 勘攻
nately, the Western Han text of the *Sun Tzu* discovered in 1972 at Lin-I ¹, Shantung, breaks off just at the point where the graphs *fēn wēn*² should be, and so we lack indisputable evidence for the earliest mention of the tank in Chinese history. ²

The Thang *TT*,³ the Sung manuals *HCC*⁴ and *WCTY*⁵ and the Ming *WPC*⁶ repeat Li’s description almost word for word, which may suggest that there was little change in design over the centuries, although some modifications may have been adopted after the introduction and spread of gunpowder. Figure 283 illustrates the Ming artists’ conception of the *fēn-wēn*² tank.

At a slightly later date, the authors of the *Liu Thao*⁷ assert that: ‘in general,
when the army has an important matter on hand, you absolutely must practise in
the use of machines and devices. If you are to attack a city or besiege a town, then
have tanks, overlooks [lin'] and battering-rams [chhun']. If you are to see inside
the city, then have "ladders that fly to the clouds" [yen thi'] and "flying towers"
[falou'].

In the Han dynasty, Yang Hsiung\(^a\) says in his *Rhapsody on the Chhang-Yang Palace*
(*Chhang-Yang Fu*\(^c\)) that the nomad Hsiung-Nu\(^7\) had fên-wên in Emperor Wu's\(^8\)
time, c. -100, but they may have been a special type of chariot rather than a
tank.\(^b\)

Here is Li Chhian's\(^9\) description of the Thang tank: 'the tank is a four-wheeled
cart. Make a spine above with rope and cover it with rhinoceros hide. Below, it
holds ten men. When the moat is filled in, they push it straight underneath the
walls and can attack and excavate them. (It is a machine which) metal, wood, fire
and stone (missiles) cannot affect'.\(^c\)

A second type of tank known as the 'wooden donkey' (*mu lü*\(^10\)), or a variation
with a more sloping roof, the 'sharp-topped wooden donkey' (*chien thou mu lü*\(^11\)),\(^d\)
appears in several sieges. One of the most famous was that conducted in +548 by
Hou Ching\(^12\) against the Liang\(^13\) capital Chien-Khang\(^14\) (the modern Nanking\(^15\))

\(^a\) Phien 35 (*Chun Lueh*\(^*\)) (*Kambun Taikë ed*., ch. 2, p. 39, quoted in *TPYL*, ch. 336, 6b.
\(^b\) Liu Chên Chu Wen Hsian, *SPTK* ed., ch. 9, p. 6a; cf. Knechtges (1), p. 83: Fu Chhien\(^*\) claims that they
were chariots for 120 infantrymen or could be used to sleep in.
\(^c\) *TPYL*, ch. 4, p. 77.
\(^d\) Also known as the 'sharp-topped wooden donkey' (*chien tung mu lü*\(^*\)) or 'sharp-necked wooden donkey' (*chien
hstang mu lü*\(^*\)) (*TPYL*, ch. 336, pp. 5ab).
which was defended by Yang Khan, in an earlier assault than the one we have described above in connection with the 'hook carts'.

Hou first built several hundred 'wooden donkeys' for the attack, but Yang's forces destroyed them with rocks hurled either by trebuchets or tipped over the walls by hand. Hou then had his engineers construct 'sharp-headed wooden donkeys' and the defenders' stones bounced ineffectively off the roofs. Tu Yu provides the specifications of these engines as follows:

Make the spine out of a (pole) 10 feet long and 1 1/2 feet in diameter. Below, place six legs (with wheels) so that it is wide at the bottom and sharp-pointed at the top, and 7 feet high. It can hold six men inside. Cover it with fresh oxhide. The men hide underneath it and push it with their hands straight beneath the city walls. Wood, stone and iron (missiles) and fire cannot destroy it...

The 'wooden donkey' in the Sung dynasty held ten men and consequently was slightly larger: the horizontal beam that formed the backbone was 15 feet long and the cart was 8 feet high with a square frame at the bottom (see Figure 284).

But let us return to the siege of Chien-Khang. Yang Khan's answer to the tanks was to make 'pheasant tail lorches' (chih wei chi) which he soaked in fat (kao) and wax (la) and set alight. He threw them in great numbers at the enemy machines where they stuck by means of iron arrowheads inserted into the torches. Within a few minutes the impregnable tanks were reduced to ashes and the rebel forces were driven off.

Both the TT and the HCC recommend essentially the same technique to defend against the wooden donkeys, but suggest that the ground below the city wall be strewn with a minefield made of iron caltrops (thien chi li) to impede or stop the tanks. These iron caltrops also appear in other parts of the Mo Tzu military chapters and so the Mohist defence against fén wén tanks may well have included them. The Thang and Sung caltrops were made of four spikes of sharpened wrought iron each 1 foot 2 inches long, extending out horizontally and vertically in the shape of the caltrop plant (Tribulus terrestris). They were held together by cast iron which was melted and poured at the centre so that the whole caltrop weighed approximately 50 chin or 122 kilos. A ring (pi) was placed at the top to which a chain was coupled and this chain was attached to a pulley. If, when the
caltrop was thrown from the walls it happened to land upside down, the pulley was wound to drag it right side up.

Yang Khan’s ‘pheasant tail torches’ were more commonly known by the name ‘swallow tail torches’ (yen wei chii^2) and were made from a bundle of rushes or reeds (wei^3) tied together and branched into two at the end in the shape of the bird’s tail. They were dipped in oil (yu^4), fat or wax for better combustion and suspended from a rope attached to a well-sweep (chieh kao^5). When the tanks came within range, the torches were lit and swung down over the walls by the soldiers manning the well-sweeps. Presumably they tried to ensure that the ‘tail’ fitted over the spine of the cart so that both sides of the roof burned (see Figure 285). These torches were also employed against men scaling the walls in a mass infantry assault, a type of attack we will discuss later.

Should the roofs of the tanks be so well insulated with rawhide and mud that the torches could not set the timbers underneath on fire, the mediaeval engineers dropped iron-tipped wooden rams (thieh chuang mu^6) to smash the covers. The body of the ram was made of wood and the head consisted of six sharp iron prongs each more than a foot long and three fingers thick with barbs (ni hsi^7) on the iron shafts. The butt was attached to an iron chain linked to a pulley or windlass (lu lu^8). When the wooden donkeys attacked, the pulleys were released, sending the rams crashing down on the backs of the enemy engines. They were then rewound and released again. Once the leather and mud roof coverings were smashed, the torches dangling at the end of the well-sweeps were lit and lowered over the walls. Unfortunately, the illustration given in the WCTY resembles a bell rather than the massive six-pronged ram described in the text (Figure 286).

By Sung times, the ‘windlass cart’ (chiao chhi^9) was developed as an alternative device to stop the attack of wooden donkey tanks and other machines. Two heavy timbers were mounted in an inverted V-shape like crossed fingers on either side of a wooden frame supported by four wheels. The lower ends of the timbers rested above the axles of the cart and a pulley wheel spanned the top, passing through the side timbers where they crossed. To this wheel, which was turned either by a crank or by two sets of two rods set at right angles to each other through the pulley on the outer side of the timbers, was attached a long rope with a hook at the end. The whole machine could pull a weight of 2,000 chin or 488 kg (Figure 287).

When wooden screens (mu man^1^1) and flying (counterweighted) ladders (fei thi^1^1) moved in to the assault yet were still at some distance from the walls, those expert at throwing ropes hurled the hook to catch on the offensive engine and then

^1^ 羊侃
^2^ 燕尾炬
^3^ 壁
^4^ 油
^5^ 桔槔
^6^ 鐵轂木

^2^ 燕尾炬
^3^ 壁
^4^ 油
^5^ 桔槔
^6^ 鐵轂木

^3^ 壁
^4^ 油
^5^ 桔槔
^6^ 鐵轂木

^4^ 油
^5^ 桔槔
^6^ 鐵轂木

^5^ 桔槔
^6^ 鐵轂木

^6^ 鐵轂木

^a^ TPYC, ch. 4, p. 83; WCTYCC, ch. 12, p. 61a; illustration, p. 60a; cf. Wallacker (4), p. 44.
^b^ WCTYCC, ch. 12, p. 29a; illustration, p. 28a.
^c^ WCTYCC, ch. 12, p. 26a, illustration, p. 20a.
^d^ These were used to cover the advance of infantry in the course of a mass assault (ifu^2) on the walls (figure 288 and below p. 484).
turned the pulley wheel with all their might to drag it towards the walls. Once close in, the defenders used a long pole to help raise the large rope with its hook and wind the screen or ladder over the walls and into the city.

If wooden donkeys attacked, the defenders waited until they were close to the walls and then let loose a rain of large stones and wooden 'thundersticks' (mu lei¹), which we have already described (Figure 122 above), and then hurled smaller rocks in a continuous shower so that the enemy soldiers inside the engines would

¹ WCTY/CC, ch. 12, p. 22a; illustration, p. 21a. See p. 284 above.

¹ 木擂
be too afraid to leave their shelters. The defenders then let over the walls two strong men in a leather box suspended by an iron chain attached to a pulley wheel. They fastened the hook of the 'windlass cart' to the immobilised enemy tank and it was immediately and rapidly wound up and into the city.

Before we turn to a discussion of the ancient Chinese battering-ram (chhung¹), we should mention one other engine which may have been a type of large tank for bridging the moat. Liu Mien² had his men push 'toad carts' (ha ma chhé²) into the moat around Shou-Yang⁴ to force Yin Yen⁵, a rebel malgré lui, to surrender in +466. Some sources record that each cart was covered with fresh oxhide and was pushed by three hundred men. Even though Yen's chief of the Population Department Yü I-Chih⁶ built trebuchets (phao chhé⁷) which hurled rocks at the tanks and destroyed them, he was in the end forced to surrender.⁸ These 'toad carts' may

⁸ Shên Yüeh¹¹ (+441-513), Sung Shu¹⁰, quoted in TPLY, ch. 336, pp. 4ab; ibid., TPLY, ch. 336, p. 5a; Chhi Shu¹⁰, TPLY, ch. 336, p. 5a. The Nan Shih¹¹ ('Yin Yen chuan'), ch. 39, p. 2ab, abbreviates the description of the battle, while the TCTE, ch. 131, p. 4126 (1956 ed.), even claims that Yin gave up without a fight. Cf. TFK, ch. 368, p. 12ab; Needham (81), p. 108. The 'toad cart' was also used on one occasion by Hou Ching¹² in his siege of Chien-Khang¹² (Wallacker (4), p. 50).
have been similar to the 'wagon for filling in the moat' (thien hao chhê¹) and the 'leather cart for filling in the moat' (thien hao phi chhê²) illustrated in WCTY, but since the accompanying text has been lost, we cannot be certain on this point (Figures 289 and 290).®

(v) Battering-rams

In the Western Bronze Age, Yadin argues that it was the introduction of the battering-ram that produced fundamental changes in the design of town defences. Enormous gates were built to command entrance to the cities and smooth sloping glacis protected the base of the walls.® These innovations may have begun in the mid-third millennium by the time of the depiction of a siege at Deshashe, but we have to wait until the — 20th century for the famous wall-paintings of Beni-hasan for the first illustration of a battering-ram (Figure 291).® Three engineers stand wielding a long wooden, possibly metal-tipped, pole protected by a tent-like mantlet with an arched roof. They direct the ram towards the upper section of the walls from which the defenders hurl rocks and shoot arrows at the enemy storming the fortress. The fragility of the pole and the angle at which it is held suggests that

¹ WCTY/CC, ch. 10, p. 30ab.
² Yadin (i), pp. 69-71.
³ Newberry (i), vol. 2, plate XV; Horwitz (i7), p. 5.

¹ 填壕車 ² 填壕皮車
it cannot have been particularly effective in dislodging enormous boulders at the base of the wall: it may have been most successful at prying loose the parapet and upper levels of the wall, thus exposing the defenders to the missiles of the besieging forces. Its practicality in destroying fortifications was, however, quickly appreciated throughout the ancient Middle East.

Later textual evidence from Mari on the banks of the Euphrates of –18th century date and from Boghazköy, the capital of the Hittite empire, shows that siege towers and earth ramps built up to the top of the walls over the moat had also been introduced by that time.*

Urshu, north of Carchemish on the Euphrates, was captured and destroyed by the Hittites using these engines, and the Hurrians were known to have developed a special form of ram, possibly of great weight and size, not unexpectedly since they hailed from the mountain fastnesses where trees grew in an abundance totally unknown on the Mesopotamian plain. \(^a\)

The earliest record of the battering-ram (chhung\(^1\)) comes later in China, in poem 241 of the Shih Ching\(^2\) (Book of Odes), mentioned above, which lauds Wên-Wang\(^3\) of Chou\(^4\). Here, Shang-Ti\(^5\) is said to have ordered the king to attack the mighty walls of Chhung\(^6\) using 'overlooks', rams, hooks, and ladders. \(^b\) We may not, however, be far from the truth in supposing that some kind of ram and assault engine had been invented in the late neolithic Lung-Shan\(^7\) period a millennium earlier, for the excavators of the settlements at Chhêng-Tzu-Yai\(^8\) in Shantung\(^e\) and Hou-Kang\(^9\) in Honan\(^a\) found traces of surrounding walls. \(^e\)

The massive terre pisé (hang thu\(^10\)) walls found at Chêng-Chou\(^11\) and Phan-Lung-Chhêng\(^12\) suggest even more strongly that the earliest Bronze Age people in China were forced to defend themselves against determined enemy assaults. The size of the Shang structures definitely indicates that siege engines had been developed by the mid-second millennium, even though no textual evidence is available until just before the Chou conquest. Of course by no means were all towns and ritual centres protected by walls. An-Yang\(^13\) was originally thought to lack one,\(^b\) and the early pre-conquest palace remains recently unearthed in the Chou heartland are apparently wall-less. \(^i\) Yet the walling of towns and cities continued unabated throughout the Springs and Autumns period: \(^j\) rams and other types of siege engines must have been brought into battle on some occasions,

\(^a\) Kupper (1), p. 128.
\(^c\) Fu Ssu-Nien, Li Chi et al (2) Watten (6), p. 17; Chang (1) p. 178 and p. 179, fig. 81.
\(^d\) Shih Chang-Ju, Ju (2), pp. 21–48.
\(^e\) A wall of rocks fortifies a Lungshanoid village at Tung-Pa-Chia\(^1\), Chhîng-Chên, Liaoning (Thung Chu-Chhêng (1); Chang (1), p. 189).
\(^g\) Hupei Shêng Po-Wu Kuan & Pei-Ching Ta-Chi, Chhao-Ku Chuan-Yeh Phan-Lung-Chhêng Fa-Chiieh Tui, (1), pp. 5–15; Bagley (1); Chang (5), pp. 297–305.
\(^h\) Further excavations in the vicinity may, of course, bring a defensive wall to light. Wheatley (2) questions the theory that military needs caused town formation and suggests that archaic walls were more delineators of sacred space than bulwarks against the enemy. Practical military considerations and religious beliefs need not be in such unequivocal opposition as Wheatley supposes: the two are, in fact, quite compatible. For evaluations of the Wheatley thesis, see Vandermeersch (1) and Keightley (5), (6). Archaeologists have only recently reported the existence of a wall at An-Yang, but the details have not yet been published.
\(^i\) Shênsi Chou-Yian Khao-Ku Tui (1), pp. 27–36.
\(^j\) Oshima Toshikazu; Wheatley (2); Tu Cheng-Sheng (1) and (2).
even though the records are silent from the pre-conquest Chou to the late Springs and Autumns period. Then we find the defenders of Lin-Chhiu in Chhi setting fire to the battering-rams of Ting, Duke of Lu, in -501. Some soldiers of the invading army, however, soaked serge horse-blankets in water and extinguished the flames and the rams managed to destroy the outer walls of the town. Su Chhin, the great strategist and architect of alliances at the end of the -4th century, and a contemporary of the later Mohists, speaks of rams 100 feet long: these must have been felled trees and have required large numbers of men to guide them. But unfortunately only a few sentences of the Mohist defence against a ram assault have been preserved in the TPYL encyclopaedia and so we cannot be certain about the weight, size, and overall construction of the late Warring States rams.

The defence envisaged by the Mohists consisted of a machine possibly similar to the ‘windlass cart for descending the walls’ (hsia chhêng chiao chhê) illustrated and described in the WCTY which was a kind of early elevator. Two ropes were attached to a windlass mounted between two vertical posts which were positioned on the terreplein. The ropes were threaded through holes in a horizontal cross-beam at their lower ends and tied off. Men could stand on the beam and be lowered over the walls at great speed (Figure 292). The Mohist ropes were 80 feet long and strong men were instructed to chop the enemy rams to pieces with axes whose handles were 6 feet long. After completing their task, they would have been raised up again to the relative safety of the parapet.

One other fragment, now located in the section ‘Defence against Ladders’ (Pei Thi), may have originally belonged in the ‘Defence against Battering-rams’ (Pei Chhung). In it is described a device called the ‘movable parapet’ (hsing tieh). This was 6 feet high and ‘all level’ (?)(i têng). Swords were inserted into the face of the ‘parapet’ and fired by a trigger mechanism when the rams arrived. The ‘parapet’ may have been hung horizontally out from the walls so that when the swords were released, they dropped in a deadly salvo onto the enemy swinging the ram, or it may have resembled the Sung ‘knife cart for blocking gates’ (sai men tao chhê) which was rolled forward to block entrance into the city when the gates had been destroyed (Figure 222, above).

The passage continues with the instruction that a hole for a torch be dug in the

b CAT ‘Chhi Tsch’ (6), ch. 12, p. 440; Crump (1), p. 201.

c TPYL, ch. 336, p. 7b.

d ‘Chhên Chi’, ch. 12, pp. 29a; illustration, p. 28b.

f WCTY/CC, ch. 12, p. 20a; illustration, p. 19a. The WCTY also describes a ‘wooden parapet’ (mwu nüo ho) on wheels. Made out of planks and 6 feet high and 5 feet broad, it was rushed to fill in any breaches made in the parapet (WCTY/CC, ch. 12, p. 20a; illustration, p. 19b) (figure 223, above).

1. 廣丘
2. 備梯
3. 齊
4. 備衝
5. 魯公定
6. 蘇秦
7. 下城絞車
8. 行壘
9. 一等
10. 堡門刀車
11. 木女頭
MISSILES AND SIEGES

30.

30. MISSILES AND SIEGES

433

30. MISSILES AND SIEGES

Fig. 292. Early Chinese elevator, the 'Windlass cart for descending walls',
from WCTY/CG, ch. 12, p. 28b.

wall every 3 feet: these torches would have been lit at dusk to guard against a surreptitious night attack.*

Finally, the Mohists insisted that cylindrical caltrops (chi li thou') be used against the lines of attack. These caltrops, similar to the Sung 'thundersticks' (mu lei²) and 'night forked thundersticks' (yen chha lei²) mentioned above, but probably smaller, 2½ chhih long and more than 46.2 cm in circumference, were attached to ropes which passed over windlasses mounted on the walls. When the enemy advanced, the defenders turned the handles to make the caltrops roll down the wall and towards the enemy.

The Mohists also deployed heavy 'wooden crossbows' (mu nu⁴) against rams and siege towers (lung tshung⁵), placing one every twelve feet along the battlements. These crossbows could shoot iron-tipped arrows more than 300 feet.⁶ In the Thang dynasty, this crossbow was constructed of poplar, Cudrania triloba, or

* There is probably textual corruption at this point, for other passages state that the 3 feet referred to the distance of the hole below the parapet.

⁶ Ma Tzu, ch. 14, pp. 14ab; Sun I-Jang (2), ch. 14, p. 14a; Tshen Chung-Mien (3), pp. 9–10; Wu Yü-Chiang (1). The text of the passage is corrupt and difficult. It appears as though iron from the state of Chhi⁴ was the preferred metal and that if no bamboo was available to make the shafts, hu⁷ wood, redbud, Cudrania, or elm could be substituted. See Yates (5), pp. 98–9, notes 84–97, for the reconstruction of the text.
mulberry wood, and had a stock 12 feet long and 7 inches in diameter, with tips
(shao) to the bow each 3 inches long. It was drawn by a winch or windlass (chiao
chhé) and fired salvoes against lines of infantry.\(^\text{a}\)

Furthermore, the Mohists themselves used 'flying rams' (fei chhung) for they
appear in a fragmentary list of weapons and machines essential for a defence.\(^\text{b}\)
This ram was probably close in design to the Sung chhuang chhé: a wooden beam
was sheathed in iron plate and was suspended from a rope attached to a pulley
wheel mounted on a mobile cart (Figure 272). Wherever counterweighted ladders
were pushed up to the walls, the rams were hurried into position to meet and
destroy them.\(^\text{c}\) From the late Warring States times, armies seem to have hauled
rams in the field for breaking the lines of a strong enemy.\(^\text{d}\) The Liu Thao\(^\text{e}\) advises
that each army be equipped with thirty-six such engines operated by specially
trained soldiers.\(^\text{f}\) Kao Yu\(^\text{g}\), the +2nd-century commentator on the Huai Nan
Tzu, states that barded horses pulled these rams which were made from ordinary
carts. Their poles (yuan), however, were reinforced with iron and they were
armed with spears and other long weapons.\(^\text{h}\) Presumably these rams drove into
the ranks of enemy in the open field. In siege warfare, the horses would have
drawn the rams into position beneath the walls, but then soldiers would have
taken over to batter the walls.

Rams were among the most popular of siege engines in early imperial times
from the Han to the Sung. Wang Mang\(^\text{i}\), the usurper who founded the short-lived
Hsin\(^\text{j}\) dynasty, the interregnum that lasted a bare dozen years between the for­
mer and later Han (+9 to 23), sought to overawe the populace of the central
China plains with his majesty and martial prowess by conducting a mighty hunt
for tigers, leopards, rhinoceros and elephants and other strange wild beasts in
which his cuirassed soldiers accompanied rams and rode in tower carts (phéng
chhé) brandishing halberds (ko) and shields and waving flags and banners in a
display of military power that had not been seen since the days of the wars that
brought down the Chhin and established the Han.\(^\text{k}\) But it was all to no avail. The
peasant Red Eyebrows rose to protest the shocking conditions in the countryside
and then disaffected members of the former imperial Liu\(^\text{l}\) clan rebelled in Nan-
Yang Chhin\(^\text{m}\) commandery. Their first major success was, in +23, to capture the

\(^{a}\) Yates (3), p. 443.
\(^{c}\) WCTHCC, ch. 12, p. 26b; illustration, p. 25a; STTH, ch. 5, p. 19a. The beam was built in the manner of the
pesastle in an oil press, but see p. 412 above.
\(^{d}\) Shuo Wén, p. 6408a, writes the graph chhung or chiang.
\(^{e}\) Ch. 2, p. 30; cf. TPL, ch. 336, p. 7a.
\(^{f}\) Ch. 6, p. 9a.
\(^{g}\) Tung Kuan Han Chi (TSCC ed.), ch. 1, p. 3.
commandery capital, Wan. They ringed it with several tens of siege lines; their camps numbered several hundred; ‘cloud carts’ (yün chhé) more than 100 feet tall permitted their look-outs to watch the preparations for defence inside the city. Dust rose up and mingled with the sky and the sound of drums and gongs could be heard several hundred miles away. While some sappers dug mines (ti tao), other engineers built rams and tower carts (phêng chhé) and attacked the walls with them and batteries of crossbows rained arrows down on the unfortunate Wang Mang loyalists inside until they finally submitted to this combined assault.

As we would expect, rams were an integral part of the ordnance of the warlords who fought for the spoils of the Han empire when it finally collapsed at the end of the + 2nd-century. Kung-sun Tsan, a Han loyalist general who had gained great success against the nomads along the northeastern frontier, was pressed long and hard by Yuan Shao. Finally cornered in + 199, he wrote a letter to his son Hsu requesting him to come to his assistance. In it, he acknowledged the spiritual power of Yuan’s rams and ladders and proposed a fire signal that Hsu should light to let Tsan know that relief was at hand. Unfortunately for him, one of Yuan’s spies acquired the letter and Yuan set the fires. Tricked, Tsan made a sortie from his stronghold, thinking that his son would strike the besiegers from the rear, and fell straight into the ambush Yuan had carefully laid. Tsan was so heavily defeated that he despaired of help arriving in time. He strangled his sisters, wife and other children and immolated himself on a terrace. Yuan’s soldiers climbed up and beheaded his corpse.

After the end of the Han, the ram was also written with the graphs chhung chhé and could be protected with a roof just like the tank we have described above. And it is under this name that we find it in Wang Yin’s records of Ssu-ma I, the first of the line that eventually founded the Chin dynasty. In the autumn of + 238, while he was still loyal to the Wei, he laid siege to Hsiang-Phing, the capital of Kung-sun Yuan, the warlord of Liaotung, and reduced it with a massive combination of earth ramps (thu shan), mines (ti tao), siege towers (lu),

* HHS (Chi Chieh ed.), ch. 1A, p. 6a; TCTC, ch. 39, p. 1242; Bielenstein (2), pp. 112-20. An earlier prince of the Liu house, the king of Hêng-Shan had instructed two retainers of his son Hsiao, Chiu Ho and Chhién Hsi to build tower carts, manufacture arrow heads and carve forgeries of the imperial seal and the seal of various generals and officials in preparation for an attempt on the throne in — 125. But his plans were discovered and the rebellion was crushed (Shihchi, ch. 118, p. 45; Watson (1), vol. 2, p. 396).

* HHS (Chi Chieh ed.), ch. 73, p. 9a; quoted in PTSC, ch. 118, p. 3a; TPTK, ch. 368, pp. 8b-9b.

* Chou Chhien actually states in his Ku Chin Yu Fu Ta Shih (now lost) that the (ancient) fei wên tank was his contemporary chhung chhé (quoted in TPLY, ch. 396, pp. 6ab).

* Wang Yin’s Chin Shu, quoted in TPLY, ch. 336, p. 3a; cf. Chin Shu, ch. 1, p. 6b; TCTC, ch. 74, p. 2336; Achilles Fang (1), vol. 1, p. 574.
rams, and trebuchets that threw rocks. Yiian and his son Hsiu tried to flee with a few hundred followers but were captured and beheaded on the banks of the river Liang. More than 7,000 of the soldiers and towns-folk of Hsiang-Phing were executed and their corpses piled up into a mountain (ching kuan) as a warning to other recalcitrant rebels.

The ram was put to another use in +450, when the Tho Pa Wei made a furious assault upon the strategic town of Hsiian-Hu-Chhêng in Honan which guarded the approaches to the Liu Sung heartland. Chhên Hsien, who had taken charge of Ju-Nan commandery closed the city for the defence. The northerners built many tall towers (kao lou) from which they rained crossbow bolts down into the city. Because the defenders were outnumbered by almost one hundred to one, they carried doors on their heads to gather up the missiles and replenish their stocks. Then the besiegers melted down Buddhist statues and cast large hooks which they attached to the ends of rams. With these, they succeeded in tearing down the south parapet and wall. They pushed up 'toad carts' (ha ma chhtI) to fill in the moat and charged into the breaches stripped of their armour. But Chhên personally led his elite corps and managed to erect a wooden palisade (mu cha) on the outside and a parapet (niu chhiang) on the inside to hold the enemy back. In the bitter hand-to-hand fighting, more than half the defenders were killed and the attackers are said to have climbed up the piles of corpses of their dead comrades to reach the top of the walls. Finally, however, after 42 days of such combat, the Wei army was forced to withdraw and Chhên was promoted to a general for his valour.

During the famous siege of Yii-Pi in 546, after Wei Hsiao-Khuan had thwarted Kao Huan's attempts at forcing an entrance to the castle by raising ramps first over the south wall and then over the north and had subsequently stopped the mines under the south wall, Kao brought up great rams called 'assault wagons' (kung chhtI), and proceeded to smash the towers and battlements again along the south defence perimeter. No shield could withstand the force of the rams and Wei had to construct special screens (man) sewn out of cloth which he suspended from poles and hung out from the walls at whatever point the rams chose as a target. Frustrated again, the attackers tied branches of pine and hemp twigs onto long bamboo poles, soaked them in oil, lit them, and tried to set fire to the screens, hoping in the process to catch the lower on fire as well. But the ever-

\[\text{This perhaps is the historian's exaggeration: Keegan (1), pp. 106-7 has observed that the famous 'building of the pile of dead' at Agincourt could not have occurred in fact, because it would have been physically impossible for soldiers to duel 'while balancing on the corpses of twenty or thirty others'.}\]

\[\text{TCTC, ch. 125, p. 3938; Shen Yueh Sang Shu, quoted in TPYL, ch. 336, p. 44ab.}\]
inventive Wei devised long hooks with sharp blades and cut down the fire poles when they approached. The blazing torches dropped to the ground outside, posing no danger to the citadel.\(^a\)

By the Thang, another method of halting the attacks of rams had been invented. Large, coarsely made rings were manufactured, either forged out of wrought iron or bent into shape from soft wood such as mulberry, and were suspended from the walls by heavy ropes or chains (Figure 293). When the rams reached the walls, the defenders slipped the rings over the heads of the rams and pulled with all their might, attempting to overturn them. In the meantime, archers fired a continuous stream of arrows and crossbow quarrels on either side to prevent the enemy from venturing forth to release the ring. Once they had fled, strong defenders were let down over the walls to throw hay onto the disabled rams and set them on fire.

\(^{(vi)}\) **Overlook carts**

As we have mentioned above, section 53 of the extant text of Mo Tzu contains two different passages: the first is a defence against the ‘sheep’s bank’ ramp (yang ling\(^1\)) and the second is one against the ‘overlook’ (lin\(^2\)). This latter passage is unique in the Mohist chapters in that it consists only of detailed specifications for the construction of a single weapon, the multiple-bolt arcuballista (lien nu chhi\(^3\)) and gives no other techniques or devices with which to counter the ‘overlook cart’. This would suggest that the passage was later in date than those which present a formulaic introduction and conclusion in which the disciple Chhin Ku-Li\(^4\) asks his master Mo-Tzu a question about one of the twelve types of attack and Mo-Tzu answers by describing various tactics and machines,\(^b\) possibly being composed in the — mid-3rd century.

The reason that the compiler of the Mohist fragments placed the defence against

\(^a\) Thang Tien, ch. 152, p. 801a; WCTT/CC, ch. 12, p. 29a; illustration, p. 28a; Chou Shu, ch. 31, pp. 3a–4a; Pei Shih, ch. 64, pp. 2b–3a.
\(^b\) Cf. Yates (4), p. 375. Those passages which begin ‘in general, the standard procedure to defend against such-and-such attack . . .’ are also probably later in date than those with the question and answer formula.

\(^1\) 羊點 \(^2\) 臨 \(^3\) 連弩車 \(^4\) 禽滑榦
the ‘sheep’s bank’ ramp in the ‘overlook’ section was probably because Chhin Ku-Li’s question contains the following words: ‘I venture to ask that when the enemy pile up earth to make a height (kao¹) in order to overlook (lin²) our city walls . . .’. But ‘overlooks’ were, in fact, siege towers which were rolled on wheels up to a city’s walls. The first reference to them occurs in poem 241 of the Shih Ching³ in a list of siege engines and devices used by King Wên of Chou⁴ against the town of Chhung⁵, as we have already stated. In the late Warring States, they were also known by the term lung⁶ which means ‘high’,⁴ and the authors of the —2nd-century Huai Nan Tzu⁷ pronounced that ‘in latter day warfare the overlook (lung⁶) and battering-ram (chhung⁸) are used to attack; the shield (chhu⁹) and screen (chhan¹⁰) are used to defend’.⁶

It is unfortunately not possible to determine the appearance of the ‘overlook’ wagon (lin chhé¹¹), although it was probably different from the counterweighted ‘cloud-ladder’ (jiin thi¹²) and may have been a forebear of the pheng chhé¹³ ‘tower cart’ of the Han and later times which we have already encountered. All three engines, as well as other types of siege towers as the lu¹⁴, lou¹⁵ and lung tshung¹⁶ and the ‘nest cart’ (chhao chhé¹⁷) were known collectively as ‘tower carts’ (lou chhé¹⁸).

438 30. MILITARY TECHNOLOGY

* See Graham (11) and (12), Yates (4) and (5), for compilation of the extant text of the Mo Tzu. The compilation may have taken place somewhat later than the +1st century that Graham (12) p. 65, suggests, since passages from the military chapters were quoted in other later sources. The enlisting of the sections may have been completed to conform with the number of sections recorded for the work (71) in the catalogue of the Han imperial library.

9 Another reason for considering lin⁹ not to be a ramp is that the multiple-bolt arcuballista used to strike it was a low trajectory weapon, in contrast for example, to the trebuchet which lobbed stones, and would have been more effective against large structures and lines of infantry or cavalry. The only building on the ramp was the lu⁹ pavis or mantlet which shielded the men piling the earth. What was required to resist the ramp were heavy stones, fire bombs, rams and curtain-walls. We should note, however, that it is just possible that both lin⁹ and yang ling¹¹ were Sturmrampe (agger) which reached the height of the wall, and that jiin¹² was a Belagerungsdamm (mounding in the moat) which permitted siege engines to reach the base of the wall. The distinction between the two types of mound do not, however, seem to have been made by the Chinese, and we conclude that both yang ling¹¹ and jiin¹² were ramps and lin⁹ was a siege tower. It should be noted, however, that it is strange that yang ling¹¹ is not mentioned in Chhin Ku-Li’s⁴⁴ introductory list of twelve attacks while the jiin¹² is. Perhaps some Mohists did make the distinction and that yang ling¹¹ was the Sturmrampe and jiin was the Belagerungsdamm: jiin¹² meant a ramp mounding in the moat, but when the word chá⁴⁵, which probably meant ‘bridging a distance’ (Wallacker (4)), was added to it, the new term chu jiin¹² referred to both types of ramp. The introductory passage with the list of twelve could have belonged to a version of the text that included jiin and lacked a defence against the ‘sheep’s bank’ ramp.

14 Chhin Huan (1), tshé⁵, pp. 107–9; Karlgren (14), p. 31.
17 According to Lu Te-Ming⁴⁴ (+ 556–627) (Mao Shih Yin I, ch. C, p. 6b), lin⁹ is altered to lung⁶ in this poem in the Han Shih Wats Chuan⁴⁷.
18 ‘Fan Lun’⁴⁸ ch. 13, p. 5a (SPPY ed.).
and all could be used to watch for the approach of the enemy when the army was in open country and to examine the preparations for defence inside the city during the course of a siege.

Some idea of the cart, however, may be gained from Mao Yüan-I's reconstruction of 'Duke Lü's Overlook and Assault Cart' (lin chhung Lü kung chhê²), a five-storey tower with four axles each with two wheels, which was pushed forward by three men sitting in the lowest storey. The soldiers in the upper four storeys carry bows, sabres, spears and swords and from the front of the engines project spears of many shapes and sizes (Figure 294). In early times, horses or oxen would have

Fig. 294. Duke Lu's overlook and assault cart, from WPC.
pulled the wagon and Mao's illustration is really only helpful in understanding the Ming conception of such a siege tower.

Regardless of the appearance of the 'overlook cart', the general features of the Mohist multiple-bolt arcuballista, the father of a long line of ballistae which could compare with any type of catapult siege artillery developed at the same time in the West, can be easily appreciated from a study of the text, even though a number of the technical terms cannot be understood with any precision (cf. pp. 189-90 above).

The double (upper and lower) frame (khuang⁴) on which the crossbow or arcuballista, to use the Latin term, rested was constructed of timbers one foot square and the Mohists recommended that this frame be as long as appropriate for the width of the top of the city wall. According to another section of the Mo Tzu, this width of the terreplein may have been 18-24 feet, more precisely 4.14 to 5.52 metres. If this was indeed the standard width of the top of the wall, it was probably necessary to construct special platforms at appropriate distance along the terreplein to accommodate the ballista, for the arrows are said to be 10 feet long and three feet 'higher' (kao²) than the stock. This latter statement may mean that, when the bow was drawn, the arrows projected beyond the front end of the stock. This stock itself was 6 feet long, 14 inches wide and 7 inches thick with a curved end-piece, called the 'claw' (tsao³), 15 inches long into which the bow fitted. Since the artillery engineers must have allowed for a significant recoil when the weapon discharged, the width of the walls where the arcuballista was stationed must have been more than the 12 1/2 feet that the Thang and Sung military manuals give for the width, perhaps even wider than the 24 feet indicated by the other passage of Mo Tzu.

The frame of the multiple-bolt arcuballista was probably more than the 10-foot length of the arrows and was mounted on two axles with three wheels each. These wheels were located inside the lower frame. The upper frame was 8 feet off the ground and the stock of the bow was level with this upper frame. The two parts of the frame consisted of posts and horizontal beams linked together by 4-inch diameter mortise-and-tenon joints. The bows were attached to these posts by strings or ropes (hsien⁴) and the central U-piece (kou hsien⁵), also known as the 'tooth' (ya⁶), was fitted to the main string that propelled the bolts. A piece called the chu⁷ 'axle' or 'pivot', which may be a corrupt graph or a special term for the

[Notes and references]

4 If the Mohists had a special term for the terreplein, it has dropped from the text (Yates (5), p. 110, note 145).
6 HCC (Phien 56) ('Chu Chhêng'), ch. 6, p. 45; Thung Tien, ch. 152, p. 800a; TPYC, ch. 5, p. 105. Cf. Yates (3).
7 Yu Yuch (1), suggests that the text's son⁴ 'three' should be emended to ssw⁶ 'four', which may be correct.
8 For a detailed discussion and identification of the terms for the parts of the crossbow and its mechanism, see Hayashi (5), pp. 301-3, and A. F. P. Hulscwé (8), p. 253. For earlier analyses see, inter alia, Hsü Chung-Shu (4); Lao Kan (8) pp. 46-51.
trigger mechanism, or possibly an unidentified part of the machine, was located 3 1/2 feet away from the lower frame.a Just over 36 kilos (shih1, 30 chin2) of bronze were needed to cast the housing (kuo3) of the trigger mechanism. The bow was drawn by a winch (lu lu4) using 'left and right claws' (kou chii5) 3 inches square, and the crossbow was equipped with sights (iz6) and some kind of device for raising and lowering it to aim accurately at the target. Two other parts are also mentioned: a wooden wu7 (literally, 'martial') a shih8 (i.e. 29.3 kilos) in weight, which may perhaps have functioned as some kind of counterweight, and a chii9 (literally, 'claw' or 'ram') 6 inches wide, 3 inches thick and as long as the frame: its function remains a mystery. The large 10-foot arrows had ropes attached to their shaftments so that they could be reeled back after discharge by a large windlass. Sixty of these immense arrows were issued to each machine and 'innumerable' small bolts were also fired by the same crossbow being discharged at the same time.b The Mo Tzu concludes its specifications by stating that ten artillerymen were in charge of operating this multiple-bolt arcuballista. Unfortunately, there is no mention of the range of this powerful siege weapon, nor the weight required to draw it: a descendant of this arcuballista is stated in the Thang dynasty to reach a distance of 700 paces (pu10), approximately 1,160 yards or 1,061 metres, with a weight of twelve tan or shih1 required for the draw.c In the Han dynasty, however, it would seem from the Chü-Yen11 strips that the weight for the draw for such a crossbow was 10 tan or shih (293 kilos).d But the later history of these great weapons has been told in detail in another section of the present work.

(vii) Ramps

The earliest notice of the ramp attack (yin12) is found in the Kung Yang Chuan13, one of the commentaries to the Springs and Autumn Annals (Chhun Chhiu14) of the state of Lu15 edited by Confucius, on the same occasion in -593 as the Tso Chuan16 records the appearance of the 'tower cart' (lou chhi17). The commentary observes that an officer of the besieging Chhu18 forces Ssu-ma Tzu-Fan19 climbed the ramp to peer into the city of Sung20, and Hua Yuan21, one of the defenders,
also climbed the ramp to look out. The two then proceeded to converse about the state of provisions of the opposing forces: the men of Sung were exchanging their children and eating them while the Chhu army possessed only seven days' rations left. Such an incident seems unlikely in fact, because it implies that the ramp had already surmounted the walls and had been erected inside as well. In which case, the city would either have fallen immediately or the defenders would have destroyed those portions that remained on their side of the walls.

But even if the historical authenticity of the anecdote can be questioned, ramps were definitely being raised in the - 6th century for in the very year that the great saviour of the Chinese people and first hegemon (pa) Duke Huan of Chhi died, in - 566, Yen Jo of Chhi laid siege to the capital of Lai, constructed a ramp, heavily defeated a relief army from Thang led by Wang Chhiu and Cheng Yu-Tzu and captured the city.

From this time on, the raising of ramps was a standard tactic in siege warfare even though it engaged the efforts of large numbers of soldiers and took many months to complete the undertaking. The Sun Tzu reckoned that it would require six months of hard labour before a ramp could reach the top of the walls and an entrance be forced into the city, and the Wei Liao Tzu recommended that it be attempted when the besieging army had sufficient manpower and the space around the city was confined. But Mo-Tzu himself scoffed at a general who resorted to this form of attack: a competent defender had nothing to fear from an enemy who exhausted his troops in such an unprofitable venture.

The present text of the book Mo Tzu contains four versions of the defence against ramps. In two, the ramp is called a 'sheep's bank' (yang ling). As we have said, these two passages are placed in different parts of the text, the first at the beginning of section 53, 'Defence against Overlook Carts' (Pei Lin), and the second at the beginning of section 70, 'Various Defences' (Tsa Shou), and these give a fairly coherent account of the defence procedures. In another two passages, the ramps are called by the more common term yin, but unfortunately the texts have

For the reconstruction of the text of these passages, see Yates (4), pp. 573–7; Yates (5), pp. 195–202. Watanabe is probably mistaken in thinking that the second version is the work of Mohists in the state of Chhin in the late -3rd century: section 70 is merely a collection of fragments of text that the Han compiler was unable to place in other sections (Yates (4), p. 574).
been misplaced and hidden in other sections of the *Mo Tzu* military chapters and are so short and fragmented that only enough remains to give us a rough idea of the tactics advocated for the defence.

It is possible that the Mohists did make, as we have suggested above, a distinction between *yang ling*¹ and *yin*² and that the former refers to a ramp (*agger* or *Sturmrampe*) which was raised up to overlook the city wall and the latter was a mounding in of the moat (*Belagerungsdamm*) which permitted the enemy to bring their siege engines right to the very foot of the wall. The filling in of the moat would have been attempted prior to an assault by such engines as hooks, tanks, rams, and cloud-ladders as well as the mass infantry advance and the mysterious *khung tung*³. But throughout Chinese history, there seems to have been no such discrimination between the two types of ramp and all later Chinese scholars and military men equated *ch'i*⁴ *yin⁵* with the later 'earth mountain' (*thu shan⁶*) and 'rampart road' (*lei ta⁷*) ramps*⁸* (Figure 295).

Here is a translation of the first passage devoted to the defence against the 'sheep's bank' ramp:

Master Chhin⁷ made repeated obeisances and said, 'I venture to ask that when the enemy pile up earth to make a height in order to overlook our city walls; they raise up firewood and earth together and use them to make a "sheep's bank" ramp [*yang ling*⁸]; they advance pavises [*mêng⁹*] and mantlets [*lu¹⁰*] together; and then they join the ramp to the city walls and soldiers brandishing weapons and crossbowmen simultaneously move up to the attack, what can be done about it?' The Master Mo-Tzu said, 'Are you asking about the defence against the "sheep's bank" ramp? Whoever uses a "sheep's bank" ramp is stupid at advancing, for the ramp is enough to exhaust the troops but inadequate to damage the city walls. The defenders are to make "terrace city walls" [*thai chhêng¹¹*] and with these they overlook the ramp. On left and right, they are to project rams [*ch'i¹²*] each 20 feet long. The "movable city walls" [*thiêng chhêng¹³*] are 30 feet high. Shoot⁵ the enemy with strong crossbows and trample them with trebuchets [*thou ch'i¹⁴*] [one graph missing] with the strange devices; if you act so, then the attack of the "sheep's bank" ramp will be defeated.'

The "terrace city walls" (*thai chhêng¹¹*) and 'movable city walls' were alternative names for the same device: screens which were designed to give greater height to the city wall. They were also deployed against counterweighted ladders, as we shall see shortly. Unfortunately, the *Mo Tzu* fails to specify the details of construction, but they were probably made of mudsoaked strips of cloth nailed to timbers: Wei Hsiao-Khuan¹⁵ raised precisely the same type of curtains to keep his walls
higher than the ramp of Kao Huan\(^1\) during the siege of Yü-Pi\(^2\). The mud would, of course, be an effective protection against fire. We have already described the Mohist trebuchet or catapult.\(^b\) Here the defenders would have used them to smash down the ramp and to destroy the pavises and mantlets set up at the head of the ramp where the enemy engineers would be working. Since a graph has been lost from the text, we cannot tell what the 'strange devices' (\(chhi chi\)) were, but Chhin Shih-Huang-Ti's\(^4\) tomb is said to have contained them;\(^c\) perhaps we will learn more when the tomb is finally opened in the next few years! But the Mohists probably meant all the weapons and engines which they list as requirements for a strong defence.

The two passages which appear to be the remains or separate versions of the defence against \(yin\)\(^3\) ramps are unusually badly mutilated and only the barest outline of the defence procedures can be understood, because a number of the technical terms defy interpretation.\(^d\) Both passages, however, seem to indicate

\(^{a}\) Wallacker (4), p. 796.

\(^{b}\) Pp. 207–10; Needham (81); Yates (3), pp. 423–4.

\(^{c}\) Shih Chi, ch. 6, p. 68; Chavannes (1), vol. 2, p. 194.

\(^{d}\) Mo Tzu, ch. 14, pp. 9b–10a and ch. 14, pp. 16ab; for the reconstruction of the text and discussion of the problems, see Yates (5), pp. 227–35.
that rows of sharpened stakes were pounded into the parapet at the top of the wall, either being 2 feet long or 7 inches long and 6 inches apart, and one of the passages supplements this line with brushwood fences raised both inside and outside a second parapet ('phing yûan') where soldiers were stationed one every 60 feet manning wooden crossbows ('mu nu'). Unfortunately it is unclear whether this second parapet is on top of the walls supplementing the regular 'woman's wall' ('nû yûan') or is the name of the low wall outside the main city walls.

Both passages also agree that jars are to be constructed; in one case they are of clay and of approximately 2 to 4 litre capacity, and in the other they may be of oak (tso) b, be 4 feet deep and of approximately 24 litre capacity. The latter are covered and buried one every 10 feet. The purpose of these jars is not made explicit, but they may have been used for storing oil or other combustible material to be lit and thrown at the enemy's ramp: one passage proceeds to speak of fighting off the ramp with fire pumped by bellows, presumably an early type of flamethrower, and the other describes a type of firebomb to be hurled by the trebuchets ('ch'ieh chhê'), made from wood 23.1 cm thick and 55.4 cm long which is hollowed out in the centre and filled with burning charcoal. Since the 'sheep's bank' ramp, as we have seen, was constructed out of brushwood and earth, presumably the 'jin' mound also consisted of the same materials and therefore was quite vulnerable to this form of attack, even though the armoured mantlet at the head of the ramp where the enemy engineers worked was theoretically invulnerable. The soldiers could, however, be shot by crossbow quarrels as they moved up and down the ramp during changes in the shifts and their movement on the ramp was further hampered by the defenders who showered cylindrical caltrops ('chi-lithou') at the ramp. These caltrops were 57.75 cm long and more than 46.2 cm thick.

The Mohists undoubtedly developed a number of other devices and fortifications against the ramp, but the text is regrettably lost. But we do not doubt that they considered it a quite inferior form of attack which took at least six months to complete and could only exhaust the enemy without ever putting the defenders to a serious test of their capabilities.

But despite Mo-Tzu's scorn of the ramp attack, the historical records abound with later examples. We have already noticed those that Hau Ching raised against the walls of Chien-Khang in the winter of +548-9, and Kao Huan's unsuccessful attempt to surmount Yü-Pi. Earlier, in +184, Chu Ch'iu realised...
that he lacked sufficient strength to mount an all-out assault on Nan-Yang\(^1\) which had been captured by the rebel Yellow Turbans (huang chin\(^2\)) under Han Chung\(^3\), and so he contented himself with raising two ramps to overlook the walls, one at the southwest corner and the other at the northeast. He feigned an attack in the southwest as a decoy while he personally led his élite soldiers up the northeast ramp and broke into the city, forcing Han to surrender. Chu promptly beheaded him.\(^a\)

Later on, Wang Ssu-Chêng\(^4\) beat off Kao Yüeh\(^5\) of the Eastern Wei\(^6\) when he tried to seize Ying-Chou\(^7\) in +548 by hurling ‘fire javelins’ (huo tsuan\(^8\)) and ‘fire arrows’ (huo chien\(^9\)) at the ramp he had erected and burning it with the help of a strong wind.\(^b\)

Before we pass on to a discussion of the ladder attack, we should note that Tu Hêng\(^10\) has suggested that there is a depiction of the ramp attack inlaid into the Warring States hu\(^11\) vessel found in tomb 10 at the Pai-Hua-Than\(^12\) middle school site, Chêng-Tu\(^13\), Szechuan, in 1965.\(^c\) A comparison with the other three vessels which also carry the same scenes of a naval battle and the siege of a city reveals, however, that the ‘ramps’ are really schematically represented ladders and we will return to these bronzes and their decorative patterns below.\(^d\)

(viii) Ladders

The name of Kung-shu Pan\(^14\) is associated with the earliest construction of the counterweighted ladder (yün thi\(^15\), literally ‘ladder that flies to the clouds’ or ‘cloud ladder’). An almost legendary engineer who later was apotheosised and worshipped by many craft guilds as their patron deity without whose aid and protection the most difficult procedures could not be successfully accomplished,\(^e\) Kung-shu Pan was Mo-Tzu’s arch enemy. The story of their famous rivalry and Mo-Tzu’s triumph, often repeated in later sources,\(^f\) is related in full in section 50 of the Mo Tzu.\(^8\)

\(^a\) Yuan Shan-Sung\(^16\), Hou Han Shê\(^7\), quoted in TPIL, ch. 336, p. 2a; TCTC, ch. 58, p. 1874.

\(^b\) Pei Shih, Ch. 6a, p. 7a; Thung Tien, ch. 161, p. 853bc. Wang Ssu-Chêng eventually had to surrender on one of these ramps because the Eastern Wei attackers were successful in flooding the city (Wallacker (5)). cf. Vol 5, pt 7, pp. passim.

\(^c\) Tu Hêng (3), p. 50. For the excavation report, see Ssu Chhuan Shêng Po-Wu Kuan, (1), pp. 40–46. The vessel is illustrated in plate 2.

\(^d\) See below p. 447.

\(^e\) C. K. Yang (1), pp. 71–2. We have encountered him on several occasions in previous volumes.

\(^f\) For example, Lu Shih Chhuan Chhieu (SPPY ed.) (‘Ai Lei’\(^18\)), ch. 21, pp. 7b–8a; Chhun Kuo Tshât (‘Sung Tshê’\(^19\)), ch. 32, pp. 11b–3; Crump (1), pp. 562–3. Shih Tzu\(^20\), quoted in TPIL, ch. 327, pp. 6a–7b, calls the ladders ‘The Steps that Cover the Heavens’ (mêng shên chieh\(^21\)); Shih Tzu (SPPY ed.), ch. A, pp. 14b–15b.

\(^8\) Sun I-Jang (2), ch. 13, pp. 12a–16a.
Kung-shu Pan had completed the construction of cloud-ladders for Chhu and was going to attack Sung with them. Mo-Tzu heard of it and set out from Chhi. He walked ten days and ten nights and arrived at Ying. He saw Kung-shu Pan. The latter asked him what he wanted of him. Mo-Tzu said, 'Someone in the north has humiliated me. I would like to have you kill him.' Kung-shu Pan was displeased. Mo-Tzu persisted, offering him ten measures of gold [chin]. Finally Kung-shu Pan said, 'My principles are incompatible with murdering people.'

Thereupon Mo-Tzu rose and bowed twice and spoke, 'Now let me explain myself. While in the north I heard you were building ladders with which to attack Sung. Now, of what crime is Sung guilty? The state of Ching has land to spare but is short of people. To destroy what is scarce in order to strive for what is already plenty cannot be said to be wise. Since Sung is innocent, to attack it cannot be said to be magnanimous. To fail to make an effort according to what you know cannot be said to be loyal. To make the effort without obtaining (the desired result) cannot be said to be effective. To hold a principle that forbids the killing of few but allows that of many cannot be said to be understanding the fundamental categories.'

Although Kung-shu Pan is convinced by Mo-Tzu he claims he cannot stop the attack because he has already promised his services to the King of Chhu. Mo-Tzu thereupon has an interview with the king and makes a similar argument but the king replies,

'That is all very well. But Kung-shu Pan has already constructed the cloud-ladders for me, and I must capture Sung.' And thereupon he looked at Kung-shu Pan.

Mo-Tzu untied his belt and laid out a city with it and made engines out of small sticks. Kung-shu Pan set up nine different machines of attack. Mo-Tzu repulsed him nine times. Kung-shu Pan was at an end with his machines of attack while Mo-Tzu was far being exhausted in defence.

Kung-shu Pan felt embarrassed and declared, 'I know how I can repel you, but I will not tell.' Mo-Tzu also said, 'I know how you can repel me, but I will not tell.' The King of Chhu asked what it was. Mo-Tzu replied, Kung-Shu-Tzu's idea is just to have me murdered. Were I murdered, Sung would be powerless at defence, and Sung could be (successfully) attacked. However, my disciple Chhin Ku-Li and others numbering three hundred are already armed with my implements of defence waiting on the city wall of Sung for the Chhu invaders. Though I be murdered, you cannot exhaust (the defensive capabilities of Sung).'

The King of Chhu said, 'Well, then let us not attack Sung any more.'

What did Kung-shu Pan's 'cloud-ladder' look like? We are fortunate in possessing two pieces of evidence that help us visualise the engine. The first is an inlaid decoration of a siege and a naval battle on two Warring States bronze chien vessels found at Shan-Piao-Chên, Chi Hsien, Honan, which is repeated on two other vessels, one found in 1965 at Pai-Hua-Than middle school, Chhêng-Tu to which we have alluded above, and the other known as Werner Jannings hu.
now held in the collection of the Ku Kung museum in Peking. Of these four vessels, the ones that provide the clearest illustration are those from Shan-Piao-Chén. They show a two-wheeled ladder in profile – only one wheel is visible – up which are climbing two soldiers, one armed with a sword and shield, the other with a halberd and shield. The wheels are placed at the rear of the cart where a third soldier is stationed. Presumably he is in charge of directing the ladder and preventing it from rolling away from the walls. Three other soldiers with swords at their belts stand with their arms raised holding the ladder aloft. Two large stones thrown by the defenders on the walls above, unfortunately not represented in the scene, are falling towards the wheels of the ladder (Figure 112 above).

This illustration helps us interpret the second piece of information about Kung-shu Pan’s ladders, the highly corrupt Explanation of Canon B27 of the Mo Tzu. Located in the mechanics section, the passage seems to be concerned with the problem of why something as heavy as a counterweight which raises a ladder can be arrested in its descent by something as fragile as a ruler placed vertically on the ground. Judging by the way in which the Mohists used complete carts or parts of carts to construct their defensive contraptions, we would suggest a slightly different interpretation of the text from the one we presented in an earlier volume.

The ladder was mounted on a four-wheeled wagon, whose rear wheels were high and spoked and front wheels were low and solid (chhüan²), presumably for ease of steering. A pulley-wheel was hung in the yoke or yokes (ku³) attached to the crosspiece, itself fastened to the pole or shaft which could have been up to 35 feet long, the maximum length of the arm of the trebuchet fashioned in its turn out of a cart. The extension ladder was fixed along the pole and the top section was raised by a rope which was fastened to the ‘support in front’ (chhien tsai⁴), possibly a strong strut on the cart, then to the ladder and then the rope was passed over the pulley-wheel. Securing the rope to the ‘support in front’ was probably to give the ladder greater stability and to obviate the need to have a squad of men hold the ladder up manually as is illustrated on the bronze vessels. A counter-weight was hung at the end of the rope and the top ladder moved whenever the counter-weight was pulled or pushed. The whole cart could have been pushed from the rear or hauled forward by the rope hanging from the pulley-wheel. The entire contraption probably looked something like the reconstruction in Figure 296.

* See Kuo Pao-Chin (3), pp. 18–21 and figure 11, for the Shan-Piao-Chén vessel; for the Imperial palace ku, see von Erdberg Const (2) and Weber (4); for a discussion of the Pai-Hua-Than vessel, see Tu Hêng (3), cf. Yang Hung (6), reprint in Yang Hung (1), pp. 106–7.

⁷ Sun F. Jang’s interpretation of the term ku seems to be borne out by a statute in the newly excavated Chhın laws found at Shu-Hu-Tei, Hupeh (Shu-Hu-T i Chhın-Mu Chu-Chhien Chheng-Li Hsiao-Tsu (1), p. 80).

⁸ Possibly the ‘support in front’ was a timber on the top ladder, but it certainly cannot be the ‘top of a wall (or) branch of a tree’, the first two alternatives Graham (12), p. 394, suggests.
The machine was undoubtedly heavy and difficult to manoeuvre as can be judged from Mo-Tzu's answer to Chhin Ku-Li's question concerning the defence against an attack by these counterweighted ladders. This is Mo-Tzu's reply to his disciple:

The Master Mo-Tzu said, 'Are you asking about the defence against cloud-ladders [yún thi] P Cloud-ladders are heavy pieces of equipment and manoeuvring them is extremely difficult. The defence is a "movable city wall" [hsíng chhêng] with various towers [tßa lou] separating them to ring the centre of their attack; you should take the width of the enemy (front) as the measure (for deploying the wall-and-tower construction). Erect rush curtains [chîeh mu] in the ring, but do not make the line too wide (i.e., try to contain the enemy). The method for (constructing) "movable city walls" is: they are to be 20 feet higher than the (regular) city wall, with a parapet [tieh] added on top 10 feet wide. On left and right project rams [chü] each 20 feet long. (The various towers) are as high and as broad (as is appropriate for use with) the "movable city walls".

Construct torch holes "for smoking rats" [chiao hsíeh hiün shu] Place fire screens [ta] on the outside. The trebuchets (?) [chi], battering-rams [chhüng], "(movable) balconies" [(hsíng) chan], and "(movable) city walls" [(hsíng) chhêng] should be (deployed) as wide as the enemy lines. Station (soldiers with) drills [chüen] and swords [chüen] in amongst them (sc. the various defensive engines and constructions). Ten-man platoons are to control the battering-rams and five-man squads are to wield swords: all are to be strong men. Order those with good eye-sight to watch the enemy. Fire at them on the beat of the drum, shooting them alternately or repeatedly. Trample them with the trebuchets and
from on top of the city wall hurl down large quantities of arrows and stones, rain sand and ash on them, pour blazing firewood and boiling water on them.

Fully investigate rewards and carry out punishments; the reason for doing this is to make (the soldiers) firm of purpose. Follow up their actions quickly so as not to let them have second thoughts (about continuing the fight).

If you act like this, then the attack of the cloud-ladders will be defeated.\(^1\)

This defence is similar in most respects to that against ramps, the only difference being that the soldiers manning the walls had far less time to reach the point of assault in the ladder attack. It was for this reason that Mo-Tzu insisted that those with good eyesight be posted as look-outs, so that they could give as much advanced warning as possible of an impending attack. The torches in the holes would naturally have been lit at night to illuminate the glacis and the ground beyond.

Once the defenders knew where they needed to repel the enemy, they hastened to the threatened section of wall and raised the 'movable city walls' with their 'various towers', probably both constructed out of wood and mudsoaked cloth, to ensure not only that the ladders had no possibility of reaching the top of the fortifications but also that they preserved a height advantage and could pour down their missiles, including sand and ash which could blind an enemy who looked up at the wrong moment apart from preventing him from seeing where arrows were coming from.

The trebuchets were probably most effective when the ladders were still at some distance from the walls. Once they had closed, the rams were manipulated to keep them from coming within 20 feet. Kung-shu Pan, however, may have designed the ladders with a counterweight precisely to avoid such rams. For he could wait to bring down the weight and extend the ladder until he was right up against the walls. Once the ladder was in position, the defenders would have swung their battering-rams to smash it, and those soldiers equipped with drills would have attempted to cut through the wood and send the ladder crashing to the ground. The drills may well have operated through the 'movable city walls'. Both the fire-screens and the rush curtains would have protected the defenders from the barrage of enemy missiles which would have undoubtedly accompanied the attack to prevent the defenders from successfully deploying their devices.

Two other passages follow in the \textit{Mo Tzu} text of 'Defence against Ladders', but the first describes the 'movable parapet' (\textit{hsing tieh}) which appears to have been fired against the battering-ram attack,\(^2\) and the second details the construction of a thick palisade outside the main walls which was designed to be set on fire. Even though at the end of this fragment the ending formula 'if you act like this, then the attack of the cloud-ladders will be defeated' occurs, it is likely that the whole passage is another version of a section of the defence against the mass infantry

\(^{1}\) 序
de

\(^{2}\) 见以上 p. 432.
assault (Pei I Fu\(^1\)), because another version of the same passage is actually found in its rightful Pei I Fu section and because the passage in no way resembles the defence against cloud ladders given above. It further presupposes that the enemy soldiers will be on foot in amongst the palisade when it is set on fire, a situation which would be expected in a mass infantry assault, but it does not give any instructions of how to repel the ladders once they had penetrated through the palisade. We therefore consider it to be a defence against the mass infantry assault and will discuss the techniques involved below\(^a\).

Cloud-ladders, in addition to being frequently engaged in assaults on cities from Kung-shu Pan’s time to the Sung dynasty nearly 1,500 years later, were also used as lookout towers like the ‘nest cart’ (chhao chht\(^2\)) by armies in the open field and during a siege to observe the enemy’s movements and the preparations for defence.\(^b\) We have already mentioned the siege of Wan\(^3\) in + 23 by the Liu\(^4\) clan.\(^c\) A later occasion for their deployment was in the first months of + 229 when the great Chu-ko Liang\(^5\), having marched north from Szechuan into the Wei\(^6\) river valley in Shensi, attempted to invest Chhên Tshang\(^7\) city, which was guarded by a small force of 100 men under Hao Chao\(^8\) for the Wei\(^9\) court. Since his army far outnumbered the defenders, Chu-ko Liang first tried to persuade Hao to surrender by having Chin Hsiang\(^10\), an officer from Hao’s home district, speak to him. Hao rejected the offer and Chu-ko Liang brought up cloud-ladders and battering-rams to the attack. Hao, however, fired salvos of fire arrows at the ladders, whereupon the men on them were all burned to death. He also tied mill-stones (shih mo\(^11\)) to ropes and dropped them on the rams which promptly shattered. Chu-ko then constructed 100-foot-tall towers called ‘well-railings’ (ching lan\(^12\)), so called probably because the timbers of the lower stories were exposed like the wooden railings around watering holes, and fired into the city from the tops of these. In addition he filled up the moat with balls of hardened earth. But Hao constructed a second wall behind the outer curtain wall to protect the defenders. In one last effort, Chu-ko dug mines towards the city, but Hao cut his own countermines and broke into the galleries, forcing the attackers to retreat. After more than twenty days of round-the-clock battles, Chu-ko finally abandoned the siege.\(^d\)

That the soldiers from Szechuan were burned to death suggests that by this time the cloud-ladders had undergone substantial evolution, and that the engine was

\(a\) See below pp. 480–5. It goes without saying that the soldiers attacking in a mass assault would have been equipped with means to scale the walls; these were probably regular ladders and ropes with hooks attached.

\(b\) Cf. pp. 419–22ff. above.

\(c\) Cf. p. 434 above.

\(d\) San Kuo Chih, ‘Wei Shu’\(^1\) ch. 9, pp. 4b–5a; Yu Huan\(^2\), Wei Lüeh\(^3\), quoted in TPYL, ch. 336, p. 2b; TCTC, ch. 71, pp. 2249–50; cf. Achilles Fang (1) vol. 1, p. 259.
closer in design to the Thang and Sung machines. The *Thai Po Yin Ching* gives the following specifications:

The ladder that flies to the clouds: construct a chassis [chuang] out of large timbers and place 6 wheels underneath (presumably on three axles). On top (of the ladder) set a couple of teeth [yu] and clamps [kua]. The ladders are 12 feet long with 4 rungs [cho] placed 3 feet apart, and in shape they are slightly curved so that they pass over one another and clamp into each other. The ladder flies into the clouds and can be used to peer into the city. At the top (of the upper ladder) are a couple of pulley wheels [lu tu] (on either side of the stringers) which rest on the walls as the ladder is extended.

This ladder is different from Kung-shu Pan’s in that it is not raised by means of a counterweight. The upper section of the ladder is held aloft by the teeth which probably fitted over the top rung of the lower ladder, much as in modern Western extension ladders. It is not entirely clear what type of fitting the *kua*, called by the *TT a chien*, was. The dictionaries define both terms, however, as *yin kua*, which was an instrument like a clamp or cramp for straightening curved pieces of wood. We would suggest that it was attached to both ladders on both sides of the stringers and kept the upper section from bending under the weight of the soldiers climbing up.

In the Sung machine, illustrated in Figure 297, the ladders were more than 20 feet long and could have been raised by a counterweight or by men pulling on a rope, for there was a pivot (chuan chu) placed between the sections. On the chassis a four-sided shelter was constructed out of fresh oxhide, and the soldiers chosen to scale the ladders stood inside and pushed the entire contraption up to the base of the walls. Chu-ko Liang’s men could have been hiding under similar shelters when Hao Chao’s fire arrows struck, trapping them inside and causing them to suffer a horrible death.

The defensive tactics against the cloud-ladders in the post-Warring States period up to the Sung followed in all essential details the prescriptions of the *Mo Tzu*. We have already mentioned that heavy rams (chhuang chhe) were swung against the ladders if they reached the walls, and that they could be set alight by fire arrows and fire javelins. Tu Yu in the Thang recommended that three trebuchets (phao), two small and one large, be stationed on a length of wall guarded by eight squads. They were to hurl rocks at the ladders before they got too close. He also proposed that a second, wooden, parapet (nu chhiong) be built 5 inches above and outside the regular earthen parapet. To this wooden parapet were attached vertical wooden boards which operated rather like curtains in that

* Ch. 4, p. 78. The *Thung Tien*'s description, ch. 160, p. 846a, is substantially the same, but with some variations in the terminology of the parts.

* See pp. 412, 426, 449 above.
they could be opened or closed swiftly or slowly depending upon the situation and the advance and retreat of the ladders. Should the enemy's own stones begin to collapse parts of the parapet and the towers, the defenders were to suspend curtains made out of rawhide or felt rugs (chan than) to diminish the force of the missiles.

Of course, not every mention of a ladder in a siege refers to the type of heavy wheeled engine we have been describing. We have already referred to the 'hooked ladders' or 'hooks and ladders' (kou thi), and there are three other hand-ladders recorded in the sources of which the most common was the 'flying ladder' (fei thi). According to the WCTY, this was 20 or 30 feet long with a horizontal bar at the top which penetrated through the stringers. On this bar a couple of wheels revolved on the outer side of each stringer. During a mass infantry assault, the attackers placed the wheels against the walls and rolled the ladder up the face (Figure 298). As we have mentioned above, p. 275, the defenders attempted to

*a See p. 414 above.

*b Chien Chi', ch. 10, p. 16a; illustration, p. 17b.
push the ladder and the men off the wall with specially designed poles 20 feet long which had two splayed prongs at the end. These instruments were known as *chhai kan*.

The *WCTY* describes the two other ladders in the following terms. The first, the 'flying bamboo ladder' (*chu fei thi*), consisted of a single pole made out of a large bamboo with rungs fitted through the shaft (Figure 298). The second was the 'flying ladder for climbing to the top' (*nieh thou fei thi*) which resembled the Sung counterweighted ladder without the box and wheels. The ladder was made of two sections connected by a pivot (*chuan chu*), the upper section being constructed out of a single bamboo pole as in the 'flying bamboo ladder'. At the top of the pole was a bar with two wheels for ease in pushing it up the walls, an ingenious device attached to other ladders we have encountered (Figure 298).

* Thung Tien, ch. 152, p. 800; WCTY/CC, ch. 12, p. 16a; illustration, p. 17b. See above p. 276.

* WCTY/CC, ch. 12, p. 16a; illustration, p. 17b.

Naturally, such ladders were of far more use than the heavy, creaking, cloud-ladders, if the besiegers wished to surprise unwary defenders at night, for they could carry the ladders to the foot of the wall and climb up with a minimum of noise. A famous example of this type of tactic occurred in the late 5th century when Emperor Shên-Wu of Chhi sent Han Kuei 2 and Ssu-ma Tzu-Ju 3 to attack Wang Hsiung 4 who was guarding Hua-Chou 5 for the Western Wei court. Wang was still in the process of repairing the city walls and, not suspecting the presence of the enemy, had failed to take the ladders his workmen were using back inside the walls when dusk fell. As Wang and his defenders slept, the Chhi soldiers scaled the ladders and entered the city. Wang woke up on hearing unusual sounds and, realising what had happened, seized a white stick and nothing else, charged out of his apartments with dishevelled hair, stark naked and bellowing furiously. The apparition and noise frightened the attackers long enough for the other defenders to come to Wang's aid, and drive the enemy out of the city.

(ix) Flooding

The most famous example in antiquity of the sixth of Chhin Ku-Li's attacks, flooding (shuǐ 6 or kuan 7), was the combined assault of the forces of the Wei 8, Han 9 and Chih 10 clans on Chin-Yang 11, refuge of the Chaos 12, in the years 455-453. This campaign, which ended in the annihilation of the Lord of Chih, Yao 13, and his entire clan, was the final stage in the breakup of the formerly powerful state of Chin 14 and ushered in the intensely competitive but culturally brilliant period of the Warring States. 5

Han Fei Tzu 15 recounts the battle through the mouth of the musician Chung-Chhi 16 of the state of Chhin:

At the time of the Six Chins, 6 the Chih clan was the strongest. They extirpated the Fan 17 and Chung-Hang 18 clans and then led the troops of Han and Wei to attack Chao. They flooded (the city) with the River Chin 19 until there were three boards' width of wall left unsubmersed. 7

Lord Chih went out in a chariot with Viscount Hsüan 20 of Wei as driver and Viscount

1 Chou Shu, ch. 18, pp. 227-8, Thang Tien, ch. 146, p. 853a.
2 Chhêng-Chia 14, ch. 46, pp. 166-7.
3 Maspero (3), pp. 300-1; Maspero (33), pp. 227-8; Shih Chi, ch. 39, p. 92.
4 Han Fei Tzu 15 records the incident three times, but the first, in phan 16 (Shih Kuo 29), may be in a section added to the text at a later date (Chou Hsun-Chhu 21). See also CKT, ch. 18, pp. 585ff; Crump (1), pp. 278ff.
5 Han, Wei, Chao, Chih, Fan, and Chung-Hang clans.
6 Interpretations vary concerning the width of the board, used in building the pounded earth wall, but probably it was 2 feet.
Khang of Han as the third rider on the right. Lord Chih said, 'I never before today knew that water could destroy an enemy's state. The waters of the Fen could flood An-I and the waters of the Chiang could flood Phing-Yang.'

Since An-I and Phing-Yang were the capitals of the Wei and Han clans respectively, Hsuan and Khang knew that Lord Chih intended to destroy them in turn; they quickly came to an understanding with the defending Chaos of Chin-Yang, opened the dikes holding the water at night and inundated the Lord of Chih's army. Yao himself was killed and all his lands were partitioned among the three victors.

The siege of Chin-Yang stands at the beginning of a long line of campaigns in which the ample waters of North China were harnessed by hydraulic engineers to wreak the destruction of substantial walled cities. Wang Pên, the capital of Wei, in -225, Liu Pang, the founder of the Han dynasty, attacked Chang Han in Fei Chhiu in -205, and Tshao Tshao surrounded Lu Pu in Hsia-Phei and forced him to surrender by diverting the waters of the I and Ssu in +198. Wang Ssu-Chêng was also defeated by the Eastern Wei forces by the flooding attack when he tried to defend Ying-Chhuan as a forward post in Honan for the Western Wei in +548-9. The technique was also widely employed in the open field against armies downstream of an inventive commander.

The Mohists suggested two procedures to defend against an enemy who had the time, manpower, and skill to raise dikes round a city and fill the area between the dike and the walls with water from an adjacent river. The first was to sink wells or sumps at the lowest points within the city to permit any water that might penetrate through or over the walls or gates to drain away underground. The second was to build boats and sail or row over to the dikes and attempt to breach them.

Initially, a careful survey was made everywhere within the walls where the ground was lowest. The Mohists do not, however, specify the measuring instrument to be used in this survey but it was probably an early water level (kuan chun, huan chun, or shui phing) which we have already described and illustrated in an earlier volume. At the appropriate depressions deep wells were sunk and measuring tiles placed within them. When the water contained by the dikes out-
side the walls was ten feet deep, channels (*chhū*) were dug down towards the well to enable the water to flow away rapidly.

During this operation, carpenters were to construct squadrons of two different types of boats, one a catamaran called an ‘approacher’ or ‘overlooker’ (*lin*), made by linking two boats together, the other a ‘tank-vessel’ (*fēn-wēn*) which was presumably, if its name is an accurate description, a covered vessel, a form usual in later Chinese navies, as we have previously indicated. Each of the ten ‘approachers’ was manned by thirty expert marines, divided into three Platoons of ten men each. They were all to bear crossbows and four out of the ten were, in addition, to wield a weapon called a *yu fang*. The identity and shape of this instrument has perplexed a number of scholars, including Wang Kuo-Wei, Lao Kan, and Tshen Chung-Mien, in recent years because the term *yu fang* appears in a number of the Han strips, as well as in this *Mo Tzu* passage and in the *Han Fei Tzu*. Lao Kan suggested that since the names of the ko and chi halberds do not appear in the strips and *yu fang* seems to be used in contrast to short weapons such as the sword (*chien*) and ring-handled sabre (*tāo*) and since it was carried for both naval and land combat, it must be a type of halberd or pike. Tshen, on the other hand, noting that the Thang dynasty compendium *Thung Tien* states the marines carry spades (*chhiao*) and mattocks (*kue*) for the operation of breaching the dikes, concludes that *yu fang* must be the ancient name for a type of hoe (*chhu*).

The 3rd-century commentator Ju Shun provides the clue to its identification by explaining that a ‘hook-halberd’ (*kou-chī*) ‘resembles a spear; below the blade is an iron horizontal square (blade) which curves upwards: *Ssu mao-jen hsia yu thieh-heng-fang shang kou-chhū*, *Shih Erh* 9, p. 506; *Grump* (1), p. 245). If *yu fang* is the ancient name for a type of hoe (*chhu*), then the boat was a ‘towered vessel’ (*lo kou-chhūn*).
Kuan¹, Kansu.² Instead of projecting straight out at right angles to the shaft, as in the case of the normal chi³ halberd blade, the horizontal blade curves away from the soldier holding the weapon towards the spear point at the upper end⁴ (see Fig. 299). This interpretation is further confirmed by our previous discussion of the early navies of the Chhu³, Wu⁴, and Yüeh⁵ states, where we saw Mo Tzu's rival Kung-shu Pan⁶ inventing a 'hook-fender' device (kou-chü⁷),⁸ for use on board the Chhu vessels. Southern warships were often called 'halberd-vessels' (ko-chhuan⁹) which signified either that the marines used dagger-axes (ko⁸) or that these weapons were fastened onto the vessel below the waterline to keep off swimmers and dangerous animals. In the Yüeh Chüeh Shu¹⁰ quoted in the TPyL,¹¹ the weapons carried by the marines are called hooks (kou¹¹) instead of dagger-axes (ko⁸).

But let us return to the Mo Tzu and the defence against flooding. The 'tank-vessels' were organised into squadrons of twenty boats and each carried thirty men. Twenty of these men bore hook-halberds, swords and wore armour and leather helmets (li mou¹²) and ten wielded instruments the text calls mao¹³. Pi Yuan¹⁴, followed by all other commentators, emends this graph to mao¹⁵ 'spear' because of the similarity in the sound of the two words.⁵ While this emendation is

¹ Anon. (549), p. 4·50.
² The stone relief of two dancing warriors from Thung Shan Hsiao Li Tshun Miao Shan, Kiangsu, illustrated in Kiangsu Sheng Wen Wu Kuan Li Wei: Yuan Hui (1) pl. 34 may also depict a 'hook-halberd'.
³ Vol. 4, pp. 680-2. We follow Sun I-Jang (2), ch. 13, p. 10b, in emending the extant text kou-chhian⁶ to kou-chü⁷ on the basis of TPyL, ch. 334, p. 3b.
⁴ Ch. 315, p. 2a.
⁵ Sun I-Jang (2), ch. 14, p. 34a; Pi Yuan, ch. 14, p. 13a. This interpretation may, in fact, be that of Sun Hsing-Yen, for Kawasaki Takaharu (1) has shown that Pi adopted Sun's textual revisions almost in their entirety.

¹ Kuan, Kansu.
² Instead of projecting straight out at right angles to the shaft, as in the case of the normal chi halberd blade, the horizontal blade curves away from the soldier holding the weapon towards the spear point at the upper end (see Fig. 299).
³ The interpretation is further confirmed by our previous discussion of the early navies of the Chhu, Wu, and Yüeh states, where we saw Mo Tzu's rival Kung-shu Pan inventing a 'hook-fender' device (kou-chü), for use on board the Chhu vessels.
⁴ Southern warships were often called 'halberd-vessels' (ko-chhuan) which signified either that the marines used dagger-axes (ko) or that these weapons were fastened onto the vessel below the waterline to keep off swimmers and dangerous animals. In the Yüeh Chüeh Shu quoted in the TPyL, the weapons carried by the marines are called hooks (kou) instead of dagger-axes (ko).
⁵ But let us return to the Mo Tzu and the defence against flooding. The 'tank-vessels' were organised into squadrons of twenty boats and each carried thirty men. Twenty of these men bore hook-halberds, swords and wore armour and leather helmets (li mou) and ten wielded instruments the text calls mao. Pi Yuan, followed by all other commentators, emends this graph to mao 'spear' because of the similarity in the sound of the two words. While this emendation is...
Quite possible, we should remember that the later graph for an anchor with metal spikes or claws was a mao (or miao). Could it be that this type of anchor was first used in the defence against flooding in the — 3rd century, perhaps thrown from the boats onto the dikes and pulled sharply back in order to break down the enceinte? We cannot, unfortunately, be certain.

The Mohists advocated ensuring the loyalty of the marines selected to carry out the breaching of the dikes by holding their fathers, mothers, wives and children as hostages in a specially constructed barracks where they were all to be given preferential treatment. As we will see, this practice was applied to other important members of the defending community, the spies, the officers and other notables.

As soon as the Defender in charge saw that the dikes could be successfully attacked, he ordered the ‘approachers’ and the ‘tank-vessels’ to be launched from the city and the assault to be covered by rapid fire from heavy crossbows called the ‘revolving shooting machines’ (chuan she chi). Unfortunately the text does not specify whether the boats were to be rowed or sailed across the water.

Such was the method advocated by the Mohists of defending against an attempt to invest the city by flooding. The basic technique barely changed at all during the subsequent twelve hundred years. Both the Thung Tien of +812 and the Hu Chhien Ching of +1000, which closely follows the former’s instructions, propose adding a secondary wall (chhiang) inside the main city wall, stopping up all the gates and cavities in the fortifications, and digging one well every fifty feet. While the number of marines per boat is the same, they are to row out from hidden sally-ports (an-mên) with gags in their mouths carrying crossbows, as well as hoes and mattocks to break down the enemy’s dike. In neither text is there mention of the ‘revolving shooting machine’ to aid the marines with covering fire, but both recommend an immediate sortie from the city accompanied with drum rolls and vigorous shouts from on top of the walls, should the enemy realise that the dikes are being attacked.

Before we turn to a discussion of the defence against mining or tunnelling (hsiirh), we should make a few remarks concerning the scenes of naval warfare on Warring States inlaid bronzes which we have had occasion to mention above in connection with an assault on a city by means of ladders and the sheep’s bank.

Yang Hung makes several important observations with regard to the nautical and military techniques depicted on these vessels. The first is that the vessels have...
two decks; on the upper stand the warriors who wield long spears and chi and ko-halberds at least 3.3 to 3.5 metres long and carry short swords at their waists. An archer stands on the right-hand vessel of the Shan-Piao-Chên basin. The lower deck contains the oarsmen, who are also armed with short swords at their waists. Weber notes that the oarsmen are facing the wrong way to be rowing; they must be paddling. The artisans, however, do not seem to have been very accurate in their representation for the 'rowers' hold the paddles towards the top as though the latter 'were fixed to the boat at the fulcrum, as are oars'.

The vessels in both the Shan-Piao-Chên and Pai-Hua-Than illustrations are commanded by an officer standing at the stern on the upper deck. He beats a drum (ku) hanging from a stand decorated with two streamers and has a gong (feng or chêng) at his feet; he is thus able to give time to his oarsmen as well as to issue orders to his warriors in the battle. The drummer in the left boat of the Werner Jannings hu, however, stands at the prow. All the boats carry distinctive flags at the bows, in some cases attached to long ko-halberds, and have no rudders, no sails, and no keels. Kuo Pao-Chün suggests that the difference in the hairstyles worn by the warriors in each boat may indicate that the conflict is being waged between northerners and southerners, a possible interpretation, but the Pai-Hua-Than warriors, depicted in a slightly more stylised fashion, do not seem to have this characteristic. If indeed the scene was copied from a painting as von Erdberg Consten suggests in discussing the Werner Jannings hu, then the bronze-artisans have clearly made some alterations in the details and we should be somewhat wary of agreeing with Kuo's conclusion.

Of Yang Hung's two other important observations on these scenes, the first is that the weapons used approximate those of contemporary chariot warfare and the tactics seem to have consisted of first trying to kill the enemy at a distance with arrows, long spears and halberds and then coming to close quarters, ramming and boarding, at which point the short swords were the effective weapon. This certainly lends credence to Kao Ming's view that the bronzes date from early Warring States times and are not a product of the third century, as Kuo Pao-Chün holds.

The second observation is that the signals used by the navy, gong, drum, and flag, are the same as those used in land warfare. These we will discuss in their many complexities later in Vol. 5 pt 8.

* Eleanor von Erdberg-Consten (2).
A ‘Sudden’ or ‘Surprise Attack’ (thu) is the eighth on Chhin Ku-Li’s list of offensive tactics. The term thu can mean a ‘sally’ or to ‘burst in’ or ‘out’ or to ‘bore in’. Sun I-Jang therefore considers the Mohist thu to be a form of mining through the city walls and that the first occurrence of such a tactic took place in the sixth month of -547, when the great Tzu-Chhan and Tzu-Chan of Chêng, leading a force of 700 chariots, burst through the walls of Chhên at night.

The Liu Thao, however, devotes an entire section to this form of attack, and it is evident that thu refers to a situation in which the enemy has penetrated deep into the defender’s territory, is plundering his oxen and horses, and is seizing large numbers of the population. Duke Thai, in response to King Wu’s question concerning this assault, recommends a type of scorched earth policy that removes the livestock from the enemy’s grasp so that his army cannot eat and his supply lines are cut. The remote towns are to divide their garrisons and select the best soldiers to harass the enemy rearguard. On an appropriate day, at dusk, all are to gather and strike a crushing blow and capture the opposing general.

Should the enemy divide his forces into three or four columns, with some fighting and pillaging, others halting and collecting the livestock, and the main force has not yet arrived at the defender’s city, Duke Thai counsels that the invaders should be tricked into making light of the defences. Scouts are sent out to ensure that the main army has not, in fact, made its appearance. If it hasn’t, then due preparations for a stout defence can be made by building a rampart (lei) just over a mile beyond the walls. Soldiers are to be drawn up behind this rampart as an ambush (fu ping) accompanied by the appropriate gongs and drums, flags and banners. Crossbows are mounted all along the rampart and every 100 paces (pu) a ‘sudden attack’ or ‘sally gate’ (thu mên) is built, protected by a cheval-de-frise (hsing ma) (Fig. 300). Chariots and cavalry are stationed outside the gates, while the bravest and keenest of the troops are to hide in the ambush behind. When the enemy arrives, light soldiers engage them outside the gates and then pretend to flee; at the same time, those in position on the main walls of the city create a great hubbub with their drums and wave their flags and banners so that the enemy thinks that the main defensive force is concentrated in the rear. When they are thoroughly off guard, the ambushers rise up and rush out to the attack, causing total panic and destruction in the enemy ranks so that even the brave are unable to fight and the lightly armed are unable to flee.
In contrast to this form of defence, the Mohists were more interested in destroying some of the enemy by technological means, by gassing them. The method was similar to that employed against underground miners which we will describe below. Presumably the defenders hoped by killing or incapacitating the forward units of the enemy, the others would be frightened into abandoning their attack when they saw the fate that awaited them.

Since most of the text has been lost, not all the details of the Mohist techniques are clear, but we can be sure that they built gates in the outer rampart three hundred feet apart, just as the *Liu Thao* describes. In order to gas the bravest of the vanguard units, the Mohists lured them into the gates and then dropped wheels plastered with mud at each end to prevent them from either retreating or advancing further towards the city. Inside the gate, the engineers had constructed stoves (*tsao*¹) or kilns (*yao*²) which they had filled with firewood and twigs of artemisia (*ai*³), which gave off an intensely choking smoke when burned. The gate was essentially airtight since the wheels dropped at each end fitted perfectly and, being plastered, allowed no smoke to leak out; the roof also was tiled and had no holes that might let the smoke out or rainwater in, water that could extinguish the burning artemisia in the stoves. In order, therefore, to have the stove burn effectively, a supply of air had to be introduced from the outside. The Mohists constructed a tuyère (*tou*⁴) that penetrated four or five feet into the gate and passed out to the rear where it was connected to a bellows (*tho*⁵).

As soon as the enemy entered the gate, an officer in charge of the defence ordered the wheels to be dropped in place and the bellows pumped. The unfortunate

¹ For the reconstruction of the two versions of this defence which have been conflated in the extant text, see Yates (4), pp. 570–2, and Yates (5), pp. 246–50.
men trapped inside would have probably choked to death or have suffered severe, permanent lung-damage.

On one occasion at the end of the Han period, sally gates seem to have been used by the besieging force: in 204, Yuan Shang ordered Shen Phei to guard Yeh against an army led by Tshao Tshao. One of Shen's generals, Feng Li, was working inside the city for Tshao and intended to betray it. He opened the sally gates and let in more than 300 of Tshao's soldiers. Shen fortunately realised what was happening and bombarded the gates with large rocks, probably fired from trebuchets, destroying them and killing the men inside. After this time, though we read about sally ports constructed in the main walls of the city, ports which first appear in another passage in the Mo Tzu, the tactic of ambushing the enemy in a specially prepared rampart and gate structure a mile outside the walls does not seem to appear in the historical records.

(xi) Mines

In the extant text of Mo Tzu, there are three different versions which describe the techniques employed in mining, the most sophisticated and risky tactic of Eastern Chou siege warfare. Undoubtedly the methods derived directly from those developed over many centuries in the bronze and iron industries of the Shang and Chou, both in the mining of ore and in the construction of kilns, blast furnaces and the bellows for pumping the air. The following remarks are based upon these three different versions, which sometimes give mutually contradictory instructions.

Attackers dug mines to achieve two purposes: first, to break a passage through to the surface inside the main walls so that infantry could pour into the city and catch the defenders off guard. This purpose is, however, not specifically mentioned in the Mo Tzu. The second purpose was to undermine the city wall. As the wall was excavated from below, the attackers propped it up with posts and boards. When a sufficient length of the foundations of the wall had been removed, the posts were set on fire and the whole length of the undermined wall would collapse as the posts gave way. A large breach would thus be effected in the city walls, and the enemy could mount a mass infantry assault through the gap.

To prevent such a catastrophe, the Mohists recommended that high towers be constructed on top of the walls and look-outs be posted to keep a constant watch on the enemy's movements. Since the miners would have to find some method of disposal for the earth that they were in the process of excavating, if the lookouts noticed unusual changes in the construction of the enemy's siege walls, or increases

1 Yuan Shang
2 Shen Phei
3 Yeh
4 Tshao Tshao
5 Feng Li
6 Wang Tshan (177–217)
7 Ying Hsiung Chi, quoted in TPYL, ch. 3:7, pp. 6b–7a; cf. TCTC, ch. 56, p. 2053.
in the sizes of their heaps of earth, or that the water in the moat grew muddy, the defenders should immediately suspect mining operations. Later texts, in fact, show that mining was often combined with the raising of an earth ramp, so that the earth removed from the gallery below the surface was immediately put to use in a second front against the city.

Inside the walls a series of wells were to be sunk one every 30 feet close to the foot of the wall. If the city was on high ground, the wells were to be 15 feet deep, if on low, they were to reach 3 feet below the water level. Potters were to make large new jars (ying or chhui) and cover the mouths with thin fresh rawhide. These geophones (see Figures 301, 302) were taken down into the bottom of the wells where those with acute hearing were to hold the jars to the earth and listen for the sounds of the enemy miners. By this method they could locate exactly the direction and the depth of the approaching tunnels. Once the depths and directions had been ascertained, the defenders were to dig their own countermines as quickly as possible to intercept the enemy.

Fifty miners, of both sexes, were to excavate the defending mines and the earth was to be pulled to the surface in baskets by some kind of system of ropes and pulleys. Unfortunately, the technique involved is unclear, although it is specified that 40 baskets were to be provided for each mine. The countermines themselves were to be started from the wells sunk close to the walls and were to descend at an angle of 30°. The top of the well was to be protected by a stone wall 7 feet high and crowned by a parapet: the only means of reaching the bottom was to be a rope ladder. At the bottom of the well, or in a specially constructed room lined with tile just inside the entrance of the tunnel, one or two kilns were built and packed with firewood and artemisia cut into one-foot lengths. Bellows were erected next to the kilns and well-sweeps constructed to pump these bellows and blow the smoke from the burning artemisia down the mines and into the faces of the attackers. The gas made by burning the artemisia (ai) which contained the highly volatile oil absinthol C₁₀H₁₆O would probably have caused epileptic seizures and death for

a One passage indicates that two 'linked conveyor chains' (huam li shuai) were to be installed in each tunnel, presumably for removing the earth. Shuai is probably an abbreviation of the graph li, which appears in Kuo P'ei's commentary on the *Eh Yi*, Shih Shui, *Eh Yu I* Sa, Ho-i-Hsing ed., ch. 4, p. 15, which is the same as li. Neither li nor li appear in the *Shuo Wen* dictionary. The 'linked conveyor chain' seems to be the same device mentioned in *Liu Tsuo* ch. 2, phien 31, p. 32. For crossing watercourses and ditches, one flying bridge 15 feet wide and more than 20 feet long. Attach 8 revolving pulleys and extend it (the bridge) with linked chains. cf. Stratz (1), pp. 99-100, who observes (note 55) that the *TPYL* ch. 397, quotes Duke Wei's *Art of War* 'Shou Chheng' (phien) as having a 'pulley bridge' (chuan kuan chhiao).

b The *Book of Lord Shang* (phien 19 'Within the Borders') suggests that there were 18 men to each corps of sappers (Duyvendak 3, p. 301).
the attackers trapped in the confined space of a subterranean passage. Most interestingly, the third version suggests that two different types of bellows could be employed, the tho', made of oxhide, or the leather fou² with two for each kiln.² In addition, this passage recommends that approximately 10 kilos of coal be burnt with the assistance of charcoal as the basic fuel for the furnace. If this passage in Mo Tzu dates from the Warring States period, we have evidence that coal was introduced into the iron manufacturing industry prior to the Han dynasty.² Three strong men with long experience in the use of such bellows were to operate each well-sweep, and two other officers, the chih li² and the shë jên² were also to be stationed next to the kilns. The shë jên may have been a retainer of the Mohist Defender (shou³) in charge of the defence of the city, while the chih li may have been a resident of the town. They no doubt had the responsibility of ensuring that all preparations for the kiln, bellows and well-sweeps were in order, that the soldiers on the sweeps did not leave their posts, and that no other form of treachery was perpetrated.

² The outer walls of the blast furnaces are described in Chhii Ta- Chiin's* (1630–96) Kuang Tung Hsin Tu¹, ch. 15, p. 8a, as shaped like phïng¹ jars, while Karlgren (1), 1107a-c, admits the possibility that the ancient graph of fou² resembles a kiln. Fou² might, therefore, be a different type of furnace. The wording of the passage, however, 'supply the kiln with oxhide bellows or leather bellows'²² leaves no doubt that two different types of bellows are being mentioned. Is it possible that here we have the earliest reference to the double-acting piston bellows?

²² Another version gives the number of bellows as four, but it is unclear how many kilns are powered by them.

The actual construction of the countermines is of considerable interest. One passage indicates that the galleries were to be 8 feet wide and 8 high, another that they were to be 7 1/2 feet high. As the miners moved forward, they were to be lighted by torches made of straw (kao¹) and hemp (hsi²), and they were to erect posts 2 1/2 wei (57.75 cm) thick and planks the whole length of the tunnel to prevent the roof from caving in. In the tunnel 7 1/2 chhih high, the posts were to be placed every 2 chhih along the side walls. Seven chhih separated the posts on either side of the tunnel and they were to rest on pedestals (hsi³ or chih⁴), with two posts sharing a single pedestal. Across the roof of the tunnel, planks or boards called 'earth supports' (fu thu⁵) were laid horizontally. These boards were placed on the posts on either side of the tunnel. Any 'earth support' board which did not rest on a post was to be made firm with those that were connected to posts. The instructions for this procedure are certainly complicated in the original passage and have been obscured by textual corruption, but Tshen Chung-Mien must be in error to suggest that the 'earth supports' lay across the bottom of the tunnel rather than over the top. At the bottom, they would serve no function. All the posts and boards were to be well-plastered with mud to prevent them from catching fire. We present a reconstruction of the Mohist tunnel in Figure 303. As far as we can tell from the excavation report and the line drawings, the tunnels in the important Eastern Chou mining complex discovered at Mount Verdigis, Thung-Lii Shan⁶, contain a similar post and board structure for shoring up the earth (see Figure 304), while the WCTT's specifications for its underground tunnel (ti tao⁷) are almost exactly the same as those given in the Mohist passages above.

The first version describes a fascinating method of ensuring the penetration of the artemisia smoke, chaff, ash and other impure matter deep into the mine. Unfortunately, up till now, the massive textual disrepair of Mo Tzu has rendered the details obscure and sometimes unintelligible; but by reconstruction of the text we are able to perceive the extraordinary inventiveness of the unknown artisans and engineers of the Mohist school in the Eastern Chou.

Potters are to make sections of round brick pipe 2 1/2 chhih long and a wei (23.1 cm) thick. The pipe is divided down the middle so that there are two separate exit holes for the smoke in a single section of pipe. Two such pipes are laid next to each other connected in this fashion. The periodically dug vents to the surface to let in air for the workers to breathe and to fuel the torches; possibly there were such vents or the men positioned by the bellows at the entrance pumped air down to them.

¹ It is somewhat surprising that the Mohists make no mention of any vents dug to the surface to let in air for the workers to breathe and to fuel the torches; possibly there were such vents or the men positioned by the bellows at the entrance pumped air down to them.
² Tshen Chung-Mien (3), pp. 66-7. Chia Khuei¹⁴ (comment on Chu Li, 'Chung Jên¹⁵, CCLI ch. 41, 11, p. 83, above the corridor-tunnel (to the tomb) are "earth-supports".
³ Thung-Lii-Shan Khoa-Ku Fa-Chih Tui, (i), pp. 1-12; Hupei Shêng Huang-Shih Shih Po-Wu Kuan, Chung-Kuo Chin- Shu Hsueh-Hui Chhu-Pan Wei-Yüan Hui, Pei-Ching Kang-Thieh Hsueh-Yüan Yeh-Chin Shih Tsu (i).
⁴ For the WCTT, see below.
other, with the division in the pipes horizontal to the ground so that there are altogether four exit holes (see Figure 305). The first two sections are each connected to one kiln, which itself has two bellows for pumping the air, in some fashion that is not specified. As the miners advance away from the entrance and the kilns, digging out the tunnel, they lay down more and more sections of pipe, ensuring that the joints between the sections are well plastered so that no leaks can occur. The earth at the bottom of the tunnel is stamped down and in all four halves of the two pipes, ash, chaff and other light matter is placed along the whole length of the pipes, but in such a way as not to fill the holes entirely: that might cause clogging of the air passages.

The miners are also to carry forward a type of large shield called a *lu yün*¹ or *yün*² constructed out of linked wooden boards. This shield is to fit exactly the

¹ This is our interpretation of the clause 'one on top and one underneath' *yen i fu*. Later on, the text speaks of 'right and left pipes' *yutso tou*. It is just possible that the Mohists intend that there are to be four pipes, with eight exit holes.

² This could also be built out of the wheels of a large cart.
Fig. 304. Mining complex at Thung-Lu-Shan, from Thung-Lu-Shan Khao-Ku Fa-Chüeh Tui (r), fig. 5.
height and width of the tunnel and is to be used when the countermine breaks through to the attacking mine: it is erected to block off further penetration by the enemy. In the shield, holes for spears, and presumably for the pipes, are drilled and, as soon as the enemy is encountered, the plank shield is set up, the bellows pumped, and the spears thrust out to prevent the enemy from blocking the exit holes of the pipes. If the pipes are blocked, however, the defenders are to withdraw, pulling back the boards, and to clear out the holes. As a precaution against the possibility that the enemy themselves pump gas down the offensive mine, the defenders are to take large basins of more than 40 lou (80 litres) capacity into the tunnel and fill them with vinegar. If the gas is pumped down by the enemy, the miners are to splash their eyes and hold their heads over the basins (literally, ‘put their noses over the vinegar’). Just how effective this procedure was against thick clouds of highly irritating artemisia smoke in the deep and narrow tunnel is unclear, for no descriptions of its use in actual battle have come down to us.

The miners were also to be equipped with geophones and if they heard the enemy digging other subterranean passages to the left and right of the counter-mine, the front of the tunnel was immediately to be blocked off with a wattle and daub or wooden shield, and transverse tunnels excavated to meet them. The defenders were strictly instructed not to yield to the enemy in the underground battle when the two tunnels met, and they were therefore armed with a large number of special weapons, including iron hooks.

Fig. 305. Pipes for introducing smoke into Mohist mines.
spears (tuan mao⁴) 4 1/2 chih long, short halberds (tuan chi²), and short crossbows (tuan nu³) which fired 'flying gadfly' (fei mēng⁴) arrows that had triangular heads and were approximately 37 cm long (see Figure 306). No examples of these specialised weapons used in subterranean warfare have yet been discovered by excavation, but without either shafts or stocks accompanying the metal heads or the trigger mechanisms, they would probably be hard to identify.⁵

Once the enemy had been defeated and had fled, the empty tunnel was to be constantly guarded by seven men and a dog, which would, of course, bark at the approach of any enemy soldiers and give the alarm to the defenders. It would also appear that the tunnels were closed by doors which were protected on the outer side, facing the enemy, by what were known as 'caltrops' (chi li⁵). These were modelled on the spiny plant *Tribulus terrestris* and consisted of sharp iron spikes, often multi-angled, fastened into wooden boards.⁶ Two such boards protected each door or gate, behind which the defenders hid. Should the enemy appear, they were to jump out from the ambush, engage them in battle and pump the gas vigorously into their faces.

The techniques of underground mining to prevent subterranean attacks on the city described above appear to have been passed on down through the centuries, for similar operations are recorded for the famous siege of Yü-Pi⁶ in +546.⁷ They are also mentioned in the Thang compendium *Thung Tien*, but in a way that suggests that Tu Yu recommended alterations in the procedure.⁸ Tu does, how-

⁴ Chou Tsu-Mo⁶ (ed.) (1), 9/58/20. Cf. Hayashi Minao (3), p. 329, figure 391. ⁵ 'Flying gadfly' arrows appear frequently on the Chi-Yen strips of Han date and have been identified by archaeologists and scholars.

⁵ Some of the warriors depicted on the inlaid vessel illustrated in Figure 172 who are engaged in hand to hand combat also wield short halberds and spears. One such short halberd excavated from the tomb of Marquis I of Tseng⁹ is on display at the Hupei Provincial Museum. Our impression is that the weapons used in subterranean warfare were even shorter than these.

⁶ Different types of caltrops of later date have been found but not, as far as we are aware, the boards. See above pp. 264, 288–9, 433. ⁷ *Pa Chhi Shu*⁸, ch. 2, pp. 14ab; Wallacker, (4), p. 798.

⁸ Ch. 152, p. 800c. Tu seems to imply that the mouth of the tunnel was tightly covered with boards and the artemisia smoke pumped down. In other words, the Thang defenders did not engage the enemy underground, or lead pipes down into the tunnels.

① 短矛 ② 短戟 ③ 短弩 ④ 飛矢 ⑤ 彈石 ⑥ 乙 ⑦ 玉壺 ⑧ 俄 ⑨ 氏 ⑩ 北齊書
ever, record one other method for defending against this form of assault which also derived from the late Chou Mohist engineers.

This technique involved dropping burning firewood into the enemy mine while it was still outside the walls. The Mo Tzu gives the following instructions:

Make a wên with the wheels of a cart. Bind firewood together and steep a hempen rope in mud and use it for binding it (the firewood). An iron chain is suspended directly opposite the mouth of the (enemy's) tunnel: the iron chain is to be 30 chihh long, with one end ringed, the other with a hook (from which the firewood is dropped into the enemy mine).a

Unfortunately, it is not possible to specify the nature of the wên, but it may have been some kind of giant pulley or winch, for the Thung Tien recommends the use of a well-sweep in this operation. These are Tu Yu's instructions:

First make a well-sweep (chieh kao) and suspend an iron chain more than 30 feet long; bind faggots, reeds, firewood or grass and set them alight. Drop them on the hole outside the city wall where they are mining to smoke and burn them. The enemy will immediately die.b

In essence, both of these devices are similar to the later, Sung, 'wandering fire cauldron' (yu huo hsiang) (Figure 307) which consisted of a wrought iron basket filled with firewood, artemisia and wax (la) attached to a long iron chain. As in the two previous examples, when a hole had been broken into the enemy's mine, it was set alight and let down in to 'gas' the sappers inside.c

The Thang TpyC also proposes the burning of the enemy sappers in their mine. This was achieved by digging 'heavenly wells' (thien ching):

When the enemy come to attack the city by excavating underground mines, [the defenders should] in turn themselves dig wells straight down above the mines to intercept them. They should pile up firewood in the wells, set fire to it, and suffocate them. Naturally, the enemy will be burned to death.d

These 'heavenly wells' must have been sunk outside the city walls, before the sappers could inflict harm to the foundations of the main defences.

By Sung times, however, the techniques of mining had become relatively more sophisticated in terms of engines, even though the principles were almost exactly the same as those of the Mohists over a thousand years earlier. The first of the new offensive machines was a type of tank called a 'wooden ox' (mu niu), which consisted of a flat box or shed (phing wu, literally 'flat room') constructed out of

\(^a\) Mo Tzu, ch. 14, p. 8ab; Tshên Chung-Mien (3), pp. 64–5. The length of the chain seems to be somewhat inadequate.

\(^b\) Ch. 152, p. 80c.

\(^c\) WCYYCC, ch. 12, p. 63a; illustration, p. 62a.

\(^d\) Ch. 4, p. 84.
thick planks of strong wood, covered with fresh oxhide (Fig. 308). It was placed on a four-wheeled frame and pushed forward from inside towards the city walls. We may imagine that the sappers inside dug a mine which was hidden from the defenders' view in much the same fashion as the tunnel excavated with the help of the 'Head Cart' (thou chhê\(^1\)), to which we must now turn.

The mine dug with the protection of this machine was 7 feet 5 inches high and 8 feet wide. After every foot of earth was removed, a horizontal beam for supporting the earth (hêng ti fu\(^2\)) was laid, and the sides of the tunnel were reinforced by posts poetically called 'spreading sand posts' (phai sha chu\(^3\)), a term derived from the Shih Shuo Hsin Yu\(^4\) (A New Account of Tales of the World), where Sun Chho\(^5\) said that reading Lu Chi's\(^6\) (+261-303) 'writings were like spreading sand and picking out gold – every now and then you see a treasure.'\(^7\)

The completed frame was known as a 'plaited' or 'interlocking gallery' (hsü phêng\(^7\)) (Figs. 309-313) and the miners could come and go as they pleased back to their lines or up to the head of the tunnel, without fear of injury from the defenders. Once they had reached the foundations of the city wall, they excavated them, raised posts to hold up the section, and, when a sufficient length had been undermined, they piled up firewood round the posts, set them alight and re-

* "WCTI/CC, ch. 10, p. 19b.
* Shih Shuo Hsin Yu Chu, p. 64; (SPTK ed.) ch. 17b (phêng 4 'Wên Hsueh\(^8\)'), p. 33b; tr. Mather (3), p. 136, no. 84.
* 頭車
* 橫地樁
* 撫沙柱
* 世說新語
* 孫綽
* 隆機
* 賭槓
* 文學
Fig. 308. 'The Wooden ox', from WCTY/CC, ch. 10, p. 18b.

Fig. 309. Completed 'plaited gallery', from WCTY/CC, ch. 10, p. 7b (left); ch. 10, p. 9a (right).

Fig. 310. Screens for the 'plaited gallery', from WCTY/CC, ch. 10, p. 8a.
treated. The posts would burn and break, bringing down the entire section of the wall with them. The besieging army would then try to storm the breach left in the defences.

The top and sides of the 'plaited gallery' were covered with leather mats (pa1) (Figs. 309, 310) to protect the wooden frame and miners from arrows and stones. If the defenders succeeded in setting it or the 'head cart' on fire, the miners were
to apply a thin mud solution (ni chiang⁴) to the burning gallery with the aid of hemp mops (ma ta²) (Fig. 314) and to squirt water on the flames from sheepskin waterbags (hun tho shu lat³), made out of whole, freshly flayed skins, (Fig. 315).a

The description of the ‘head cart’ (thou chhé⁴), where the sappers excavated the earth and constructed the ‘plaited gallery’, runs as follows:

The body is 10 feet long and 7 feet wide. In front, it is 7 feet high and in the rear 8 feet high. Make ‘earth supports’ [ti ju³] out of two large timbers and a runged ladder at both ends, front and rear. The rungs in the front especially need to be strong and large. Above, place four posts [chu⁶], and on these posts construct a clothes-horse [li häng¹] [presumably to help strengthen the construction and keep the posts and ladders upright], and arrange san-tzu wood⁸ as a covering.⁵

In the centre [of the roof], leave a hole [literally, ‘clothes hole’ i chhia⁹] 2 feet wide to permit men to pass up and down through the roof. On top of the roof, arrange a mat [either made out of plaited bamboo or fresh oxhide], and on this set hay [jang⁴] and straw [kao¹] more than a foot thick; on top of this again place leather mats. This is to protect against stones thrown by trebuchets. On [all] three sides of the cart, construct bound[?] poles [yüeh kan¹²].c

The wood for the shields [phaî¹³] of the ‘head cart’: each shield is 9 feet long, 5 feet wide and 6 inches thick. At the top, there is a small hole. Attach with a leather rope a covering to the cart, which should hang down outside the ‘bound poles’. There is no fixed number to the timbers [i.e. the ‘bound poles’], but do protect the three sides [by placing the timbers] close together. Outside the shields also suspend leather mats. They too are to ward off stones from trebuchets.

Place a ladder just below the hole for climbing onto the roof. In front, install a screen-mat [phang fêng i pa¹⁴], and in the centre open up a window for [shooting] arrows, resting on a ‘wooden horse’ [mu ma¹⁵]⁷ so as to let the men behind the mat shoot out.

The general construction of the cart can be appreciated from the accompanying illustration (Fig. 316).

The method of attack using the ‘head cart’ was as follows: the besiegers moved their lines forward till they were at a distance of 500 feet from the walls, and then proceeded to bombard the defenders with heavy artillery and concentrated bow and crossbow fire so that they could not stand their ground and keep at their positions. The cart was then eased forward by means of two poles 18 feet long

a WCT/CC. ch. 10, p. 8b: illustrations, pp. 6a-8a, 9a, 11a.
b This wood is unidentifiable; possibly it was wood not good enough for anything else or wood chips and shavings.
c The note to the text says that these poles are ‘like the upright poles in the tso chien¹¹’, possibly the prisoner’s van or barred cart; cf. Chauncey S. Goodrich (1).
d The text has ‘inches’, but this appears to be a mistake.
e The ‘wooden horse’ was a horizontal piece of wood resting on three legs, 3 feet high and 6 feet long.

1 泥漿 2 龍搭 3 清熱水袋 4 頭車 5 地伏
2 柱 7 衣架 8 散子木 9 衣篝 6 繩
11 裝 12 綁竿 13 牌 14 議風壹笆 15 木馬
16 坐艦
which were inserted under the front crossbeam and over the rear crossbeam. The front of the cart was always kept more than a foot off the ground to prevent it from catching when the pole-levers were pressed down to move the machine forward. The cart could also be bounced forward by means of wooden stakes or iron staves, rather than the long wooden poles. Later wheels were added to the cart so that it
could advance (and retreat) more easily. Furthermore, a large hemp rope of 1,000 chin\(^1\) (680 kilos) strength was attached to the rear crossbeam, with its other end wound round a windlass behind the besiegers' front line. If the cart needed to be withdrawn – for example, if the cart had been set on fire and the flames could not be extinguished by the men inside – the windlass was turned and the cart retrieved.

As the cart advanced, the sappers built the 'plaited gallery' behind them. When the moat was reached, it was filled in with hay, straw, and earth moved up through the gallery by porters. And so eventually the base of the city walls was reached, and the work of undermining could begin in earnest.

It can be seen from this description that the 'head cart' was employed to construct a gallery above ground or only slightly sunk into the earth. The Sung miners, however, did also dig subterranean mines in the same manner as the Mohists, and they employed much the same tactics as their ancient predecessors in the event that the besiegers succeeded in excavating offensive mines: they certainly used the same method of detecting mines.

Figure 317 illustrates a felt screen (\(thu\ se\ chan\ lien\))\(^2\) of an earth colour which was hung at the entrance of caves or branches dug at right angles to the main gallery of defensive mines to hide the opening. Ten men bearing short weapons such as swords and knives hid in the caves and when the enemy approached, they jumped out to ambush them.\(^3\)

Instead of well-sweeps pumping deadly artemisia gas down the mines, the Sung engineers erected fans (\(feng\ shan\ chhe\))\(^4\) of a size appropriate to the height and width of the mine. These fans consisted of upright posts, two crosspieces, and a roller (\(chuan\ chu\))\(^5\) with four square plates inserted in it. When the enemy was encountered, the fan was rotated rapidly to propel pebbles, ash, chaff (\(po\))\(^6\), grenades made of paper filled with broken sherds and stones covered with a paste of decocted beeswax (\(huang\ la\))\(^7\), resin or pitch (\(li\ chhing\))\(^8\), and coal dust (\(than\ mo\))\(^9\), other fireballs containing some kind of explosive mixture (\(yao\))\(^10\), and smoke to injure and incapacitate the enemy\(^b\) (Fig. 318).

The Sung miners were also equipped with a leather screen (\(phi\ man\))\(^11\) 6 feet 5 inches square to protect themselves against smoke, poison, and other noxious substances poured in through holes made in kinds of reversed fougasses (\(fan\ shen\ khu\))\(^12\) by the enemy above their own tunnel. The screen was tied to the side posts (\(phaisha\ chu\))\(^13\) by non-combustible 'fire-rope' (\(huo\ sheng\))\(^14\) threaded through iron rings attached at each corner, and thus held in place (Fig. 319).\(^c\)

\(^{1}\) L'i CTY CC, ch. 12, p. 38b; illustration, p. 38a.
\(^{2}\) L'i CTY CC, ch. 12, p. 31b; illustration, p. 31a.
\(^{3}\) L'i CTY CC, ch. 10, p. 26a; illustration, p. 25h.
The noxious concoction commonly poured in through the fougasse was the 'human-faeces-foul-smelling drug' (jên chhing chhou yao¹), which was kept in storage in wooden boxes 4 feet square and 2 feet deep. When an enemy mine approached and it was deemed necessary to repel the attack, the fougasse was excavated, a conduit to the enemy tunnel dug, and the human faeces (presumably dried and powdered) emptied down through a 4 foot square 'pour tray' (chu

¹人清臭藥
Fig. 310. Instruments for use in pouring noxious substances into enemy mines, from WCTY/CC, ch. 10, p. 25a.

phan¹) and 'leather conducting trough' (phi thou tshao²) 4 feet long and 3 feet wide made out of fresh oxhide (Fig. 320).

Although the WCTY manual recommends the use of these instruments for besiegers only, it is most probable that defending sappers also made use of them to repel the enemy.¹

Our survey of the early Sung mining techniques would not be complete without brief mention of some of the specialised implements used to dig the tunnels: the first was the 'fierce drill' (lieh tsuan³) with a blade 1 foot 5 inches long in the shape of a bottle-gourd(?), pointed above and 8 inches square at the bottom, whose 3-foot handle had a fork at the end. Next came the 'horse ear knife' (huan êrh tao⁴), also shaped like a bottle-gourd, but this time with a blade 1 foot long, pointed at the top and narrow at the bottom. It too had a handle 3 feet long. Both these iron implements were used to loosen the earth which was then removed by means of spades and shovels. The 'footless(?) awl' (huo chui⁵), with a handle 2 feet long and blade 2 1/2 feet long, was used as a probe to detect whether the tunnel was close to breaking through into any other excavation. The 'butterfly-eyebrowed mattock'
(o mei chhü), whose blade was 5 inches wide and handle 3 feet long, and the 'phoenix-headed axe' (fēng thou fu), with an 8 inch blade and 2 1/2-foot handle, were also employed to loosen compacted earth underground (Fig. 321).^8

(xi) The mass infantry assault

We have already mentioned that one of the methods for forcing the enemy off the face of the city walls during a mass infantry assault was to suspend flaming la screens either horizontally or vertically. In the sections of Mo Tzu which give the detailed specifications for the defence against this type of attack, called by the ancient Chinese texts 'ant-like approach' (i fu) because thousands of infantry swarming up the walls resembled ants climbing house walls,^b a number of other devices and techniques are described which warrant our attention because of their technological interest.

As we have likewise also observed,^c in one of the fragments, the Mohists recommend planting sharp iron stakes (jui thieh i) d 5 chhīh long and more than half a wei (1.5 cm) in circumference, with sharp points at both ends, in the glacis at the...
base of the city walls. The stakes are buried 3 chhih deep in five rows 3 chhih apart (ca. 69.3 cm). They are also to be hammered into the parapet on top of the walls.

These rows of sharp iron or wooden stakes no doubt made it extremely difficult for the attackers to reach the base of the walls in good order and made the scaling of the walls an even harder task. Any attackers knocked off the walls would probably have been impaled when they fell, and death would have been certain, if not swift. By burying the stakes so deeply, their removal by the enemy within a short time was probably a particularly arduous task. It is also for this reason that the Mohists suggest the use of iron, for wooden stakes could be sawn through by the first wave of the attack, provided, of course, that they were protected by shield-bearing comrades from the missiles fired and thrown from the walls above.

Beyond this ancient minefield, the defenders could have scattered iron caltrops and broken sherds of pottery to hinder the advance, but in two fragments of the defence against a mass infantry assault, the Mohists recommend the construction of an enormous rough wooden palisade called a chü. This was to be 10 chhih thick, placed 10 chhih away from the walls, and constructed out of different sizes of timbers cut into 10-chhih lengths. These timbers were buried deep in the ground so that they could not be pulled up. It would appear that two light wattle gates 5 chhih wide, which were easy to remove, were built in a construction called the ‘Death’ (sha) every 120 chhih along the palisade. The ‘Death’ was also to have a ko, possibly a partition-wall or an outwork 10 chhih thick. Every 30 chhih along the top of the city walls, a furnace was to be built with braziers for charcoal close at hand, and every 4 chhih along the walls a stake with a hook was pounded into a rammed-earth stand. From the hook so-called ‘suspended fires’ (hsüan huo) were hung. These must have been baskets containing light combustible material. In between the baskets, ‘fire-carriers’ (tsai huo), probably men who shot flaming arrows, were to stand. When the enemy attacked, they were to be allowed to penetrate the gates. Then the defenders’ drums would roll and the arrows would be shot and the lighted baskets would be hurled down to set fire to the palisade to burn the unfortunate soldiers trapped inside. If the enemy were to extinguish the flames and renew their assault, the procedure would be repeated. Once they had been put to flight, the bravest of the defenders would launch a counterattack out of sally ports (hsüeh mén) to destroy the fleeing army and kill its generals.

6 The text has the graph chu. We follow Sun I-Jang (2) and Huang Shao-Chhi’s emendation: Tshên Chung-Mien (3) emends to chu, ‘lower border of a dress’ (Yates (5), pp. 169–70, n. 314). The two fragments are different versions of the same text, and one has been mistakenly placed by a copyist in the section ‘Defence against Ladders’.14

b The graph ko may either be an abbreviation for ko, ‘separation’, or possibly for ku, a type of frame for hanging bells (see Shi Ji, Li Shu; ch. 23, p. 21; Shui-Hu-Ti Chhin-Mu Chu-Chien Chêng-Li Hsiao-Ts’u (1), p. 80.
Another contraption used against the mass infantry assault was the ‘suspended spleen’ (hsüan phi). This was an open-topped box constructed out of wooden timbers 2 tshun thick. The sides were 5 chhih high and wide on left and right and 3 chhih high (and wide?) at the front and rear. The box was suspended over the walls by means of a crossbeam attached to an iron chain which passed over a pulley-wheel 1 chhih 6 tshun in diameter and onto a windlass. Four men were stationed at the windlass to raise and lower the box, and one man brandishing a 24-chhih spear which had blades at both ends of its shaft stood in the box and stabbed at the enemy soldiers as they climbed up the walls. Possibly the sides of the box were slatted so that he could manipulate the spear through the gaps between the timbers without exposing himself unnecessarily: the text, however, is unclear on this point. These ‘suspended spleens’ were deployed every 36 chhih along the face of the walls where the enemy were massed for the assault and every 120 chhih where there was less danger of a heavy attack.

Another type of box was known as the ‘fire-thrower’ (huo tsu) or ‘heat-transferrer’ (chuan thang). This was a kind of wooden trough whose ends were constructed out of two wheels of a cart with an axle length of 10 chhih. The wheels were fused (yung) to the hub to prevent them from spinning and were fastened with wood. Timbers of jujube (chi) wood were hammered to both wheels to form the sides of the trough and all parts were plastered thickly with mud. The trough was filled with twigs of elm (yü) and hemp (chêng), and hung over the walls by means of ropes. When the enemy attacked, the contents of the trough were set alight and the ropes cut to let the trough drop on the soldiers scaling the walls. The defenders themselves then sent down brave men after the ‘heat-transferrers’ presumably by rope or chain, to kill the enemy as they struggled in confusion to extinguish the flames in amongst the iron stakes.

In addition to these contraptions, the soldiers defending the walls were equipped with ‘linked shu’ (lien shu), which may have been tshun-thick spiked metal balls attached to handles by ropes or metal chains. The chains or the handles were 5 chhih long. It is possible that this type of shu was a mace, later called a pang (see Figure 322), because the inscription on one of the seven weapons found in the tomb of Marquis I of Tsêng reads ‘Shu used by Yi-ih, Marquis of Tsêng’ (see Figure 323), or a raised ‘flower’ (hua) design, as the excavators state.

* The text merely states that the ‘linked maces’ are five feet long.
* WCYCC, ch. 13, p. 13a.
* Sui-Hsien Lei-Ku-Tun I-Hao-Mu Khao-Ku Fa Chiieh Tui (1), p. 9 and plate 9; Hupci Sheng Po-Wu Kuan (4), p. 7; Chêng Hsin-Jên (1). See Vol. 5, pt 8, for a further discussion of shu, one of the set of ‘five weapons’ (wu pîng) in ancient times.
30. MISSILES AND SIEGES

Alternatively, 'linked shu' may have been a type of war-flail, for Kuo Phu\(^2\) defines the Han dynasty chhien\(^3\) weapon as the 'modern linked flail with which one threshes grain'\(^4\). There must have been, however, some distinction between this and the 'linked flails' (lien thing\(^5\)) 2 chhih long and 6 tshun thick with ropes 2 chhih long with which the defenders were also provided. These are called in the WCTY 'iron-linked pincer maces' (thieh lien chia pang\(^6\)), which we have discussed in

\(^{1}\) 連殳 \(^{2}\) 郭璞 \(^{3}\) 華 \(^{4}\) 方言
\(^{5}\) 華 \(^{6}\) 鐵鍊夾棒

* Commentary on Fang Ten\(^7\) 5/56/29.
the section on levers, hinges and linkwork (see Figure 115 above). Tseng Kung-Liang (998 to 1078), the author of *WCTY*, is of the opinion that the war-flail was introduced into China through the Western Jung (Hsi Jung) tribesmen during the Han dynasty, for they used them on horseback to beat down Han infantry. The weapon quickly became a favourite among the Chinese themselves. If, however, the *Mo Tzu* military chapters date from the Warring States as we believe, then the use of the war-flail derived from native Chinese agricultural techniques and was not introduced from a minority people.

Other weapons wielded by the defenders against a mass infantry assault, in addition to their standard equipment of swords, crossbows, spears, and halberds, were hammers, whose handles were 6 chhih long and whose heads were 1/2 feet long, and axes (fu) with handles 6 feet long. The soldiers would also pour boiling water, sand, and stones upon the heads of the attackers climbing up the walls, and fire trebuchets to break up the enemy ranks before they reached the base of the wall. One other machine is mentioned as being effective against the infantry assault, the ‘movable overlook’ (*hsing lin*), but unfortunately details of its construction have been lost in the course of the transmission of the text. There does, however, exist one other reference to this device, in Chhê Lin's fragmentary *Rhapsody on a Martial Army* (*Wu Chüen Fu*), where it is associated with the ‘cloud-ladder’ (*yün thi*). We may presume that it was the name of a special type of movable tower used to overlook the enemy and raise the height of the walls, wherever they managed to scale the walls.

Very little is mentioned in the sources about the developments of defence tactics against the mass infantry assault in the centuries following the Mohists, and we may surmise that the machines they deployed continued to be used, with appropriate modifications of course, down through the generations in conjunction with all the other devices we have encountered. Much later, the Sung *WCTY*, repeating the prescriptions of the Thang manual *TPI C*, describes a type of mobile screen mounted on a cart which provided protection for the attackers against the defenders' projectiles as they advanced towards the walls. This wooden screen (*mu man*) was constructed out of wooden boards, like a regular screen, which were covered with fresh oxhide to prevent them from burning, and was hung by a rope

a Vol. 4, pt 2, p. 70. *Thung Tien*, ch. 152, p. 800c, mentions the *lien thing*, but this is quoted by the *TPI C*, ch. 337, p. 3b as *lien pong* ‘linked maces’. *Thung Tien*, ch. 152, p. 800a, distinguishes between the ‘linked flail’ (*lien chia*) and the ‘linked mace’ (*lien pong*). It is not clear what the differences were between these instruments. cf. *TPI C*, ch. 4, p. 84.

b *WCTY*, ch. 13, pp. 14b-15a.

c There appears to be a lacuna in the text after *hsing lin*, although none of the commentators on *Mo Tzu* have recognised this fact.

d *TPI C*, ch. 336, p. 8a.
from the end of a well-sweep (chieh kao\(^1\)) fastened into a four-wheeled carriage\(^a\) (Figure 288 above). Unfortunately, no dimensions of any of the parts are given. Presumably, the cart was pulled forward either by oxen, horses or men ahead of the front line of infantry, and one or several men manipulated the well-screen up and down to raise and lower the screen to catch incoming enemy missiles.

Finally, a new device invented at least by early Sung times for use of defenders against the mass infantry assault was the ‘wolf’s tooth striking-board’ (lang ya phai\(^2\)), a variation on the caltrop boards we have encountered in previous sections. The board was made out of Sophora wood 5 feet long, 4 1/2 feet wide and 3 inches thick; 2,200 ‘wolf’s-teeth iron nails’ (lang ya thieh ting\(^3\)) each 5 inches long and 6 ounces in weight were hammered in it, so that they projected 3 inches out from the wood (sic). On each of the four sides of the board a sabre blade was inserted to a depth of 1 1/2 inches. Two iron rings were attached to the front and rear of the board, and from these it was suspended by hemp ropes from the walls. When the enemy attacked, the boards were dropped from the walls onto the heads of the soldiers climbing up so as to smash through their helmets and knock them off the walls\(^b\) (Figure 273 above).

\(^a\) WCTY\(CC\), ch. 10, p. 20a, illustration p. 19a; TPYC\(U\), ch. 4, p. 80, quoted in Thung Tien, ch. 160, p. 846a and TPI\(L\), ch. 397, p. 2a.

\(^b\) WCTY\(CC\), ch. 12, p. 23b; illustration, p. 23a.

\(^1\) 结樋 \(^2\) 狼牙拍 \(^3\) 狼牙釘釘
BIBLIOGRAPHIES

A CHINESE AND JAPANESE BOOKS BEFORE +1800
B CHINESE AND JAPANESE BOOKS AND JOURNAL ARTICLES SINCE +1800
C BOOKS AND JOURNAL ARTICLES IN WESTERN LANGUAGES

In Bibliographies A and B there are two modifications of the Roman alphabetical sequence: transliterated Chh-comes after all other entries under Ch-, and transliterated Hs-comes after all other entries under H-. Thus Chh comes after Chang and Hsi comes after Hu. This system applies only to the first words of the titles. Moreover, where Chh- and Hs-occur in words used in Bibliography C, i.e. in a Western language context, the normal sequence of the Roman alphabet is observed.

When obsolete or unusual romanisations of Chinese words occur in entries in Bibliography C, they are followed, wherever possible, by the romanisations adopted as standard in the present work. If inserted in the title, these are enclosed in square brackets; if they follow it, in round brackets. When Chinese words or phrases occur romanised according to the Wade–Giles system related systems, they are assimilated to the system here adopted (cf. Vol. 1, p. 26) without indication of any change. Additional notes are added in round brackets. The reference numbers do not necessarily begin with (1), nor are they necessarily consecutive, because only those references required for this volume of the series are given.

Korean and Vietnamese books and papers are included in Bibliographies A and B. As explained in Vol. 1, pp. 211ff., reference numbers in italics imply that the work is in one or other of the East Asian languages.

ABBREVIATIONS

See also p. xxiii

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Title</th>
<th>Abbreviation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Artibus Asiae</td>
<td>AHR</td>
<td>American Historical Review</td>
</tr>
<tr>
<td>AI/ALHS</td>
<td>Archives Internationales d'Histoire des Sciences (continuation of Archex)</td>
<td>AJP</td>
<td>American Journal of Philology</td>
</tr>
<tr>
<td>AAN</td>
<td>American Anthropologist</td>
<td>AM</td>
<td>Asia Major</td>
</tr>
<tr>
<td>ACASA</td>
<td>Archives of the Chinese Art Society of America</td>
<td>APAW/PH</td>
<td>Abhandlungen d. preuss. Akademie der Wissenschaften Berlin (Phil.-Hist. Kl.)</td>
</tr>
<tr>
<td>ACLS</td>
<td>American Council of Learned Societies</td>
<td>APOLH</td>
<td>Acta Palaestina Historica</td>
</tr>
<tr>
<td>ACP</td>
<td>Annales de Chimie et Physique</td>
<td>AR</td>
<td>Asiatic Quarterly Review</td>
</tr>
<tr>
<td>ADS</td>
<td>Advancement of Science (British Association, London)</td>
<td>ARCH</td>
<td>Archery</td>
</tr>
<tr>
<td>AGMNT</td>
<td>Archiv für die Geschichte der Mathematik, der Naturwissenschaft und der Technik (continued as QSGNM)</td>
<td>AR</td>
<td>Annual Reports of the Librarian of Congress (Division of Orientalia)</td>
</tr>
<tr>
<td>AGNT</td>
<td>Archiv für die Geschichte der Naturwissenschaft und der Technik (continued as AGMNT)</td>
<td>ARSI</td>
<td>Archiv Orientalis (Prague)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASCA</td>
<td>Bulletin of the Institute of History and Philology, Academia Sinica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASE.A</td>
<td>Asiatica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA</td>
<td>Asiatische Studien/Études asiatiques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Börsler Archiv (Beiträge c. Völkerkunde)</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSCH</td>
<td>Li Shih (= Li Shih Chiao Hsiüeh) Chiao Hsiüeh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSYC</td>
<td>Li Shih Yen Chiu (Peking) (Journal of Historical Research)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCB</td>
<td>Mélanges Chinois et Boudiddhiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCBAMUC</td>
<td>Mélanges concernant l'Histoire, les Sciences, les Arts, les Mœurs et les Usages, des Chinois, par les Missionnaires Pékin (Paris 1776–)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDGNVO</td>
<td>Mitteilungen d. deutsch. Gesell. f. Natur. u. Volkskunde Ostasiens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIHEC</td>
<td>Mélanges publiés par l'Institut des Hautes Études Chinoises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINGS</td>
<td>Ming Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Monumenta Serica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSOS</td>
<td>Mitteilungen d. Seminar f. orientalischen Sprachen (Berlin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTCC</td>
<td>Mo Tso Chi Chêng N Nature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCR</td>
<td>New China Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGM</td>
<td>National Geographic Magazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJKJ</td>
<td>Neue Jahrbücher f. d. klass. Altertum, Geschichte, deutsch. Literatur u. f. Pädagogik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NKKZ</td>
<td>Nihon Kagaku Koten Zencho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>New Yorker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAZ</td>
<td>Ostasiatische Zeitschrift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE</td>
<td>Oriens Extremus (Hamburg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Oriens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTSU</td>
<td>Orient Shigaku</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUP</td>
<td>Oxford University Press</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Pacific Affairs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEW</td>
<td>Philosophy East and West (Univ. of Hawaii)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKCS</td>
<td>Pai Hko Chih Shih (Peking)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLCCRC</td>
<td>Pa Lu Chiau Chien Chêng Tsa Chêng Tsa Chêng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Past and Present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTKM</td>
<td>Pin Tiao Kang Mu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVS</td>
<td>Pernau (Paris)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWP</td>
<td>Peiching Wao Pao</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSGNM</td>
<td>Quellen und Studien zur Geschichte der Naturwissenschaften und der Medizin (continuation of AGMNT and, earlier AGNT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>Revue Archéologique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAA/AMG</td>
<td>Revue des Arts Asiatiques / Annales du Musée Guimet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAAO</td>
<td>Revue d'Asiologie et d'Archéologie Orientale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBS</td>
<td>Revue Bibliographique de Sinologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Rekishi To Chiri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REA</td>
<td>Revue des Études Anciennes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Revue des Études Grecoises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSH</td>
<td>Rivista di Studi Orientali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Sinica (originally Chineseische Blätter f. Wissenschaften u. Kunst)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE</td>
<td>Sarculum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAM</td>
<td>Scientific American</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBAW</td>
<td>Sitzungsberichte d. Bayerischen Akademie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. CHINESE AND JAPANESE BOOKS BEFORE +1800

Each entry gives particulars in the following order:
(a) title, alphabetically arranged, with characters;
(b) alternative title, if any;
(c) translation of title;
(d) cross-reference to closely related book, if any;
(e) dynasty;
(f) date as accurately possible;
(g) name of author or editor, with characters;
(h) title of other book, if the text of the work now exists only incorporated therein; or, in special cases, references to sinological studies of it;
(i) references to translations, if any, given by the name of the translator in Bibliography C;
(j) notice of any index or concordance to the book if such a work exists;
(k) reference to the number of the book in the Tao Tsang catalogue of Wieger (6), if applicable;
(l) reference to the number of the book in the San Tsang (Tripitaka) catalogues of Nanjio (1) and Takakusu & Watanabe, if applicable.

Words which exist in the translation of titles are added in round brackets.

Alternative titles or explanatory additions to the titles are added in square brackets.

It will be remembered (p. 486 above) that in Chinese indexes words beginning with are all listed together after , and after , but this applies to initial words of titles only.

Where there are any differences between the entries in these bibliographies and those in Vols. 1-4, the information here given is to be taken as more correct.

An interim list of references to the editions used in the present work, and to the t'ung-shu collections in which books are available, has been given in Vol. 4, pt 3, pp. 913ff, and is available as a separate brochure.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/Han</td>
<td>Former Han.</td>
</tr>
<tr>
<td>E/Wei</td>
<td>Eastern Wei.</td>
</tr>
<tr>
<td>H/Han</td>
<td>Later Han.</td>
</tr>
<tr>
<td>H/Shu</td>
<td>Later Shu (Wu Tai).</td>
</tr>
<tr>
<td>H/Thang</td>
<td>Later Thang (Wu Tai).</td>
</tr>
<tr>
<td>H/Chin</td>
<td>Later Chin (Wu Tai).</td>
</tr>
<tr>
<td>S/Han</td>
<td>Southern Han (Wu Tai).</td>
</tr>
<tr>
<td>S/Phing</td>
<td>Southern Phing (Wu Tai).</td>
</tr>
<tr>
<td>J/Chin</td>
<td>Jurchen Chin.</td>
</tr>
<tr>
<td>L/Sung</td>
<td>Lao Sung.</td>
</tr>
<tr>
<td>N/Chou</td>
<td>Northern Chou.</td>
</tr>
<tr>
<td>N/Chhi</td>
<td>Northern Chhi.</td>
</tr>
<tr>
<td>N/Sung</td>
<td>Northern Sung (before the removal of the capital to Hangchow).</td>
</tr>
<tr>
<td>N/Wei</td>
<td>Northern Wei.</td>
</tr>
<tr>
<td>S/Chhi</td>
<td>Southern Chhi.</td>
</tr>
<tr>
<td>S/Sung</td>
<td>Southern Sung (after the removal of the capital to Hangchow).</td>
</tr>
<tr>
<td>W/Wei</td>
<td>Western Wei.</td>
</tr>
</tbody>
</table>

Chi Hsiao Hsin Shu 纪效新書
A New Treatise on Military and Naval Efficiency.
Ming, +1560. pr. +1562, often repr.
Chi Chih-Kuang 戴獻光

Chi Fan
See Chi Ni Ts"u.

Chi Ni Ts"u 許領子
[Fan Ts"u Chi Jan 肅子計然].
The Book of Master Chi Ni.
Chou (Yüeh), -4th century.
Attrib. Fan Li 范蠡.
Recording the philosophy of his master Chi Jan 計然.

Chi Yin 集韻
Sung, +1097.
Compiled by Ting Tu 丁度 et al.
Possibly completed in +1067 by Su-ma Kuang 司馬光.

Chiang Pin Chuan 江表傳
The Story of Chiang Piao.
Thang or pre-Thang.
Yiu Phu 廣澤.

Chiao Shi Ch'ing 數射經
Crossbowmen's Manual.
Thang +8th c.
Wang Chi 王曜.

Chi Lin 志林
Forest of Records.
See Tung-Pho Chi Lin.
BIBLIOGRAPHY A

Chin Lou Tzu 金樓子
Book of the Golden Hall Master
Liang, 5. + 530.
Hsiao I 矛諒
(Liang Yuan Ti 梁元帝).
Chin Shih 金史
History of the Chin (Jurchen) Dynasty [+1115 to +1294].
Yuan, c. +1295.
Tho-Tho (Toktaga) 脫脫 & Ou-yang Hsiian 歐陽玄
Yin-Tê Index, no. 33.
Chin Shu 華書.
History of the Chin Dynasty [+665 to +419].
Thang, +635.
Fang Hsian-Ling 房玄齡.
A few chs. tr. Pfizmaier (54-57); the astronomical chs. tr. Ho Ping-Yü (1). For translations of passages, see Frankel (1).
Chin Thang Chieh Chu Shih Erh Chou 金湯借著十二籌.
Twelve Suggestions for Impregnable Defence.
Ming ca. +1670.
Li Phan 李攀.
The first two words of the title recall the phrase Chin Chêng Thang Chih, [adamantine walls and scaling moats], hence impregnable.
Chiu Chang Shu 九章算術.
Nine Chapters on the Mathematical Art.
H/Han, +1st century (containing much material from C/Han and perhaps Chhin).
Writer unknown.
Chiu Kuo Chih 九國志.
Historical Memoir on the Nine States (Wu, Nan, Chou, Wu-Yueh, Chhien Shu, Hou Shu, Tung Han, Nan Han, Min, Chhu and Pei Chhu, in the Wu Tai Period).
Sung c. +1064.
Lü Chen 骆振.
Chiu Ming Shu 救命書.
On Saving the Situation.
See Huang Ping Chu Min Shu and Shou Chêng Chiu Ming Shu.
Chau Li 周禮.
Record of the Institutions (lit. Rites) of (the) Chou (Dynasty) [descriptions of all government official posts and their duties].
C/Han, perhaps containing some material from late Chou.
Compilers unknown.
Tr. E. Biot (1).
ChauLi Chêng I 周禮正義.
Amended Text of the Record of the Institutions (lit. Rites) of the Chou (Dynasty) with Discussions (including the H/Han commentary of Chêng Hsuan 鄭玄).
C/Han, perhaps containing some material from late Chou.
Compilers unknown.
Ed. Sun I-Jang (189g) 孫詒讓.
Chu Chi Thu Shuo 諸器圖說.
Diagrams and Explanations of all Machines [mainly of his own invention or adaptation].
Ming +1627.
Wang Cheng 王徵.
Chu Fan Chi 緋蕃志.
Records of Foreign Peoples (and their Trade).
Sung, c. +1225.
(This is Pelliot's dating; Hirth & Rockhill favoured between +1242 and +1258.)
Chao Ju-Kua 趙汝適.
Tr. Hirth & Rockhill (1).
Chu Lu Chi 逐鹿記.
Record of Hunting the Deer.
Ming.
Wang Wei 王維.
Chuang Tzu 莊子.
[="Nan Han Chu-Ching].
The Book of Master Chuang.
Chou, c. -290.
Chuang Chou 莊周.
Tr. Legge (5): Feng Yu-Lan (5); Lin Yu-Thang (1).
Yin-Tê Index no. (suppl.) 20.
Chiu Cheng Hsiao Fa 緮張心法.
Manual of Crossbows Armed by Foot (and Kneec).
Ming or early Chhing.
Chhêng Chhung-Tou 程沖斗.
Chu-ko Liang Chi 築葛亮集.
Collected Writings of Chu-ko Liang (Captain-General of Shu).
San Kuo (Shu) +200 to +234.
Chu-ko Liang 葛亮.
Chhên Shu 陳書.
History of the Chhên Dynasty [+556 to +580].
Thang, +630.
Yao Ssu-Lien 姚思廉, and his father Yao Chha 姚察. A few chs. tr. Pfizmaier (59).
For translations of passages, see the index of Frankel (1).
Chhi Min Yao Shu 齊民要術.
Important Arts for the People's Welfare [lit. Equality].
N/Wei (and E/Wei or W/Wei), between +533 and +544.
Chia Ssu-Hsien 賈思賢.
See des Rotours (1), p.c; Shih Shêng-Han (1).
Chhi Sun Ping Fa 齊孫兵法.
Chhi State Sun's Art of War.
Alternative title for Sun Ping Fa, q.v.
Chiehch Yün 切韻.
Dictionary of Characters arranged according to their Sounds when Split [rhyming phonetic dictionary; the title refers to the jen-chhih method of 'spelling' Chinese Characters – see Vol. 1, p. 33].
Sui +601.
Lu Fa-Yen 陸法言.
Now extant only within the Kuang Yün (q.v.).
Chhien Han Shu 前漢書.
History of the Former Han Dynasty [-206 to +24].
H/Han, c. 100.
Pan Ku 畋固, and after his death in +92 his sister Pan Chao ellschaft.
Partial trs. Dubs (2), Pfizmaier (52-4; 37-51), Wyhe (2, 3, 10), Swann (1), etc.
Yin-Ts Index no. 36.
Chih Ting Hwu Hsien Thang Kiao 釀定兩文獻通考
Imperially Commissioned Continuation of the
Comprehensive Study of the History of Civilization
(cf. Win Hsien Thang Kiao and Hsi Wên Hsien
Thang Kiao).
Chhing, ordered +1747, Pr. +1772 (+1784).
Ed. Chhi Shao-Nan 齊召南, Hsi Huang 詹璜 et al.
This parallels, but does not replace, Wang
Chhi's Hsi Wên Hsien Thang Kiao.
Chih Chiao Win Hsien Thang Kiao 晉朝文獻通考.
(Continuation of the) Comprehensive Study of the
History of Civilization for the Chhing Dynasty
(cf. Wên Hsien Thang Kiao and Hsi Wên Hsien
Thang Kiao).
Chhing ordered +1747, not completed till after
+1784.
For a still further continuation see Liu Chih-
T Sao (1).
Ed. Hsi Huang 詹璜.
Chih Hsing Tsu Chi 釋經雜記.
Miscellaneous Records on Green Bamboo
Tablets.
Sung, c. +1070.
Wu Chh Chou 吳處厚.
Ching I Lu 清異錄.
Exhilarating Talks on Strange Things.
Wu Tai & Sung ca. +965.
Thao Ku 陶穀.
Chhu T'eu 禿旅.
Elegies of Chhu (State) [or, Songs of the South].
Chou c. -300. (with Han additions).
Chhu Yuen 居原, & Chia ? 賢誼, Yen Chi 嚴呓, Sung Yu 宋之, Hsi-Nan
Hsiu-Wei 淮南小(11 et al.).
Partial tr. Waley (23); tr. Hawkes (1).
Chhii Wei Chih Wen 查異舊聞.
Talks about Bygone Things beside the Winding
Wei (River in Honan).
Sung, c. +1130.
Chu Pien 朱弁.
Chhiu Chhiu 清秋.
Spring and Autumn Annals [i.e. Records of
Springs and Autumnns].
Chou; a chronicle of the Lu Kept Between
-722 and -481.
Writers unknown.
See Wu Khan (1); Legge (11).
Chhu Chhiu Fan Lu 春秋纂露.
String of Pearls on the Spring and Autumn Annals.
C. Han, c. -175.
Tung Chih-Shu 唐仲舒.
See Wu Khan (1).
Partial trs. Wiegier (2); Hughes (1); d'Hornnon
(ed.) (2).
Chih Shu Chih Tao 謙書治要.
Guide to the Most Important Things in the
Multitude of Books.
Thang, ed. Wei Chi-feng 魏徵.
Chhing Kho Shih San Ching Chu Su Fu Kiao Chhing
重刻十三經注疏附考證.
The Thirteen Classics with Commentary and
Sub-commentary and Supplementary
Chhing +1739.
Fan Tu Chi Jan 范子叢然.
See Chi Ní Tzu.
Feng Fen 方誼.
Dictionary of Local Expressions.
Ch Han, c. -15 (but much interpolated later).
Yang Hsiang 楊雄.
Feng Huo Wo Chhing 蝨后帷奇經.
Feng Hou's Manual of Grasping Extraordinary
and Strange Events (and Turning them to
one's Advantage).
Alternative of Wo Chhing Chiang.
(Feng Hou was the first of the six great ministers
of the mythical emperor Huang Ti; he
became the deity of astronomy and the
military art.)
Feng Shên Pong 封神榜.
Pass-Lists of the Deified Heroes.
Popular form of the title Feng Shên Yen I q.v.
Feng Shên Yen I 封神演義.
Stories of the Promotions of the Martial Genii
[novel].
Xing middle +16th.
Attrib. Hsü Chung-Lin 許仲琳.
More probably Lu Hsi-Hsing 陸西星.
Tr. Grube (1).
Feng Su Thang I 風俗通義.
The Meaning of Popular Traditions and
Customs.
H/Han, +175.
Ying Shao 雲韶.
Chung-Fa Index, no. 3.
Fu Kuo Tshi, Chhing P'ing T'ah An Min T'ah 富國策
強兵策安民策.
Essays on Enriching the State, Strengthening
the Army, and Pacifying the People.
Sung ca. +1045.
Li Kou 季穀.
Hai N'i Shih Chou Chi 海內十洲記.
Record of the Ten Sea Islands (or, of the Ten
Continents in the World Ocean).
Ascr. Han; prob. +4th or +5th century.
Attrib. Tung-fang Shuo 東方朔.
Han Fei Tzu 韓非子.
The Book of Master Han Fei.
Chou, early -3rd century.
Han Fei 韓非.
Tr. Liao Wên-Kuei (1).
BIBLIOGRAPHY A

Han Shih Wm Chuau 端詩外傳.
Noral Discourses Illustrating the Han Text of the Book of Odes (Mr Han's Recension).
Ch: Han, c. - 135.
Han Ying 韓影.
Han Wei Liu Chiao Pai San Chin Chi 漢魏六朝百三家集.
The Collected Works of One Hundred and Three Authors from the Han, Wei and Six Dynasties.
Ming.
Chang Phu 张溥 (+ 1602 to + 1641).
Ho Kuan Tzu 鳳冠子.
Book of the Pheasant-Cap Master.
A very composite text, stabilised by +629, as is shown by one of the MSS found at Tunhuang. Much of it must be Chou (-4th century) and most is not later than Han (+ 2nd century), but there are later interpolations including a +4th or +5th century commentary which has become part of the text and accounts for about a seventh of it (Haloun (3), p. 88). It contains also a lost "Book of the Art of War." Alternatively, Chin.
Attrib. Ho Kuan Tzu 鳳冠子.
TT/1661.
Houga Gunkōki 本朝軍器考.
Investigation of the Military Weapons and Machines of the Present Dynasty.
Japan. Preface + 1709, postface + 1722, printed + 1737.
Araki Hakuseki (+ 1659 to + 1725) 新井白石.
Hou Han Shu 後漢書.
History of the Later Han Dynasty (+ 25 to + 290).
L/Sung, + 430.
Fan Yeh 范曄.
The monograph chapters by Su-ma Piao 司馬彪 (d. + 305), with commentary by Liu Chao 劉昭 (c. + 510), who first incorporated them into the work.
A few ch. trs. Chavannes (6, 16); Pfizmaier (52, 53); Yin-Tê index, no. 41.
Hou Chih'en Ch'ing 河隄靖.
Tiger Seal Manual [military encyclopaedia].
Sung, begun + 962, finished + 1004.
Hsi Tung 許洞.
Hsu Shu 俠書.
Book of the Transformations (in Nature).
H/Tang ca. + 940.
Attrib. Than Chhiao 譚峭.
TT/1032.
Hsiu Nan Tzu 淮南子.
[= Hsiu Nan Hung Lích Chêh 淮南鴻烈解].
The Book of the Prince of Huai-Nan [compendium of natural philosophy].
C: Han, c. - 120.
Written by the group of scholars gathered by Liu An 劉安, Prince of Huai-Nan.
Partial trs. Morgan (1); Erkes (1); Hughes (1); Chatley (1); Wiegert (2); Ames (1), etc.
Chung-Fa Index, no. 5. TT/+1760.
Huang Shih Kung San Liht 黃石公三略.
The Three Stratagems of the Old Gentleman of the Yellow Stone.
Alternative title of San Liht q.v.
Huang Yuan Chêng Mien Lo 皇元訳編錄 [= Yuan Chhao Chêng Mien Lo].
Records of the Imperial Mongol Expedition against Burma (+ 1300).
Yuan or a year or two later.
Huo Lang Chêng 火郎傳.
Ming, + 1412, but probably containing information dating from the previous half-century.
Chih Yu 焦玉.
The first part of this book, in three sections, is fancifully attributed to Chu-ko Wu Hou (i.e. Chu-ko Liang, + 3rd cent.), and Liu Chi 劉基 (+ 1311 to + 1375) appears as co-editor, really perhaps co-author. The second part, also in three sections, is attributed to Liu Chi above, but edited, and probably written, by Mao Hsi-Ping 毛希屏 in + 1632. The third part, in two sections, is by Mao Yuan-I 毛元儀 (+ 1628, author of the Wu Pei Chih) and edited by Chu-ko Kuang-Jung 楊景光, whose preface is of + 1644. Fang Yuan-Chuang 方元壯 & Chung Fu-Wu 鍾伏武.
Hsi Yu Chi 西遊記.
Story of a Journey to the West (or, Pilgrimage to the West) [novel: Monkey].
Ming, c. + 1560.
Wu Chhêng-En 吳承恩.
Tr. Waley (17); Yu (1).
Hsiang Ping Chhü Ming Shu 鄉兵救命書.
On Saving the Situation by (the Raising of) Militia.
Ming, + 1607.
Lu Khun 劉坤.
Hsiang-Yang Shu Chhêng Lo 襲陽守城錄.
An Account of the Defence of Hsia Yang (city), (+ 1268 to + 1270), (by the Sung against the J/Chin).
Sung ca. + 1210.
Chao Wan-Nien 趙萬年.
This siege was not by the Mongols, as in the more famous one of + 1268/ + 1273.
Hsin Shih 心史.
History of Troublesome Times.
Yuan, but not discovered until + 1638.
Cheng Su-Hsiao [Soo-Nan] 鄭思肖 [所南].
Hsin Shu 心書.
Book of the Hearts and Minds [on the importance of psychological conviction in warfare].
Yuan or early Ming, ascr. San Kuo (Shu).
Attrib. Chu-ko Liang 諸葛亮.
Hsin Thang Shu 新唐書.
New History of the Thang Dynasty [+618 to +906].
Sung, +1611.
Ou-yang Hsiu 歐陽修 & Sung Chhi 宋祁.
Cf. des Rotours (2), p. 36.
Partial trs. des Rotours (1, 2); Pfizmaier (66-74). For translations of passages see the
index of Frankel (1).
Yin-Té Index, no. 16.
Hsii Ch'iu Hsii Ch'ih 行軍須知
What an Army Commander in the Field Should Know.
Sung, +1230 repr. +1410, +1439.
Writer unknown.
Preface by Li Chin (Ming ed.) 李進.
Appended to the Ming ed. of Wu Ching Tsung Tsoo, Hw Chi
Hsing Tê 衛德
On Punishments and Virtues [military].
Han.
Writer unknown.
One of the books discovered at Ma-Wang-Tui in
1972, written on silk.
Hssu Po Wu Chih 始博物志
Supplement to the Record of the Investigation
of Things (cf. Po Wu Chih).
Sung, mid +14th century.
Li, Shih 李石.
Hsii Wên Hsien Thung Khao 續文獻通考
Continuation of the Comprehensive Study of the
History of Civilization (cf. Wên Hsien Thung
Khao and Chhin Ting Hsu Wên Hsien Thung
Khao).
Ming, +1588 pr. +1603.
Hsian Ho Ping Shih Kao-Li Thu Ching 宜和奉使高麗圖經
Illustrated Record of an Embassy to Korea in
the Hsiao-Ho reign-period.
Sung, +1124 (+1167).
Hwu Ching 徐兢.
Hsian Ho Ku Thu Lu 宜和古圖錄
[= Po 博 Ku Thu Lu].
Hsiao-Ho reign-period. Illustrated Record of
Ancient Objects. [Catalogue of the
archaeological museum of the emperor Hui
Tsung.]
Sung, +1111 to +1125.
Wang Fu 王黼 or 王黻, et al.
Hsien Tsu 蒙子
The Book of Master Hsin.
Chou c. +240.
Hsin Ching 言籍.
Tr. Dubs (7) Knoblock (1, 2).
1 Ching 易經
The Classic of Changes [Book of Changes].
Chou with C/Han additions.
Compilers unknown.
See Li Ching-Chhih (1, 2); Wu Shih-Chhang
(1).
Tr. R. Wilheim (2), Legge (9), de Harlez (1).
Yin-Té Index, no. (suppl.) 10.
1 Chou Shu 適周書
[= Chi Chung Chou Shu]
Lost Records of the Chou (Dynasty).
Chou, +245 and before, such parts as are
genuine. Found in the tomb of An Li Wang
(r. +276 to +245), a prince of the Wei state,
in +281.
Writers unknown.
1 Pin Chi 風雅集
The 1-Pin Collection
Yüyanc. +1325.
Wang I 王沂.
Kao Yu Tshung K'ao 原餘叢考
Miscellaneous Notes made while attending his
aged Mother.
Chhng +1790.
Chao I 趙翼.
Kao-Li Thu Ching.
See Hsian Ho Ping Shih Kao-Li Thu Ching.
Ku Chin Ch'ü 古今詁
Commentary on Things Old and New.
Chin, c. +300.
Tshui Pao 曹豹.
See des Rotours (1), p. xciv.
Ku Chén Thu Shu Chi Ch'êng 古今圖書集成.
Complete Collection of Writings and Drawings,
Old and New, full title of Thu Shu Chi Ch'êng.
Kuan Tsou 管子
The Book of Master Kuan.
Chou and C/Han. Perhaps mainly compiled in
the Chi-Hsia Academy (late-4th century) in
part from older materials.
Attrib. Kuan Chung 管仲.
Partial trs. Haloun (2, 5); Than Po-Fu et al. (1);
Rickett (1, 3).
Kuang Shih Lei Fu 廣事類賦
Extended Rhyming Encyclopaedia.
Sung, Extended in early Chhng, +1699.
Orig. author Wu Shu 吳絳, continued by
Hua Hsi-Min 華希閔.
Kuang Ts'ung Hsin Yu 廣東新語.
New Description of Kwangtung Province.
Chhng, late +17th century.
Chhü Ta-Ch'ien 崔大均.
Kuang Yu 慶雅
Enlargement of the Erh Yu, Literary Exposition
[Dictionary].
San Kuo (Wei) +230.
Chang I 張儀.
Kuang Yu Su Ching 廣雅疏證
Correct Text of the Enlargement of the Erh Yu,
with Annotations and Amplifications.
Chhng, +1796.
Wang Nien-Sun 王念孫.
Kuang Yan 慶顏
Revision and Enlargement of the Dictionary of
Characters arranged according to their Sounds when
Split [rhyming phonetic dictionary, based on,
and including, the Chhih Yün and the Thang Yün, q.v.).

Sung, +1011.
Ch'hên Phêng-Nien 陳彭年.
Chhiu Yung, et al. 丘歎.
Teng & Biggerstaff (1) p. 203.
Kwei Hâi Yû Hêng Chih 在海衡志.
Topography and Products of the Southern Provinces.
Sung, +1175.
Fan Chêng-Tâ 范成大.
Kuéi Ku Chüi 鬼谷子.
Book of the Devil Valley Master.
Chou, 4th century (perhaps partly Han or later).
Writer unknown; possibly Su Chhin or some other member of the School of Politicians (Tsung-Hêng Chia).

Kukho Orye-ô 龜朝五禮儀.
Instruments for the Five Ceremonies of the (Korean) Court.
Korea (Chosôn) +1474.
Sin Sukju 申叔舟 & Ch'ông Ch'ak 鄭妙
Ct. Trollope (1), p. 21; Courant (1), no. 1047.
Kukho Sô Orye-ô 龜朝疆五禮儀.
A Continuation of the Instruments for the Five Ceremonies of the (Korean) Court.
Korea (Chosôn) +1744.
Ed. Courant (1), no. 1047.

Kukho, Sô Orye-ô Po 龜朝疆五禮儀補.
An Extension of the Continuation of the Instruments for the Five Ceremonies of the (Korean) Court.
Korea (Chosôn), +1751.
Ed. Courant (1), no. 1047.

Kuo Chhao Wên Lai 國朝文類.
Classified Prose of the Present Dynasty (Yüan).
Yüanya. +1340.
ed. Satula (Thien Hsi) 薩都拉 (天祐) &
Su Thien-Ch'io 蘇天爵.
Ct. Frankel (14), p. 119.

Kuo Chhao Wu Li, see Kukho Orye-ô.

Kuo Yê 國語.
Discourses of the (ancient feudal) States.
Late Chou, Chhin and C/Han, containing much material from ancient written records.

Writers unknown.

Lan Chên Tzu 娘真子.
Book of the Truth-through-Indolence Master.
Sung, between +1111 and +1117.
Ma Yung-Ching 马永卿.

Lang Chhi Hûi Thân.
See Liang Chang-Ch'iu (2).

Lang Chhi Tshung Thân.
See Liang Chang-Ch'iu (1).

Lao Tzô 老子.
The Book of Master Lao.
(Alternative title of Tao Tê Ching).

Li Chhi 業記.
[= Hsiao Tai Li Chhi.]
Record of Rites [compiled by Tai the Younger]
(cf. Ta, Tai, Li Chhi).
Acr. C/Han, c. -70/50, but really H/Han,

between +80 and +105, though the earliest pieces included may date from the time of the
Anelets (c. -455/-450).
Attrib. ed. Tai Shêng 費聖.
Actual ed. Tshao Pao 鄭褒.
Tr. Lege (7); Courveur (3); R. Wilhelm (6).
Yin-Tê Index, no. 27.

Li Chi Chhu 業記注疏.
Record of Rites, with assembled Commentaries.
Text C/Han, commentaries of all periods.
Ed. Juan Yüan (1816) 黃元.

Li Shaw Pen 無封筆.
Measuring the Ocean with a Calabash-Ladle
[titled taken from a diatribe against narrow-minded views in the biography of Tung-fang
Shuo in CHS].
Chhing c. +1799.

Li Wei Kung Ping Fa 業衛公兵法.
The Art of War by Li, Duke of Wei.
Attributed to Thang, ca +660.
Attributed to Li Ching 黎靜.

Li Wei Kung Wên Tâi 業衛公問對.
The Answers of Li, Duke of Wei (Li Ching 黎靜), to Questions (of the emperor Thang
Thai Tsung) (on the Art of War).
Alternative title of Li Wei Kung Ping Fa q.v.
Supposedly Thang, but more probably
produced in the Sung, +11th century.
Writer unknown.
Perhaps composed by Juan I 院逸.

Liang Shu 倫書.
History of the Liang Dynasty [+502 to +556]
Thang, +629.

Yüa Chha 章淹 and his son Yào Ssu-Lien 姚思亷.

For translations of passages see the index of
Frankel (1).

Liao Shih 列史.
History of the Liao (Chhitān) [+916 to +1125].
Yüan, +1343 to +1345.
Tho-Thô (Toktaga) 脫貌 & Ou-yang Hsiian 欧陽玄

Partial tr. Wartfogel, Féng Chia-Shêng et al.
Yin-Tê Index, no. 35.

Lîh Huen Chuan 列仙傳.
Lives of Famous Immortals (Cf. Shên Hsien Chuan).

Chin, +3rd or +4th century, though certain parts date from -33 and shortly after +167.
Attrib. Liu Hsiang 劉向.
Tr. Kaltenmark (2).

Lîh Khoa Chit Chuan 列國志傳.
Stories of the Famous Countries of Old.
Yüan or Ming.
Author unknown.
See Liu Tshun-Jên (6), pp. 76ff.

Lîh Nû Chuan 列女傳.
Lives of Celebrated Women.
Date uncertain, nucleus probably Han.
Attrib. Liu Hsiang 劉向.

Lîh Ping Shâ Chii 立兵實記.
BIBLIOGRAPHY A

Treatise on Military Training.
Ming, +1568, pr. +1571, often repr.
Chhi Chi-Kuang 徐光光.
Lien Ping Shih Chi Tso Chi 簾兵實記綏集
Miscellaneous Records concerning Military
Training (and Equipment) [the addendum to
Lien Ping Shih Chi, q.v. in 6 chs. following the 9
chs. of the main work.]
Ming, +1568, pr. +1571.
Chhi Chi-Kuang 徐光光.
Ling Wai Tsa 聖外代答
Information on What is Beyond the Passes (lit. a
book in lieu of individual replies to questions
from friends).
Ming, +1178.
Chou Chü-Fei 周去非.
Liu Chên Chu Wên Hsiên 六臣註文選
Six Subjects' Commentary to the Literary
Anthology.
Chou (c. +290).
Mêng K ho 孟軻.
Tr. Legge (3); Lyall (1), etc.
Ling, +1646, completed +1736 first
pr. +1739.
Chang Ting-Yü 張廷玉 et al.
Mêng Shih Kao 明史稿
Draft Ming History.
Ching, presented to the emperor +1723.
Mêng Shih 朋史
Mêng Shih Kao 明史稿
Draft Ming History.
Ching, presented to the emperor +1723.
Mêng Shih Kao 明史稿
Draft Ming History.
Ching, presented to the emperor +1723.
Mêng Shih L u 明實錄
Veritable Records of the Ming Dynasty.
Ming, Collected early +17th century.
Ode.
Lîu Yin 劉寅.
Liu Thao 六老
The Six Quivers (Treatise on the Art of War).
Ming, 1371.
Liu Ying 劉榮.
Liu Thao Chêh Chêh 六韜直解
Direct Explanations of the Liu Thao Six Quivers.
Ming, 1371.
Liu Ying 劉寅.
Liu Thao Chêh Chêh 六韜直解
Direct Explanations of the Six Quivers.
Ed. and commentary Liu Yin (Ming).
Kambun Taikied. 漢文大系 1912 v. 13 rpt
1975 Tokyo Fuzambô.
Lo-Yang Chihheh Lan Chi 路陽伽藍記
(or Loyang Ka-Lan Chi, Šeng ka-lan transliterating
songharama).
Description of the Buddhist Temples and
Monasteries at Loyang.
N/L, p. c. +547.
Wang Yi-T'ung [Wang I-Thung]. A Record of
Buddhist Monasteries in Lo-yang. Princeton
Yang Hsiao-Chih 哲街之.
Lû Shih Chihhsun Chhiu 吕氏春秋
Master Lu's Spring and Autumn Annals
[compendium of natural philosophy].
Ming, -239.
Written by the group of scholars gathered by Lû
Pu-Wei 吕不韋.
Tr. R. Wilhelm (3).
Chung-Fa Index, no. 2.
Lun Heng 綾衡
Discourses Weighed in the Balance.
Ching, -670.
Li Yen-Shou 李延壽.
For translation of passages see the index of
Frankel (1).
Lun Shih Yin I 毛詩音義
Phonological and Semantic Glosses on the Mao
Odes.
Li Tê-Ming (556-627) 陸德明.
Mêng Chhi Pi T han 夢溪筆譯
Dream Pool Essays.
Sung, +1085; last supplement dated +1091.
Shên Kua 沈括.
Ed. Hu Tao-Chîng (1); cf. Holzman (1).
Mêng Long Lu 夢梁錄
Dreaming of the Capital while the Rice is
Cooking [description of Hangchow towards
the end of the Sung].
Sung, +1175.
Wu Tzu-Mu 吴自牧.
Mêng Tzu 孟子
The Book of Master Mêng (Mencius).
Mêng, c. -290.
Mêng K ho 孟軻.
Tr. Legge (3); Lyall (1), etc.
Yin-Tê Index, no. (suppl.) 17.
Mi Pên Ping Fa 秘本兵法
Secret Book on the Art of War.
Alternative title of San Shih Liu Chi, q.v.
Mêng Shih Mêng 史明史
History of the Ming Dynasty [+1368 to
+1644].
Ching, begun +1646, completed +1736 first
pr. +1739.
Chang Ting-Yû 張廷玉 et al.
Mêng Shih Kao 明史稿
Draft Ming History.
Ching, presented to the emperor +1723.
Wan Su-Thung 溫斯同, ed. Wang Hung-
Hsû 王鴻緖.
Mêng Shih L u 明實錄
Veritable Records of the Ming Dynasty.
Ming, Collected early +17th century.
Official compilations.
Mêng Shih Kao 明史稿
Draft Ming History.
Mêng, presented to the emperor +1723.
Wan Su-Thung 溫斯同, ed. Wang Hung-
Hsû 王鴻緖.
Yin-Tê Index, no. (suppl.) 21.
TT/1162.
Wen Hu Chên Ching 南華真經
See Chüang Tzu.
Wen Shih 南史
History of the Southern Dynasties [San Pei
Chiao period. +420 to +589].
Chang, c. +670.
Li Yen-Shou 李延壽.
For translation of passages see the index of
Frankel (1).
Pei Chiang Chuan 百將傳
Memoirs of a Hundred Generals.
Mêng, +1175.
Wang Yü 張禹.
Pao Pe T'hêh Po 管子厚坡
Chhi Ke 詹克.
San Liu Chih T'ao San Shih Liu Chi 南史 Liu Chi
Pha Chiu 無初.
San Shih Liu Chi 南史 Liu Chi
Yen Shou Chi 任少奇.
Pao Pe T'hêh Po 管子厚坡
Chhi Ke 詹克.
San Liu Chih T'ao San Shih Liu Chi 南史 Liu Chi
Pha Chiu 無初.
San Shih Liu Chi 南史 Liu Chi
Yen Shou Chi 任少奇.
Pao Pe T'hêh Po 管子厚坡
Chhi Ke 詹克.
BIBLIOGRAPHY A

Pan Phu Tšu 袍鐠子 (or_朴子).
Book of the Preservation-of-Solidarity Master.
Chin, early +4th century, probably c. +320.
Ko Hung 葛洪.
Partial trs. Feitel (1, 2); Wu & Davis (2), Full tr.
Wan (5), *Nü Phien* chs. only.

Pai Chi Shu 北齊書.
History of the Northern Chhi Dynasty [+550 to +577].
Thang, +640.
Li Té-Lin 李德林, and his son Li Pai-Yao 李白曜.
A few chs. tr. Pfizmaier (60).
For translations of passages see the index of
Frankel (1).

Pai Thang Shu Chuan 北堂書綱.
Book Records of the Northern Hall
[encyclopaedia].
Thang, c. +650.
Yü Shih-Nan 虞世南.
Pi-Li Tsu Tshun 碧里錦春.
Miscellaneous Records of Pi-li. Ming.
Tung Han-Yang 童漢陽.
Piao I Lu 表異錄.
Notices of Strange Things.
Ming.
Wang Chih-Chien 王志堅.
Po Kuo Thu Lu 博古圖錄.
See Hsüan-Ho Po Kuo Thu Lu.
Po Wu Chih 博物志.
Record of the Investigation of Things. (Cf. Hsü
Po Wu Chih.)
Chin, c. +290 (begun about +270).
Chang Hua 張華.

San Kuo Chih 三國志.
History of the Three Kingdoms [+220 +280].
Chin, c. +290.
Chihén Shou 陳壽.
Yin-Té Index, no. 33.
For translations of passages see the index of
Frankel (1).

San Kuo Chih Ten T 磚圈志演義.
The Romance of the Three Kingdoms [novel].
Yüan, finished c. +1370, first known edition
+1494.
Lo Kuan-Chung 羅貫中.
Text revised and considerably changed
c. +1690 by Mao Tsung-Kang 毛宗崗.
Tr. Brewitt-Taylor (1) Roberts (1).

San Lu Ixh 三略.
The Three Stratagems
Probably L/Sung ca. +5th.
Attrib. Huang Shih Kung 黃石公.
Writer unknown.

San Shih Liu Chi 三十六計.
The Thirty-Six Stratagems.
Ascr. L/Sung ca. +430.
Attrib. Than Tao-Chhi 壯道齋.

San Tshai Thu Hui 三才圖會.
Universal Encyclopedia.
Ming, +1609.
Wang Chhi 王圻.

Shang Chün Shu 商君書.
Book of the Lord Shang.
Chou +4th or +3rd century.
Tr. Duyvendak (3).

Shasha Ruiju Kookizikai 射書類聚圖解.
Classified Collection of Facts about Archery
taken from (Chinese) Books and translated
into Japanese.
Japan (posthumous) +1789.

Shí Ching 射經.
Manual of Shooting.

Shên Chí Chih Ti Thai Po Yin Ching 神鑑制敵太白
陰經.
Secret Contrivances for the Defeat of Enemies;
the Manual of the White Planet.
Full title of *Tha Po Yin Ching*, q.v.

Shih Chi 史記.
Historical Records [or perhaps better: Memoirs
of the Historiographer (-Royal); down to
−99].
C/Han. c. −90 (first pr. c. +1000).
Ssu-ma Chhiên 司馬遷, and his father
Ssu-ma Than 司馬談.
Partial trs. Chavannes (1); Pfizmaier (13−36);
Hirth (2); Wu Khang (1), Swann (1), Burton
Watson (1) etc.
Yin-Té Index, no. 40.

Shih Ming 習名.
Expositor of Names.
Early +2nd century.
Liu Hsi 劉熙.

Shih Pén, PaChung 世本八種.
Book of Origins, Eight Versions [imperial
genealogies, family names, legendary
inventors, etc.].
Han (incorporating Chou material) −2nd
century.
Annotated by Sung Chung 宋衷.
(H/Sung.)

Shih Shus Hsüen Yü 世說新語.
New Discourses on the Talk of the Times [notes
of minor incidents from Han to Chin].
Commentary by Liu Hsin 劉峻 (Liang)
L/Sung: +5th century.
Liu I-Chhing 劉義慶.
Tr. Mather (3).
BIBLIOGRAPHY

Shih Tzu 子

The Book of Master Shih.
Acer. Chou, -4th century; probably +3rd or +4th century.
Attrib. Shih Chiao 子佼

Shih Wu Chi Yuen 事物紀原
Records of the Origins of Affairs and Things.
Sung ca. +1085.
Kao Chêng 高承

Shih Wu Chi Yuen Chi Lei 事物紀原集類
Sung.
Kao Chêng 高承 (fl. 1087-1085).

Shou Chêng Chu Ming Shu 守城救命書
On Saving the Situation by the Successful
Defence of Cities.
Ming +1607.
Liu Khun 呂坤.

Shou Chêng Lu 守城錄
Guide to the Defence of Cities [lessons of the
sieges of Tê-An in Hupei, +1127 / 1132].
Sung, ca. +1140 and +1193 (combined in
+1225).
Chên Kuei 陳规 & Thang Tao 湯藻.

Shu Ching 書經
Historical Classic or Book of Documents.
The 29 'Chin Wên' chapters mainly Chou (a
few pieces possibly Shang); the 21 'Ku Wên'
chapters a 'forgey' by Mei Tsê 梅槤, c.
+320, using fragments of genuine antiquity.
Of the former, 13 are considered to go back to
the -10th century, 10 to the -8th, and 6 not
before the -5th. Some scholars accept only
16 or 17 as pre-Confucian.
Writers unknown.
See Creel (4).
Tr. Medhurst (1); Legge (1, 10); Karlsgren (12).

Shu Ching Thu Shuo 書經疏說
The Historical Classic with Illustrations. [published
by imperial order].
Chêng, 1905.
Ed. Sun Chia-Nai 孫家鼐 et al.

Shu Hui Chê Nen 書經指南
The Literary South-Pointer [guide to style in
letter-writing, and to technical terms].
Sung, +1126.
Jên Kuang 任廣.

Shu Chan I Hsing Lun 水戰議詳論
Advisory Discourse on Naval Warfare.
Ming, late +16th century, before +1586.
Wang Ho-Ming 王錫鳴.

Shui Chêng Chu 水憲注
Commentary on the Waterways Classic
[geographical accounts greatly extended].
N/Wei, late +5th/early +6th century.
Li Tao-Yian 雺遒元.

Shui Hsü Chao 水疏傳
Stories of the River Banks [novel = 'All Men
are Brothers' and 'Water Margin'].
Ming, first collected c. +1588, but derived from
older plays and stories. Oldest extant 100-ch.
version, +1589, a reprint of an original
earlier than +1550. Oldest extant 120-ch.
version, +1614.
Acer. Shih Nai-An 施耐庵.
Tr. Buck (1); Jackson (1).

Shu Fu 諸邪
Florilegium of (Unofficial) Literature.
Yian, c. +1368.
Ed. Thao Tsung-I 陶宗儀.
See Ching Phei-Yian (1); des Rotours (4), p. 43.

Shuo Yo Chhien Chuan 説岳全傳
The Complete Story of General Yo (Fei), (of the
Sung Dynasty, +12th cent.).
(Novel)
Ming ca. +1550.
Chhien Tshai 章彩.

Shuo Wên Chhih Tzu 説文解字
Analytical Dictionary of Characters (lit.
Explanations of Simple Characters and
Analyses of Composite Ones).
H/Han +21.
Hsi Shên 釋慎.

Shuo Wên Thang Hsin Ting Sheng, see Chu Chhin-
Shêng (1).

Shuo Yuan 説苑
Garden of Discourses.
Han, c. -20.
Liu Hsiang 劉向.

Shu Chiao Wên Chien Lu 世朝間錄
Record of Things Seen and Heard at Four
Imperial Courts.
Ming, early +13th century.
Yeh Shao-Ong 葉紹翁.

Shu-ma Fa 司馬法
The Marshal's Art of War.
Chou prob. -5th, but the present text may date
from the +5th or +6th century.
Atrib. Shu-ma Jang-Chû 司馬穰苴.

Shu-ma Fa Chhi Chhê 司馬法直解
Direct Explanations of the Shu-ma Fa.
Ming, 1371.
Liu Yin 劉寅.

Sui Shu 隋書
History of the Sui Dynasty [+581 to +617].
Thang, +636 (annals and biographies); +656
(monographs and bibliography).
Wei Chêng 翁澤 et al.

Sun Pin Ping Fa 孫臥兵法
Sun Pin's Art of War.
Sun Pin's Art of War. Chou (Chhi) ca. -235.
Sun Pin 孫臮.

Sun Pin Ping Fa 孫臮兵法
Already lost in antiquity, but now recovered
from a tomb at Silver-sparrows Mountain,
near Lin-I in Shantung.
See Anon. (210).

Sun Tzu Ping Fa 孫子兵法
Master Sun's Art of War.
Chou (Wu) early +5th.
Sun Wu 孫武.

Sun Tzu Shih I Chu Chhê 孫子十一家註
Eleven Commentaries on the Sun Tzu Ping Fa
(Master Sun's Art of War).
Ming ca. +12th.
BIBLIOGRAPHY A

Yin-Tê Index, no. 25.
Thang Liu Tien 唐大典
Institutes of the Thang Dynasty (lit.
Administrative Regulations of the Six
Ministries of the Thang).
Thang, +738 or +739.
ed.Li Lin-Fu 李林甫.

Thang Yin 唐韻
Thang Dictionary of Characters arranged
according to their Sounds [rhyming phonetic
dictionary based on, and including, the Chhiêh
Yun, q.v.].
Thang, +677, revised and republished +751.
Chhang-sun No-Yen (+7th) 長孫納言.
& Sun Nien (+8th) 孫儆.
Now extant only within the Kuang Yin, q.v.

Thao Chi Chi Chin Lu 陶齋吉全録
See Tuan Fang (1).

Thien Kang Khai Wu 天工開物
The Exploitation of the Works of Nature.
Ming, +1637.

Sung Yung-Hsing 宋應星.
Tr. Sun Jen I-Tu & Sun Hsiêh-Chuan (1).

Thu Shu Chi Chêng 圖書集成
Imperial Encyclopaedia.
Chhing, +1726.
Ed. Chhên Meng-Lei 陳夢雷 et al.
Index by L. Giles (2).

Thang Chên Shih Wên 通鑑釋文
Explanation of Passages in the Comprehensive
Mirror (of History, for Aid in Government).
Sung ca. +1090.
Shin Chao 史炤.

Thang Su Wên 通俗文
Commonly Used Synonyms.
Hi/Han, +180.
Fu Chhien 服虔.

THSF, ch. 61.

Thang Tien 通典
Comprehensive Institutes [a reservoir of source
material on political and social history]
c. +812 (events down to +801);
Embodying the earlier Chêng Tien of Liu Chih.
Tu Yu 杜佑.
Teng & Biggerstaff (1) p. 148.

Tsao Chia Fa 造甲法
Treatise on Armour-Making.
Sung ca. +1150.
Writer unknown.
Now extant only in quotations.

Tsao Shên Pi Kung Fa 造神臂弓法
Treatise on the Making of the Strong Bow.
Sung ca. +1150.
Writer unknown.
Now extant only in quotations.

Thang Chih Phien 倉頡篇
Fascicle of Thang Chieh.
Attrib. to Li Ssu, prime minister of the First
Emperor of China, and named after Thang
Chieh, an assistant of Huang Ti (the Yellow
Emperor), who created writing after
observing the tracks of wild beasts and birds.
BIBLIOGRAPHY A

Chhin or early C/Han.
Chhin, preface dated 1785.
Sun Hsing-Yen 欣行
Tsh Fu Yian Kii 姿凡元基
Collection of Material on the Lives of Emperor and Ministers [lit. (Lessons of the Archives, (the True) Scapulimancy), a governmental ethical and political encyclopaedia.]
Commissioned +1005.
Sung, +1013.
Ed. Wang Chhin-Jo 王欽若 and Yang I 杨德.
Cf. des Rotours (2), p. 91.

Tsu Chuan 唐傳
Master Tso Chhiu-Ming’s Enlargement of the Chhuan Chhin (Spring and Autumn Annals) [dealing with the period -722 to -433].
Late Chou, compiled between -430 and -250, but with additions and changes by Confucian Scholars of the Chhin and Han, especially Liu Hsin. Greatest of the three commentators on the Chhuan Chhiu, the others being the Kung Yang Chuan and the Ku Liang Chuan but, unlike them, probably originally itself an independent book of history.
Attrib. Tso Chhiu-Ming 左邱明
See Karlgren (8); Maspero (1); Chihi Ssu-Ho (1); Wu Khaung (1); Wu Shih-Chhang (1); Van der Loon (1); Eberhard, Müller & Henseling (1).
Tr. Couvreur (1); Legge (11); Pfizmaier (1-12).
Index by Fraser & Lockhart (1).

Tu Hsing Tsu Chhi 處懷字志
Miscellaneous Records of the Lone Watcher.
Sung, +1176.
Tseng Min-Hsing 曾敏行.

Tu Shih Ping Lueh 銘史兵略
Accounts of Battles in the Official Histories.
See Hu Lin-I (1).

Tung Hsi Yang Kiao 東西洋考
Studies on the Oceans East and West.
Ming, +1618.
Chang Hsieh 張縉

Tung Kuan Han Chi 東觀漢紀
Han Records from the Tung Kuan [library].
H/Han ca. 100.
Liu Chên 劉珍

Tung-Pho Chih Lueh 桐坡志林
Journal and Miscellany of Su Tung-Pho
[compiled while in exile in Hainan].
Sung, +1097 10 +1101.
Su Tung-Pho 蘇東坡
Tr. Yang Hsien-Yi (1).

Tch Lin Hai Tsho 检林海錯
Sea of Poetical Pieces.
Ming.
Hsia Shu-Fang 夏樹芳.

Tsu Chih Tung Chien 論治通鑑
Comprehensive Mirror (of History) for Aid in Government [-403 + 1059].
Sung, begun +1065, completed +1084.
Ssu-ma Kuang 司馬光.
Cf. des Rotours (2), p. 74; Pulleyblank (7).

A few chs. tr. Fang Chih-Thung (1).
Tsu Chih Tung Chien Pien Wu 論治通鑑補.
Correction of Errors in the Comprehensive Mirror (of History) for Aid in Government.
Sung & Yuan ca. +1275.
Hu San-Hsing 胡三省.

Wakan Sayo 和漢船用集.
Collected Studies on the Ships used by the Japanese and Chinese.
Japan, +1776 (author’s preface +1761).
Kanazawa Kanemitsu 金澤兼光.
(repr. AKeK之 vol. 12).

Wang Ping 王兵
The King’s Soldiers.
Han.
Writer unknown.
One of the books discovered written on bamboo slips at Lin-I (Silver-sparrows Mt) in 1972.

We Kung Ping Fu Chi P’in 衛公兵法輯本
Military Treatise of (Li) Wei-Kung.
Thang +7th.
Li Ching 李靖, fragments collected by Wang Tsung-I 汪宗沂 (Chhing).

Wei Liao Tzu 尉缭子
Master Wei Liao’s (Treatise on the Art of War). Chou (Wei or Chhin) -4th or -3rd.
Wei Liao 尉繆.

Wei Liao Tzu Chih Ch’ieh 尉缭子真解
Direct Explanations of the Wei Liao Tzu.
Ming, +1371.
Liu Yin 劉寅.

Wei Ling 令略.
Compendium of Non-Classical Masters.
Sung, +11th century (end), c. +1190.
Kao Ssu-Sun 高似孫.

Wei Shih Chih Chhin 魏氏(或世)春秋.
Spring and Autumn Annals of the (San Kuo) Wei Dynasty.
Chin, c. +360.
Sun Sheng 孫盛.

Wen Hsin Tshang Kiao 文獻通考.
Sung, begun perhaps as +1270 and finished +1317, printed +1322.
Ma Tuan-Lin 馬端臨.
Cf. des Rotours (2), p. 87.
A few chs. tr. Julien (2); St Denys (1).

Wen Hsin 文選
General Anthology of Prose and Verse.
Liang, +530.
Ed. Hsiao Thoog (prince of the Liang) 袭煕.
Comm. Li Shan 李善 c. +670.
Tr. von Zach (6).

Wo Ch Ching 握機經.
Perhaps Han ± 1st century.
Wu Pei Chih Lüeh 武備志略
Classified Material from the Treatise on Armament Technology. Ming, c. +1630.
Mao Yuan-切 茅元催.

Wu Pei Chih Sheng Chih 武備制勝志
The Best Designs in Armament Technology. Ming, c. +1628.
Mao Yuan-切 茅元催.
MS. of 1833 in the Cambridge University Library.

Wu Pei Chih Shih 中武備秘書
Confidential Treatise on Armament Technology [a compilation of selections from earlier works on the same subject].
Chhing, late 17th century (repr. +1800).
Shih Tung-Thu 施桐園.

Wu Shih Tshih Lüeh 武備輯略
A Classified Quiverful of Military Tests.
Ming, before +1621.
Wang Wan-Chhing 汪萬頤.

Wu Shu Ta Chhiuan 武書大全
Complete Collection of the Military Books.
Ming, +1636.
Ed. Yin Shang 尹商.

Wu Sun Ping Fa 呂孫兵法
Wu-State Sun's Art of War.
Alternative title for Sun Tzu Ping Fa, q.v.

Wu Tai Hui Yu 五代會要
History of the Administrative Statutes of the Five Dynasties.
Ming, +961.
Wang Phu 王溥.
TSHCC.

Wu Tzou (Ping Fa) 吳子 (兵法)
Master Wu's (Art of War).
Chou -4th century, before -381.
Wu Chi 吳起.

Wu Sun Fa Chou Ping Hua 武王伐紂平話
The Story of King Wu's Expedition against Chou (Hsin, last emperor of Shang).
Yuan, before +1321.
Author unknown.
Tr. Liu Tshun-Fen (6).

Wu Yueh Chhun Chih 武越春秋
Spring and Autumn Annals of the States of Wu and Yueh.
H/Han.
Chao Yeh 趙暬.

Ten Ichih Lin 異色志林
Collected Records of Salt City.
Ming, c. +1630.
Fan Wei-Chheng 樊維城.

Yen Tan Tzu 燕子子.

(Life of) Prince Tan of Yen (d. -226) [an embroidered version of the biography of Ching Kho (q.v.) in _Shih Chi_, ch. 86, but perhaps containing some authentic details not-therein].

Probably H/Han, end of +2nd century.

Writer unknown.

Tr. Chêng Lin (1); H. Franke (11).

Yen Thêh Lun 聞微論.

Discourses on Salt and Iron [record of the debate of -81 on state control of commerce and industry].

_C/Han, c. -80 to -60.

Huan Khuan 恒範.

Partial tr. Gale (1); Gale, Boodberg & Lin (1).

Yin Fu Chêng 隱符經.

The Harmony of the Seen and the Unseen.

Thang, ca. +735 (unless in essence a preserved late Warring States document).

Li Chhuan 李奎.

Ying Tso Fa Shih 道法式.

Treatise on Architectural Methods.

Sung +1097, printed +1103, reprinted +1145.

Li Chieh 李誠.

Yü Chhien Chih Chi Mu 御箭軍器集模.

Imperial Specifications for Army Equipment.

Sung ca. +1150.

Writer unknown.

Now extant only in quotations.

Yü Hsin 玉鏡.

Ocean of Jade [encyclopaedia of quotations].

Sung +1267, but not pr. ill +1337/+1340, or perhaps +1351.

Wang Ying-Lin 王應麟.

Yüan Chhao Chêng Mien Lu 元朝徵姻錄.

See Huang Yuan Chêng Mien Lu.

Yüan Chêng Shih Ta Tien 元經世大典.

Institutions of the Yuan Dynasty.

_Yüan, +1329 to +1331.

Yüan Shih 元史.

History of the Yuan (Mongol) Dynasty (+1206 to +1367).

_Ming, c. +1370.

Sung Liên 宋濂 et al.

_Yin-Tê Index, no. 35.

Yüeh Chhieh Shu 越絕書.

Book on the Destruction of Yüeh.

_C/Han, c. +40.

Yüan Khang 袁康.

Yung-La Ta Tien 永樂大典.

Great Encyclopaedia of the Yong-Lo reign-period [only in manuscript].

Amounting to 22,877 chapters in 11,095 _pîn_, only about 370 being still extant.

_Ming, +1407.

Ed. Hsiêh Chin 解繩.

See Yuan Thung-Lî (1).

Yünnan Chi Wu Chhao Huang 雲南機務鈔黃.

A Study of the Taxation of Industrial operations in Yunnan Province.

_Ming.

Chang Tan 張忱.
B. CHINESE AND JAPANESE BOOKS AND JOURNAL ARTICLES SINCE + 1800

Akiyama Shingo (1) 秋山進午.
Chu-shi ni okeru shiyo no ishitsu to kōsho.
(中図における王陵の成立と郡.
On the Formation of Royal Mausolea and Capitals in China.
Kōkogaku ronkō - Kobayashi Yukio Hakushi Koki Kinen Ronbunshū 考古學論考 - 小林行雄博士記念論文集.
An Chih-Min (3) 安志敏.
Kuo-nü Ch'ing-Chou 'Shang-Ch'ing' ti Ch'i-K'ao Wên-Tsi 關於鄭州商城的幾個問題.
Several Questions Regarding the Shang City at Chéng-Chou.
An Chin-Huai (2) 安金槐.
Shih-Lun Ch'ing-Chou Shang-Tai Ch'ing-Ch'ih Ao-Tu 試論鄭州商城城址 - 城都.
Hypothesis on the Remains of the Shang Dynasty City at Chéng-Chou.
WW, 1961, 4, 5, 73-80.
An Chin-Huai (3) 安金槐.
Hypothesis on the Relationship between the Honan Lung-Shan Culture and the Hsi and Shang Dynasty Cultures.
Chung-Kuo Hsiao-Ku Hsiu-Hsi ti Erh T'çu Ni'm-Hsiu Lung-Wên Ch'i 1982 中國考古學會第二次年會論文集.
An Chin-Huai (4) 安金槐.
Recent Archaeological Finds from Honan's Hsia and Shang Dynasty Cultures (Written for the Fourth Chinese Archaeological Conference).
Anon. (205). ed.
Lo-Yang Ch'ung-Chou Lu 洛陽中州路.
Antiquities (of the Neolithic, Chou and Han periods) discovered during the Rebuilding of Chung-Chou Street at Lo-Yang.
Kuo-Hsiu, Peking, 1939.
Anon. (205). ed.
Ma-Wang-Tui Han-Mu Po-Shu Ku Tê-Thu Lun-Wên Ch'i 馬王堆漢墓帛書古地圖論文集.
Discussion (with Facsimile Reproductions) of the Ancient Maps discovered in the Han Tomb (no. 3) at Ma-Wang-Tui (-168).
Anon. (210).
Yin-Chhüeh-Shan Han-Mu Chu-Chien 'Sun T'ê-Ping Fa' 銀雀山漢墓竹簡「孫子兵法」.
The Versions of 'Master Sun's Art of War' found on Bamboo Ships in a Han Tomb at Silver-sparrows Mountain.
Anon. (211), (ed.)
Ye Mêng-Ku Wên-Wu T'ê-Chuo Hsoen-Chi 鈺蒙古文物資料選集.
Choice Collection of Cultural Objects of Inner Mongolia [album].
Huhehot, 1964.
Anon. (215).
Lin-I Yin-Chhüeh-Shan Han-Mu Chu-Chhu 'Wang Ping' Phênt Shih-Wên 凌恆銀雀山漢墓出土「王兵」篇釋文.
A Transcription of the Han Dynasty Inscribed Bamboo Slips entitled 'the King's Soldiers' unearthed at Silver-sparrows Mountain near Lin-I.
WW, 1976, 12, 36.
Anon. (216).
Yin-Chhüeh-Shan Chin-Pên 'Wei Liao T'êu' Shih-Wên 銀雀山簡本「尉缭子」釋文.
Transcription of the (Han Dynasty) Bamboo Slips Copy of the 'Wei Liao Tzu Book' unearthed at Silver-sparrows Mountain (near Lin-I).
Anon. (217).
Yin-Chhüeh-Shan Chin-Pên 'Wei Liao T'êu' Shih-Wên, Fa Chiao-Chu 銀雀山簡本「尉缭子」釋文附校注.
Transcription of the (Han Dynasty) Bamboo Slips Copy of the 'Wei Liao Tzu Book' unearthed at Silver-sparrows Mountain (near Lin-I), with a comparison of the Different Texts and Commentaries.
Anon. (218).
Chhing-Hai Ta-Thung Hsien Shang-Sun-Chia-Chai J-Li Wu Hao Han-Mu 青海大通縣上孫家寨 — 五號漢墓.
Excavation of the Han Dynasty Tomb No. 115 at Shang-Sun-Chia-Chai in Ta-Thung county, Chhinghai Province.
WW, 1981, 2, 16.

The Early Han Dynasty Bamboo Slips inscribed with the Texts of ‘Master Sun’s Art of War’ and ‘Sun Pin’s Art of War’ found at Lin-I in Shantung; A Report and Transcription.

WW, 1974, 2, 15.

Anon. (209). *Tai-Thung Shang-Sun-Chia Chai Han-Chien Shih-Win* (大通上孫家蔡藏簡釋文).

Transcription of the Han Dynasty (Bamboo) Slips from Shang-Sun-Chia in Tai-Thung County.

Anon. (221). *Wei Liao Tzu Chu-Shih 尉缭子注釋*.

The Text of the ‘Book of Master Wei Liao (on the Art of War)’ with its many Commentaries.

Ed. Military Unit No. 86955 of the Chinese Army (PLA) and Shanghai Normal Teachers’ Training University, Shanghai, 1978.

Anon. (222). *Yin-Chia-Shan Han-Mu Chu-Chien ‘Sun Pin Ping Fa’ 隱山漢墓竹簡‘孫臏兵法’*.

The ‘Art of War of Sun Pin’ found on Bamboo Slips in a Han Tomb at Silver-sparrows Mountain.

Anon. (223). *Sun Pin Chuan; ‘Sun Pin Ping Fa’ Chu-chin 孫臏傳;‘孫臏兵法’今釋*.

A Biography of Sun Pin, and a rendering into Modern Chinese of ‘Sun Pin’s Art of War’.

Shenyang Army Group, Shenyang, 1978.

Anon. (224). *Tso-Than Chhong-Sha Ma-Wang-Tui Han-Mu Po-Shu* (座談長沙王堆漢墓帛書).

An Introduction to the Silk Manuscripts discovered in the Han Tomb at Ma-Wang-Tui near Changsha.

WW, 1974, 9, 45.

Anon. (246). *Chan-Shih Lu-Chi 戰史論集*.

Collected Studies on the History of War.

Anon. (248). *Sun Tzu Ping Fa Hsin-Chu 孫子兵法新注*.

New Annotations on Master Sun’s Art of War.

Anon. (249). *Chin-Kuan Fu-Wu Chih T-chan-Khao 軍官服務之參考*.

A Handbook for Duty Officers [in the Manchurian Armies].

Fengtien, 1926.

Anon. (250). *Lao Tzu Chu-Shih 老子注釋*.

The Tao Te Ching with annotations.

Department of Philosophy, Fudan University, Shanghai, 1977.

Anon. (251). *Ho Thuun 義和團*.

‘The Society of Justice and Harmony’ (the Boxer Rebellion).

Shanghai, 1959, 2 vols.

Archival Materials on the ‘Society of Justice and Harmony’ (the Boxer Rebellion).

Shanghai, 1959, 2 vols.

What all Revolutionary Soldiers ought to Know.

General Staff of the Republican Revolutionary Army, Politics Department, about 1925.

Anon. (254). *Sun Tzu Ping Fa Hsin-Chu 孫子兵法新注*.

Master Sun’s Art of War Simply Explained.

Kwangsi Ch’en Ch’iu, Units 0341 and 7332 co-annotated, Kuilin, 1975.

Anon. (255). *Kuo Kung Thii-Wu Chen Thii-Hsiu Ch’ien 國共特務殷復談*.

What happened During a Truce in the War between Communist and Nationalist.

Hong Kong, 1968.

Anon. (256). *Chin-Jen Pao-Chen 軍人實錄*.

An Excellent Guide for Soldiers.

Peking, 1924.

Anon. (260). *Lo-Yang Chung-Chou Lu Chii-Kuo Ch’’t-Ta Kh’ng 洛陽中山路麴車馬坑*.

Warring States Military Chariot Equipment excavated from the Pits at Chung-Chou Street, Lo-Yang (crossbow-trigger in pl. 3 and fig. 1; finish in fig. 6).

KH, 1974, 3, 177.

Anon. (265). *Hsiu-Chiang Chh’u-Chh’u Wén-Wu 新疆出土文物*.

Anon. (266). *Ming Chii Pi Thanh I-Chh’u 夢溪筆談*.

Interpretative Commentary on the Dream Pool Essays.

Anon. (270). *Han Thang Pi Huo 義勝壁寶*.

Han-Thang Murah.

Per-Ching Wai-Wen Chh’u-Pan Shê, Peking, 1974.

Anon. (274).
Yen-Shih Shih-Hsiang-Kou Fa-Hsien Shang, Tai
Tsao-Chih Ts-Chung I-Chih 總督府鄉鎮發
The Remains of an Early Shang Capital
Discovered at Shih-Hsiang-Kou, Yen-Shih.

Arisaka Shōzō (I) 有坂銳藏,
Hei Enkaku Zōsetsu 兵器沿革圖說.
Illustrated Account of the Development of
Military Weapons.
Tokyo, 1916

Arisaka Shōzō (2) 有坂銳藏,
Hikaki 兵器考.
A Study of Military Armaments, 4 vols.

Chang Chen-Tse (ed.) 張震澤
Sun Pin Ping Fa Chiao-Li 政績兵法校理.
Collation of Sun Pin's Art of War.

Chang Chi-Yun (3) 張其昀
Chung-Kuo Chia-Shih Shih-Lueh 中國軍事
A Concise History of the Chinese Military
System.
Taipei, Taiwan, 1956.

Chang Chi-Yun (4) 張其昀
Chung-Kuo Chia-Shih Lun-Chi 中國軍史論集.
Collected Studies on History of War in China.
Taipei, Taiwan, 1954.

Chang Chi-Yun (5) (ed.) 張其昀
Chung-Wen Ta Tzu-Tsch 中文大辭典.
An Encyclopedic Dictionary of the Chinese

Chang Chhien (I) 張健
Chung-Kuo Ku-Tai Chia-Ming Chan-I Hsiao-Chu
中國古代軍事戰略選注.
Select Annotations on the Famous Battles of
Ancient China.
Shanghai, 1975.

Chang Hung-Yen (I) 張鴻雁.
Chhu-Chhiu Chhun-Kuo Shih-Chhi Chheng-Shih Tsai
Sêk-Hui Fa-Chhun Chhing Ti Tsi-Wei Ho Tso-Tung
春秋戰國時期的軍事與社會發展中的
地位和作用.
The Position and Function of Cities in Social
Development in the Springs and Autumn
and Warring States periods.

Chang Hsi-Khong 張智孔 & Tsao Tseng-
Hsiang (I) 孫增祥.
Tsai Ku Chhuh-Chhing shang 在古戰場上.
On the Ancient Battlefield of China.
Chung-Kuo Chhing-Nien Chhu-Pan Shê,
Peking, 1962.

Chang Hsin-Chêng (I) 張心城.
Wei-Shu Thang-Khao 魏書通考.
A Complete Investigation of the (Ancient and
Mediaeval) Books of Doubtful Authenticity.

Chang Hsing-Hai (I) 張學海.
Chhien-Thân Chhù-Fu Lu-Chhîng ti 'Hsîn-Ta ho
Chhî-Pên Chhü-Chhî 漢魏晉南北朝的年代和
基本格局.
Introduction to the Chronology and Basic
Structure of the City of Lu, Chhîu-Fu.
Wî, 1984, 12, 13–16.

Chang Kuang-Chih (I) 張光貞.
Kuan-yû Chung-Kuo Chhîu-Chhî Chhêng-Shih
Chhî-Khî Kêi-Wên 關於中國早期『城市』
這個概念.
On the concept of the 'city' in early China.

Chang Lo-Shui (I) 張樂水.
Chung-Kuo Chhîn Hî Miao-Chî 中國人的姓氏.
The Unfashionable Stratagems of the Chinese

Chang Nan 張楠 & Wang Jên-Chih (I) ed.
Shen Chhîn, Chung-Hwa Shih-Chhí Chung-Chhîn
Chhîn-Chhîn shang ti Mou-Hsîeh Wên-Tî 試論
曹魏以至西晉時期的某些問題.
Remarks on the Question of the Extent of the
shih-shen (military-agricultural colonies or
settlements) of the Wei State in the Three
Kingdom Period, and of the similar chuan-shen
dynasty.
LSTC, 1936, 9, 29.

Chung Ying-Wên 張映文 and Lü Chhîh-Jung (I)
and Lü Chhîh-Jung.
Shen Khu-Chhîn Chhîn Li-Chhîn Yî Ku-Chhîng
Chhîn Fa-Chhîn Chhîn-Pao 陝西渭南縣李家
窪古城發掘簡報.
Brief Report of the excavations of the remains of
the ancient city at Li-Chhîn-Yî, Chhîng-
Chhîn County, Shênsî.
KAJ, 1988, 1, 47–56.

Chung Ying-Yen (I) 張永言.
Lun Hau I-Hsing ti 'Erh Ta I Su' 論郝懿行的
「爾雅義疏」.
A Discussion of Hao I-Hsing's 'Commentary on
the Erh Ya' (1822).
Abstr. RBS, 1969, B, no. 503.

Chao Chên-Khâi (I) 趙振聲.
Sun Pin Ping Fa, Chhîn Phang Chhîn', Chung
Chhî-Khî Chhêng-I Wên-Tî ti Thun-Thào 「孫臏
兵法，擴隨溶」中幾個城邑問題的探
討.
A Discussion on the Cities and Towns in the
Capturing Chiang Chuan chapter in Sun
Pin's Art of War'
WIV, 1976, 10. 51.
Chao Thieh-Han (r) 趙敬寒
Kuei K'U Tzu Kiao-Pien 鬚谷子考辨
A Study and Analysis of the Kuei K'U Tzu Book
TLTC, 1937, 14, no. 5, 14. no. 6.
Chao Yu-Wen (r) 趙幼文
Tsao-Wei T'ien-Chen Chou Shu-Lun 曹魏屯田
制述論
A Discussion of the thun-thien (military-agricultural colonies or settlements) of the
Wei State (in the Three Kingdoms Period).
LSCY, 1958, 4, 29.
Cheng Chin-To (s) (ed.) 陳振鐙
Ch'iu-Hsuan-Kuo Chi-P'IN Ch'ien-Shih Kung-Chheng chung
Chih-Chou Wen-Wu Chien Lan Thu-Lu 全國基本
建設工程中出土文物展覧圖錄
Illustrated Catalogue of an Exhibition of
Archaeological Objects discovered during the
course of Engineering Operations in the
National Basic Reconstruction Programme.
Exhibition Committee, Peking, 1954.
Cheng Liang-Shu (Tay Lien-Soo) (r) 蕭良樹
Ts'ung-Chen Pu-Shu Wen-Chi 竹簡帛書論
文集
Collected Studies on Bamboo Slips and Writings
on Silk (round in Ancient Tombs).
Chung-Hua, Peking, 1981.
Chi Wen-Fu (r) 詹文蔚
Chung-Kuo Wu-Ta Shu-Hui T'ao-Shu-Hsing
中國古代社會早期性
Chung-Kuo 11. Yu-Li-Chih Ye Fung-Chien-Chih
Fen-Chhi Wen. Thi Lung-Win Hsuan-Chi 中國的
奴隶制與封建制分期問題論文選集
'The Early Maturity of Society in Ancient
China,' article in Select Studies on the
Problem of Period written with regard to
Slavery and Feudalism in China.
Peking, 1956, 68-73.
Chia-Lan-Pho 賈蘭坡, Kai Phei 蔡培, Yu
Yü-Chu 尤玉柱 et. al. (r)
Shansi Chih-Chih Chu-Chih-Chih Shih-Tai I-Chih
Fang-Chih Paou-Kao 山西晉侯晉侯時代
考古發掘報告
Report on the excavation of the paleolithic site
at Chih-Yu, Shansi Province.
Chiang Ch'hen-Ying (r) 姜家英
Chun Yuan Cha Chi 逛園札記
Notes (on the Classics) from the Still Garden.
1829.
Chiang Ch'ien-Shih (r) 蔣介石
Chiang Kai-Shek
Kang-Gan wu Chien-Kuo 抗戰與建國
Fight to Resist and Build Up the Nation.
Min.-Wei Chhu-Phien, Hong Kong, 1939.
Chiang Hsing (r) 蔣聲
'Sun Tzu Ping Fa' Yin-Li 孫子兵法引例
'Master Sun's Art of War' with Examples.
Hong Kong, 1974.
Chin Fa-Ken (s) 金發根
Yung-Chia Lun Hou Pei-Fang ti Hao-Tsu 永嘉
亂後北方的豪族
Wealthy and Powerful Clans of the North after the
Yung-Chia Rebellion.
Chung-Kuo Hsueh-Shu Ch'ü-Tso Chang-Chu
Chin Wei-Hao (r) 金維傑
Ho-Lin-Ko-Eh Tung Han Pi-Hua-Mu Nien-Tai
ti Tso-Ho 何林課東漢墓墓年代的
探索
Exploration of the Dating of the Eastern Han
Tomb Murals, Ho-Lin-Ko-Eh.
WIV, 1974, 3, 47-50.
Ching Phu (r) 晴浦
Yu Chi Yang-Chheng yu Wang-Chheng-Kang I-Chih
與張長興與王長興諸
Yu Dwelling in Yang-Chheng and the Remains of
Wang-Chheng-Kang.
Ching San-Lin (r) 蔣三林
Ching-Chou Ku-Chheng-Chih Shih-Tai Wen Thi
Shang-Chhieh İzmir city site tricks
Discussion of the Problems of Dating the
Remains of the Ancient City Wall, Chêng-
Chou.
Ching San-Lin (r) 蔣三林
Tsai Lu Ching-Chou Ku-Chheng-Chih ti Nien-Tai-
Ta Yang Yü-Pin Tung-Chi 再論鄭州古城
址的年代-王鳴育形附
Another Discussion of the Date of the Remains of
the Ancient City Wall. Chêng-Chou - a
Response to Comrade Yang Yü-Pin.
61-66.
Chou Hsün-Chhu (r) 周德初
Han Fei Tsu Cha-Chi 韓非子札記
Reading Notes on the Han Fei Tzu.
Jen-Min Chhu-P'an Shé, Kiangsu, 1940.
Chou Tso-Mo 周祖慕 (ed.) (r)
Fang Ten Chao-Chien chi Tung-Chien 方言
發變及通傳
Collated Annotation on and General
Examination of the Fang Ten (Regional
Diates).
Pei-Ching Kho-Chu-Chhu Pan Shé, Peking,
Reprint of Pei-Ching Pa Li Ta-Hsüeh
Pei-Ching Han-Hsüeh Yen-Chhu So ed.
1951.
Chou Wei (r) 周薇
Chung-Kuo P'ing-Chhi Shih-Kao 中國兵器
史稿
A Draft History of Chinese Weapons.
Posthumous pub., ed. Kuo Pao-Chih
郭寶楫.
San-Lien, Peking, 1957.
Chu Chih-Hsin (r) 崔載信
Ping li K'ai-Tso yu chii Hsin-Li 兵的改造
與其心理
The Reform of the Army and its Psychology.
Shanghai, 1920, reprints 1926.
BIBLIOGRAPHY B

Hsi-An Pan-Pho – Yuan-Shih Shih-Tsu Kung-Shê
Chu-Lai (Chê) 西安半坡－原始氏族公社聚落遺址.
Pan-Pho, Sian: Remains of the Primitive Clan Communal Village.

Chung-Kuo Kho-Hsiueh-Yuan Khoa-Ku Yen-Chiu
So (4) 中國科學院考古研究所
Hsi-An Pan-Pho 西安半坡.
Pan-Pho, Sian.

Chung-Kuo Kho-Hsiueh-Yuan Khoa-Ku Yen-Chiu
So (5) 中國科學院考古研究所
Shang-Tai Chiang-An Chêng Ming-Tê Mên I-Chih Pho-Chiüeh Chin-Pao 唐代長安城明德門遺址發掘簡報.
Brief Report of the Excavations of the Remains of the Ming-Tê (Bright Virtue) Gate of Tang Dynasty Chang-han Atin.
K.K., 1974. 1, 33-5.

Chung-Kuo Kho-Hsiueh-Yuan Khoa-Ku Yen-Chiu
So Shansi Kung-Tso Tui (I) 中國科學院考古研究所陝西工作隊.
Shansi Hsi-AN Tu-Wang Chêng Tiao-Chha 山西夏縣馬王城調查.
Investigation of King Yii's City in Hsia County, Shansi.

Chung-Kuo Li-Shih Po Wu-Kuan Khoa-Ku Tsu (I) 中國歷史博物館考古組.
Yen Hsiu Tu Chêng Chêng Tao-Chha Po-Kao 營下都城址調查報告.
Investigative Report: Regarding the Remains at Yen Hsiu-Tu.
K.K., 1962. 1. 10-19, 34.

Han Wei Lo-Yang Chêng Pei Wei Chên-Chih Mên I-Chih Po Fa-Chiüeh 漢魏洛陽城北魏建春門遺址的發掘.
The excavation of the remains of the Establishing Spring Gate of the Northern Wei, in the Han Wei city of Lo-Yang.

Chung-Kuo Shê-Hui Kho-Hsiueh-Yuan Khoa-Ku Yen-Chiu-So Lo-Yang Han Wei Ku-Chêng Kung-Tso Tui (I) 中國社會科學院考古研究所洛陽工作隊
Sui Thang Tung-Tu Chêng Chêng Chêng Kuan-Chhî ho Fa-Chiüeh Hsiu-Chi Chêng Chêng Kuan-Chhî ho Fa-Chiüeh 黃河東部都城址的勘探和發掘 續記.
Reconnaissance of the Remains of the Eastern Capitals of the Sui and Tang dynasties.

Yen-Ching Shou-Chhî Chhî Po Kuan Thau ho Fa-Chiüeh 優師商城的初步勘探和
Haneda Akira (1) 羽田明
'Ten Don' Bengi 天朝辨疑
Resolving Doubts about the 'Heavenly Fields'.
T-sh, 1936, 1-6, 33-8 (343-6).

Hao I-Hsing (郝理行)
Erh Ta Tsu 爾雅義疏.
Commentary on the Literary Expositor [with special reference to plant and animal names].
Hakuryo 1937-1925; book first published in 1856, SW probably written prior to 1800. KHCPTS ed. Shanghai, Shang-Wu Yin-Shu Kuan, 1934.
Cf. Chang Yung-Yen (1).

Harada Yoshito 原田明夫 & Komai Kazuchika (1) 廣井和夫.
Shina Koki Zuoka 支那古史圖考.
Chinese Antiquities (Pt 1, Arms and Armour; Pt 2, Vessels (Ships) and Vehicles).
Tōhō Bunka Gakushiku, Tokyo, 1937.

Harada Yoshito 原田明夫, & Tazawa Kingo (1) 田澤金吾.
Rakurō Gakaên Ō-Ku no Fumon 樂浪五官墓的填築.
Tokyo Univ. Tokyo, 1990.

Hayashi Minao (1) 林巳奈夫.
Chōgaku Yin-Shū Jidai no Buki 中国殷周時代的武具.
Chinese Weapons of the Yin (Shang) and Chou Periods.

Hayashi Minao (6) 林巳奈夫.
Kankaïin Bumatsu 漢代的文物.
Cultural Relics of the Han Period.

Hayashi Minao (ed.) (7) 林巳奈夫.
Sengaku Jidai Shitsurudō Bumatsu no Kenkyū 戰國時代出土文物的研究.
Researches on Excavated Relics from the Warring States Period.

Hayashi Minao (8) 林巳奈夫.
Kokan Jidai no Shaba Gyōretsu 後漢時代の車馬行列.
Chariot and Horse Processions of the Later Han Period.

Hino Kaisaburō (1) 四野兼三郎.

Kōban Tōsō Yōgakai no Ichi 羊馬城唐宋用語解の一.
The 'Sheep-Horse Wall': Explanation of a Technical Term of the Thang and Sung Dynasties.
TOSHG, 1934, 3, 97-107.

Hiraoka Takeo (1) 平岡武夫.
Chōnin to Raku-yō 長安と洛陽.
Chang-An and Lo-Yang.

heng-Chou Shih Po-Wu Kuan 鄭州

Cheng-Chou Shang-Tai Ch'eng-Chih Shih-Chiueh Chen-Pao 鄭州商代城址試掘簡報。

Honan Sheng Po-Wu Kuan Hsin-Cheng Kung-Tso Chan Hsin-Cheng Hsien Wen-Hua Kuan (1) 河南省文物研究所新鄭市新鄭縣文化

Ho-Nan Hsin-Cheng Hsien Ku-Ch'eng ti Tsuan ho Shih-Chu 河南省文物研究所新鄭市新鄭城的斷和試掘。

Honan Sheng Wen-Wu Wen-Yen-Chiu So Chou-Khousi-Ch'hiu Wên-Hua Chên-Wu Chi (2) 河南省文物研究所周口地區文化局文物

Ho-Nan Sheng Hwei-Yang Ph'ing-Liang Thai Lung-Shan Wên-Hua Ch'eng-Chih Shih-Chu 河南省淮陽縣南陽市文化

Honan Sheng Wen-Wu Wen-Yen-Chiu Si Chung-Kuo Li-Shih Po-Wu Kuan Kao-Ku Pu (3) 河南省文物研究所中國歷史博物館

T'eng-Feng Wáng-Ch'eng-Kang I-Chih ti Fa-Chüeh

Hopei Sheng Wen-Hua Chii Wên-Wu Kung-Tso Tui (4) 河北省文物局文物工作隊

Ho-Pei I Hsien Yen Hsia-Tu Ku-Ch'üeh Khun-Chhu ho Shih-Chüeh 河北易縣燕下都故城勘察

Hopei Sheng Wen-Hua Chii Wên-Wu Kung-Tso Tui (2) 河北省文物局文物工作隊

Ho-Pei I Hsien Yen Hsia-Tu ti Shih-Liu Hsiao Ma Fa-Chüeh 河北易縣燕下都第十六號墓

Hopei Sheng Wen-Hua Chii Wên-Wu Kung-Tso Tui (3) 河北省文物局文物工作隊

Hopei Sheng Wen-Hua Chii Wên-Wu Kung-Tso Tui (4) 河北省文物局文物工作隊

Yen Hsia-Tu li 22 Hsiao Ma Chüeh Fa-Chüeh Pao Kao 燕下都第22號墓葬發掘簡報

Hopei Sheng Wen-Hua Chii Wên-Wu Kung-Tso Tui (5) 河北省文物局文物工作隊

Yen Hsia-Tu I-Chih Wei Wei Fa-Chüeh Chiu-Kuo Mu T'ang Chüeh 河北易縣燕下都第44號墓發掘簡報

Hopei Sheng Wen-Wu Kuan Li Chhu (1) 河北省文物管理處

Ho-Pei I Chüeh Hsien Hsia-Tu Chü 44 Hao Mu Fa-Chüeh Pao Kao 河北易縣燕下都第44號墓發掘簡報

Hopei Sheng Wen-Wu Kuan Li Chhu (2) 河北省文物管理處

Yen Hsia-Tu I-Chih Chü Chü Mu Li-Tih 河北易縣燕下都發掘簡報

Hopei Sheng Wen-Wu Kuan Li Chhu (3) 河北省文物管理處

Ho-Pei Sheng Ph'ing-Shan Chüeh Hsien Chan-Kuo Shih-Chüeh T'ang-Shan Kuo Mu T'ang Fa-Chüeh Chiu-Kuo 河北易縣燕下都墓葬

Hou Jen-Chih (9) 侯仁之

Li-Shih Ti-Li-Hsi ÷ Li-Lun yu Shih-Chüeh 河北易縣燕下都城址的發掘簡報

The Theory and Practice of Historical Geography.

Hou Ma Shih Khao-Ku Fa-Chüeh Wei Yuan Hui (1) 侯馬市考古領

Hou Ma Niu-Tshun Ku-Ch'eng Nan Tang Chou I-Chih Ma-Chüeh Chiu-Kuo 侯馬牛村古城

Hu Hou-Hsuan (8) 胡厚宣

Chiu-Ku Hsiüeh S'tung Shih Lun-T'ang 甲骨學

Collected Studies on the History of Shang based on Oracle Bones Studies.
BIBLIOGRAPHY B

Ch'eng-Tu, 1944, [vols.]
Hu Lin-l (1) 胡林翼
'Ta Shu Ping Lüeh 漢史略 疏 Accounts of Battles in the Official Histories.
Peking, 1861.
Cf. Lu Ta-Chieh (1), 159.
Hu Tao-Ching (1) 胡道靜
'Meng Chii Pi Than' Chiao-Cheng 「夢溪筆談」校譯.
2 vols.
Shanghai Chhu-Pan Shé, Shanghai, 1955.
Hu Tao-Ching (2) 胡道靜
'Hsin Chiao-Cheng 'Meng Chii Pi Than' 新校正「夢溪筆談」.
New Corrected Edition of the Dream Pool Essays
(with additional annotations).
Chung-Hua Shu-Chu, Peking, 1958.
Huang Ho-Shui-Khu Kung-Ku Chung-Tse Tui (1) 黃河秋羽高客程廷緒
Henan Academy of Sciences.
Ho-Nan Shan Hsin Liu-Chia-Chhu Han-Mu 河南 興縣劉家寨漢墓
Han Dynasty Tombs at Liu-Chia-Chhui, Shan County, Honan.
Huang Phi Hsien Wen-Hua Kuan (1) 黃敏縣文選
Huang Phi Hsien Tsou-Ching-Chhieng I-Chih Tsou-Chha Chien-Paa 黃敏縣作經省調查簡報.
Huang Sheng-Chang (3) 黃盛強
'Ho-Lin-Ko-Erh Han-Mu Pi-Hua Yü Li-Shih Ti-Li Wen-Thi' 何林郭鶴漢墓歷史地理問題
The Han Dynasty Tomb Murals at Ho-Lin-Ko-Erh and Problems of Historical Geography.
WW, 1974, 1, 38–46.
Huang Sheng-Chang (3) 黃盛強
'Tai Lin Ho-Lin-Ko-Erh Han-Mu Pi-Hua ti Ti-Li yü Nien-Tai Wen-Thi - Chien Pheng Ho-Lin-Ko-Erh Han-Mu Pi-Hua 再論何林郭鶴漢墓地理與年代問題 - 於新台何林郭鶴墓
KKYYWW 1982, 1, 94–95.
Huang Sheng-Chang (4) 黃盛強
'Sun Pin Ping Ko Chhun Phong Chhian Phien Shih-Ti 孫膑兵法戰國篇釋地
An Explanation of the place ‘of The Capture of Phang Chuan’ in Sun ‘s Art of War.
Hunan Sheng Wen-Wu Kuan-Li Wei-Yuan Hui (1) 湖南省文物管理委員會
Hu-Nan Ling-Ling Tung-Mên Wai Han-Mu 湖南零陵東門外漢墓清理簡報
Brief Report of the Clearing of the Han Tombs outside the East Gate of Ling-Ling, Hunan.
Hung Hsii-Chhian (4) 洪秀全
Yuan Tao Hsing Shih Hsia 原道覺世經 Teaching on the Genuine Way of Awaking the World.
Hupi Sheng Huang-Shih Shih Po-Wu Kuan, Huang-Kuo Chin-Shu Hsuei-Hui Chhu-Pan Wei-Yuan Hui Pei-Ching, Kang-Tihee Hsuieh-Yuan Yeh-Chin Shih Tsu (1) 湖北省 資料型立報館中國哲學學會出版委員會北京高等鐵學院冶金史系
Thung-Li-Shan - Chung-Kuo Ku Ku Huang Yeh I-Chih 鄉陵山 - 中國古銅冶遺址
Thung-Li-Shan - Ruins of the Ancient Chinese Mines.
Wén-Wu Chhu-Pan Shé, Peking, 1980.
Hupi Sheng Po-Wu Kuan (1) 湖北省博物館
Chhu-Ti Chi-Yan Chheng li Khan-Chha yu Fa-Chieh (shang) 楚都紀南城的勘測與發掘 (上).
Exploration and Excavation of the Chhu Capital, Chi-Nan City (Part One).
Hupi Sheng Po-Wu Kuan (2) 湖北省博物館
Chhu-Ti Chi-Yan Chheng li Khan-Chha yu Fa-Chieh (xia) 楚都紀南城的勘測與發掘 (下).
Exploration and Excavation of the Chhu Capital, Chi-Nan City (Part Two).
Hupi Sheng Po-Wu Kuan (3) 湖北省博物館
Sai Hsin Tseng-Hou I Mu 襄陽曾侯乙墓
The Tomb of Marquis I of Tseng.
Wén-Wu Chhu-Pan Shé, Peking, 1980.
Hupi Sheng Po-Wu Kuan (4) 湖北省博物館
Phan-Lung-Chheng Shang-Tai Erh-Li-Kang Chhi ti Chhing-Thangi Khîn 盤龍城商代二里崑期的青銅器
WW, 1976, 2, 26–41.
Hupi Sheng Po-Wu Kuan 湖北省博物館 & Pei-Ching Ta-Hsueh Khaio-Ku Chuan-Yeh Phan-Lung-Chheng Fa-Chieh Tsu (1) 北京大專考古專業盤龍城發掘隊
Phan-Lung-Chheng I-Chhu-Khao Su-Nien Tu-Thien Yeh Kho-Ku Chh Yao 盤龍城一九七四年度田野考古紀要
Summary of the 1974 Archaeological Season at Phan-Lung-Chheng.
Hsa Nai 夏鼐 & Yin Wei-Chang (7) 殷璋璋

Brief Report of the Clearing of the Eastern Han Tombs at Lei-Thai in Wu-Wei County, Kansu.

WW. 1972, 2, 16-19.

Kansu Chü-Yen Khao-Ku Tui (r) 甘肅局延考古隊

Chü-Yen Han-Tai I-Chi ti Fa-Chüeh hsit Hsin Chü-Tu ti Chen-Tsing Wen-Wu 延考代

Excavation of Han Dynasty Remains and the Newly Excavated Slips, Documents, and Artifacts, Chi-Yen.

WW. 1978, 1, 1-25.

Kansu Sheng Wén-Wu Kung-Tso Tui 甘肅省文物工作隊 & Kansu Sheng Po-Wu Kuan (r) 甘肅省博物館

Han-Chen Yen-Chiu Wen-Chi 漢簡研究文集.

Collected Researches on Han Dynastic Slips.

Kao Chih-Hsi 高至睿 & Liu Lien-Yin 劉連銀 et al. (r)

Ch'ang-Sha Shih Twng-Pei-Chiao Ku Mu-Tsong 長沙市東北郊古墓葬

Kao Min (r) 高敏

Chhin Han Shih-Chhi ti Tung 漢朝時期的夢．

Pots (Thing) of the Chhin and Han Periods.

Chung-Hua Shu-Châ-Pien Chi Pu Yun-Ming 中華書局編輯陳雲

Chin Chên Yen-Chiu 中華書局編輯陳雲

Kao Ming (r) 高明

Lüeh-Lun Chi Hsien Shou-Piao-Chên 一 Hao Mu ti 上湖波改山城鎮—號墓的年代．

Brief Discussion of the Dating of Tomb Number One, Shan-Piao-Chên, Chi-Chiu. KKT. 1962, 4, 21-15.

Kawasaki Takaharu (r) 加藤孝治

Shinbô mi kôru Bokushî gaku – Son Sei'en Bokushî kôhî to Hitsu Gen Bokushîchô 清湘における箋字學—孫世倫箋字

Kho-Ku Yen-Chiu So Lo-Yang Fa-Chüeh Tui (r) 考古研究所洛陽發掘隊

Lo-Yang Chen-Pin Tsung-Chen Chhöung-Chih Fa-Chüeh Pao-Kao 洛陽測量東周城址發掘報告

Kiangsu Shêng Wên-Wu Kuan Li Wei Yuan Hui 江蘇省文物管理委員會

Kiangsu Hsiu-Chou Han-Hua Hsiang-Shih 江蘇徐州漢畫像石．

Han Stone Reliefs from Hsiu-Chou, Kiangsu. Peking, 1959.

Ku Chi-Kuang (r) 蘇獻光

Fu-Ping Chih-Tu Hsiao-Shih 府兵制度考釋．

Studies on the Fu-Ping (Personal Bodyguard) System. Shanghai, 1962.

Ku Chieh-Kang (s) 魯煥剛

Yu Chhîm Hsian-Thung Hsin Shen-Lung Ku-Shih Shu 與親王同先生論古書．

On Ancient History—two letters to Chhien Hsiaan-Thung. KSP. 1968, 1, 59.

Eng. abstr. CIB, 1938, 3, no. 67.

Ku Chieh-Kang (g) 魯煥剛

Chhin Han ti Fang-Shih-yü Ju-Sheng 察漢之方士與儒生．

Taoists and Confucians in the Chhin and Han Epoch. Shanghai, 1957.

Ku Chieh-Kang (va) 魯煥剛

Shih-Lin Tsao-Shih Chhau-Pien 史林雜誌初編.

Ku Chieh-Kang (li) 魯煥剛

Shih-Lin Tsao-Chh 時林雜誌.

Kuang-Chou Shih Wên-Wu Kuan-Li Wei-Yüan Hui 廣州市文物管理委員會 & Kuang-Chou Shih Po-Wu Kuan (r) 廣州市博物館

Kuang-Chou Han-Mu 廣州市墓．

Han Tombs in Kuang-Chou.

Chung-Kuo Chhân-Yeh Khao-Ku Pao-Kao Chi Hsiu-Chou Hsiang-Shih Chuan-Tî Yen-Chhöung Chhö 西漢初秏 registers reports考古學專刊–丁種第二十一號

Peking, Wên-Wu Chhu-Pan Shê, 1981.

Kuo Hu-Shên (r) 郭化生

Tzu-Chihâng Chhö-Tsu – Chüng-Kuo Chhâng-Shih Shih Chuan-Thî Yen-Chhöung Chhö 子城制度–中國城市史專題研究之一．

Kuo Hua-Jo (r) 郭化若

Chîn-I Hsin-Pien 'San Tzu Ping Fa' 今譯新編

孫兵法．

A New Transcription of the 'Art of War of Master Sun' into Modern Chinese.

Jên-Min, Peking, 1957; repr. Chung-Hua, Shanghai, 1964

Jên-Min, Shanghai, 1977.

Kuo Hua-Jo (r) 郭化若

Sun Pên Shih-I Chhö Chhün Sen Tzu, Tîh-Phao Tîhao têng Chhö, Tai-Hsü 宋本「十一家註」孫
BIBLIOGRAPHY B

1. **Shan-Piao-Chên yu Liu-Li-Ko** 山彪鎮與流璃閣
 Shan-Piao-Chên and Liu-Li-Ko.
 Chung-Kuo Kho-Hsueh Yuan Kho-Ku

2. **Kuo Ping-Lien (1) 郭冰淵.**
 Hu-Pei Huang-Phi Yang-Chia-Wan ti Ku I-Chih
 Tiao-Chha 蘭北黃破壊家園的古遺
 Investigation of the Ancient Remains at
 Yang-Chia-Wan, Huang-Phi, Hupei.
 KâKâH, 1938, 1, 56-8.

3. **Kuo Tê-Wei 郭德維 & Chhien Hsien-I (1) 陳賢一.**
 Hu-Pei Huang-Phi Phan-Lung-Chêng Shang-Taï
 I-Chih ho Mu-Tsang 蘭北黃破壊巢城商
 The Remains of an Ancient City, Stone
 Artifacts, and Other Items Discovered
 at Phan-Thu-Chêng, Huang-Phi, Hupei.

4. **Lan Yung-Wei (1) 楊永蔚.**
 Chhun-Chhui Shih-Chhi ti Pu-Ping 春秋時期的
 Infantry in the Springs and Autumn Period.

5. **Lan Shih (1) 蘭石.**
 Han-Tai Ping-Chih chi Han-Chien chung ti Ping-Chih
 漢代兵器及漢簡中的兵制,
 The Military System of the Han Dynasty as
 recorded on Wood and Bamboo Slips.
 ASI/BIH, 1948, 19, 23.

6. **Lao Kan (6) 劉乾.**
 Chu-Yen Han-Chien Khoa-Chêng 居延漢簡
 Textual Criticism of the Han Dynasty Slips from
 Chu-Yen.
 First published 1944. Second ed.
 ASI/BIH, 1959, 3, 31-491.
 Reprinted in Chu-Yen Han-Chien Khoa-Shih chih
 Pu 居延漢簡考釋之部, 中央研究院歷史
 研究院歷史語言研究所 special publication no. 40,

7. **Lao Kan (7) 劉乾.**
 Han Chin Hsi-Chhui Mu-Chiin Hsin-Khao 漢晉
 西漢木簡新考.
 New Study of Wooden Slips from the Western
 Frontier of the Han and the Chin Dynasties.
 Institute of History and Philology, Academia
 Sinica, Monograph Series A, no. 27, Taipei,
 1983.

8. **Lao Kan (8) 劉乾.**
 Studies of Master Sun's Art of War.
 Still published in 1951.
 Sun Tzu Ping Fa Chhui Chtui-Pa Chhui-Pan Shê, Peking.

9. **Kuo Hua-Jo (5) 郭化若.**
 Cheh-Ti Chu-Sun Chhui-Pa Chhui-Pa Chhui-Pa
 The Battle of the Red Cliff.
 ERAMM, 1939, No. 2.

10. **Kuo Hua-Jo (4) 郭化若.**
 Fei-Shui Chhui Chan 領水之戰.
 The Battle at the Fei River.
 ERAMM, 1939, No. 4.

11. **Kuo Hua-Jo (6) 郭化若.**
 Sun Tzu Ping Fa Chhui Chhu-Pa Chhui-Pa 孫子兵
 法之初步研究.
 Preliminary Studies of Master Sun's Art of War.
 Yenan, 1939.
 Also appeared in three instalments in Pa Lu Chhui
 Chhui-Chhui Tlo Chhui 1939, 1; 1939, 2; 1940, 3.

12. **Kuo Hua-Jo (7) 郭化若.**
 Khung-Ming Ping Fa Chhui I-Pa 孔明兵法
 之研究.
 A Comment at 'Chhui-ko Liang's Art of War'.
 Pa Lu Chhui Chhui Chhui Tlo Chhui (part one) 1940,
 no 3; (part two) 1940, no. 4.

13. **Kuo Hua-Jo (8) 郭化若.**
 Shih I Chu-Chu Sun Tzu 十一家注孫子.
 Eleven Commentaries on Sun-Tzu.

14. **Kuo Hua-Jo (9) 郭化若.**
 Khung-Jh Chhui Chhui Chhui I-Chhui Shih-Wen-Thu
 Problems of Tactics in the Guerrilla Resistance
 War against Japan.

15. **Kuo Kêng (1) 郭根.**
 Fu-Chhui Phu-Thien Mu-Lan Phê 楓䑕莆田
 太華陂.
 On the Mu-Lan Dam at Phu-Thien in Fukien
 Province.

16. **Kuo Mo-Jo (2) 郭沫若.**
 Chung-Kuo Ku-Tai Shê-Hui Yen-Chhui 中國古代
 社會研究.
 Studies in Ancient Chinese Society.
 Shanghai, 1930, reprinted 1932.
 For later editions see Kuo (9) (to).

17. **Kuo Mo-Jo (2) 郭沫若.**
 Chung-Tung Shih-Tai 靑銅時代.
 On the Bronze Age in China.

18. **Kuo Mo-Chhui (2) 郭寶勳.**
 Documents of the Han Dynasty on Wooden Slips from Edsin Goli, Part 2: Transliteration and Commentaries.

Lei Hai-Tsung (1) 雷海宗

Chang-Kuo ti Ping 中國的兵

The Historical Development of the Chinese Soldier.

SHKS, 1935, 1, 1.

Eng. abstr. in CIB, 1936, 1, 5 (abstr. no. 12).

Lei Po-Lun (1) 雷伯倫

Chung-Kuo Wen-Hua yu Chung-Kuo ti Ping 中國文化與中國的兵

Chinese Culture and the Soldiers of China.

Li Chih (1) 李肅

'Sun Tzu Ping Fa' Fu-Chin Chung-Wai Yin-Li 「孫子兵法」古今中外引例

Ancient and Modern Examples of ‘Master Sun’s Art of War’ from China and Abroad.

Hong Kong, 1977.

Li Chin (1) 李勤

Shan Chia-Tung Ta-Hsueh Hsi Han Pi Hua Mu 西安交通大學西漢漆書墓

A Western Han Tomb with Mural Paintings in the Grounds of Chiao-Thung University in Sian.

Li Chhun (1) 李埈

‘Thai-Phing Thien-Kuo’ Chh Tchu-Than 太平天国制度初探

Li Fu-Hua (1) 李復華

Shu-Chuan Phi Hanung Hlung-Kuang Kung-Shi Cheh-Tu Chhau-Kuo Chung-Chi 西川郫縣紅光公社出土戰國銅器

Warring States Bronze Implements unearthed in Hlung-Kuang Commune, Phi County, Szechuan.

WW, 1976, 10, 90.

Li I-Yuan 李亦園 & Yang Kuo-Shu (1)

杨國樑

Chung-Kuo-Jen ti Hsing-Kho, Kho-Chi Tsung-He-Hsing ti Thao-Lun 中國人的性格及科學統合性的討論

A Symposium on the Character of the Chinese People: an Interdisciplinary Approach.

Li Ling (1) 李零

Kuan-yü Yin-Chhieh-Shan Chien-Pia ‘Sun Tzu’ Yen-Chu ti Shang-Chhieh — Sun Tzu’s Chu Tzu Shih-Tai Ho Tse-Chi ti Chung-1 關於銀雀山簡本孫子研究的商榷－孫子著作時代和作者的重視

WS, 1979, 7, 23–34.

Li Ling (2) 李零

Yin-Chhiieh-Shan Chien-Pia ‘Sun Tzu’ Chh Chu-Li 銀雀山簡本‘孫子’校譯舉例

Examples of Proofreading the Yin-Chhiieh-Shan Bamboo Slip Edition of Sun-Tzu.

Li Shao (1) 李少一

Shao Piao 謝蔽

Brief Discourse on Trebuchets.

PKCS, 1981, 5, 22, 32 (1912).

Li Tsiu-Tung (1) 李宗桐

Chung-Kuo Ku-Tai Shi-Hsi Shih 中國古代社會史

A Social History of Ancient China.

Taipei, 1983.

Li Tsung-Wu (1) 李宗吾

Huo Hsi Hsiieh 厚黑學

The Theory of the Great Darkness.

Hong Kong, ca. 1971.

Li Tzu-Yao (1) 黎子耀

‘Meng Chhi Pi T'ai Kung Yu Liu Shan Shuo Yuan-Yuan yu I Chh’d – yu Wen T'ien-Chun

Thung-Chhi Shang-Chhiieh 「夢溪筆説」弓有八審觀玉器「易經」－與閩人軍同志寫給

That the Expression ‘The Bowl has Six Advantages’ in the Dream Pool Essay is based originally on the Book of Changes – a consultation with Wen T’ien-Ch’iu.

Li Ya-Nung (3) 李亞農

Hua Chhau yu Tung Chhau 西周與東周

Western Chou and Eastern Chou.

Shanghai, 1956.

Li Yu-Chhun (1) 李遇春

Han Chhng-An Chhng Kho-Ku T'ung-Shu 漢長安考古綜述

Summary of Archaeological Work on the Han City of Chhng-An.

AKYWW, 1981, 1, 123-4, 122.

Li Yu-Jh (1) 李郁之

‘Sun Tzu Ping Fa’ Tung-Ho Yen-Chi 『孫子兵法』綜合研究

A Comprehensive Study of Master Sun’s Art of War.

(written in 1937).

Li Yu-Jh (2) (ed.) 李郁之

Chung-Kuo Ping-Hsueh Ta-Hsi 中國兵學大系

The Main Texts in (the History of) Chinese Military Science.

14 vols.

Taipei, Taiwan, 1937.

Liang Chang-Chhü (1) 梁章鉉

Lang Chi T'ung Thun 棲鶴錄稿

Impressions Collected during Official Travels.

1845.

Liang Chang-Chhü (2) 梁章鉉.
Lang Chi Huai Than 落師南遊
Further Impressions Collected during Official Travels.
c. 1846.
Liang Chhi-Chhao (6) 梁敏超
Ku-Shu Chiu Wei chi chi Xian-Tai 古書真什及
On the Authenticity of Ancient Books and their Probable Datings.
Lectures recorded by Chou Chuan-Ju 周傳儒. Yao Ming-Ta 姚名達 & Wu Chi-Chhang 周長昌.
Chung-Hua Shu-Chii, Peking, 1955, repr. 1957.
Liang Chia-Pin (t) 梁嘉彬
Kuei Ku Tzu Kho 覃谷子考
A Study of the Kuei Ku Tzu Book.
TLTC, 1955, no. 4.
Liang Yuan-Tung (l) 梁業東
Chung-Kuo Ching-Chih She-Hai Shih 中國政治
Political and Social History of China.
Shanghai, 1934, 2 vols.
Lin Piao (t) 林彪
Jen-Min Ch'ang-Ching Sheng-Li Wan-Sui:人民戰
Long Live the Victory of the People's War!
Lin-Tzu Chhui-Chhui Ku-Chheng I-Chih
Po-Wu-Kuan 臨淄區齊國故城遺址博物
Fia-Ku Kuo Ku-Chheng ti Phai-Shu Hsi-Tung
The Drainage System of the Ancient City of
Lin-Tzu, State of Chhi.
KK, 1988, 9, 784-7.
Liu Chan-Chheng 劉占成
‘Chheng-Kung-Chhii chi chhi Yung-Fa’承弓
Crossbow Fittings.
WP, 1988, 3, 75-6.
Liu Chhi-l (t) 劉智
‘Ao-Tu’ Chhui 劉都質疑
Queries Regarding 'Ao-Tu'.
Liu Chih-Phing (t) 劉致平
Chung-Kuo Chien-Chhu Lei-Hsiang ho Chhieh-Khau
Types and Structures of Chinese Architecture.
Peking, Chhien-Chhu Kung-Chheng Chhu-Pan Shè, 1957.
Liu Chih-Yiian (t) 劉志遠
Han-Tai Shih-Chang Kho Shuo Tung Han Shih-Chang Hua Hsiung-Chhun 漢代市井考說東
Examination of Han Dynasty Market places - Discussing Tiles Depicting Eastern Han
Market places.
Liu Chin-Tsao 劉鍾藻
Chhing Chhao Hsiu Wen Hsiung Thong Khoao (t)
清朝鍾文獻通考 (一).
Chh'ei-Chiang Ku-Chi Chhu-Pan Shè, 1988.
Liu Chung-Phing (t) 劉仲平
'Ssu-Ma Fa Chi-Chhui Chiu-I 司馬法'今註
The 'Marshal's (Art of War)' rendered into
modern Chinese, with Commentaries and Explanations.
Shang Wu Yin-Shu-Kuan, Taipei, 1975.
Liu Chung-Phing (t) 劉仲平
Wei Liao Tzu Chi-Chhui Chiu-I 尉缭子今
The 'Book of Master Wei Liao (on the Art of War)' rendered into modern Chinese, with
Commentaries and Explanations.
Shang Wu Yin-Shu-Kuan, Taipei, 1975.
Liu Han (t) 劉瀚
Pei Chhia Khi Kho-Can Chhi-Yung 共朝的鍾馬
Northern Dynasties Tomb - Figures of
Armoured Horses and Riders.
KK, 1939, 2, 97.
Liu I-Chhing 劉義慶 & Liu Hsiao-Piao
(ed.) 劉義慶, 劉孝標
Shih-Shuo Hsin-Yu Po 世說新解注
Annotations on "A New Account of Tales of the
World.
Hua-Lieh Chhu-Pan Shè, Taipei, 1968.
Liu Tung-Ya (t) 劉東亞
Hsii-Yen Lin-Ling Hsien Chhing-Ching ti Chiao-Chha 河南酈陵縣古城址的調查
Investigation of the Remain of an Ancient City
in Yen-Ling County, Honan.
Liu Yun-Yu (t) 劉雲友
Chung-Kuo T'ien-Wên Shih shong ti-i ko Chung-Yao 資料 中國天文史上的一個重要
An Important Discovery in the History of
Chinese Astronomy (the star-maps found at
Ma-Yang-Tui near Chhing-Sha).
WW, 1974, 11, 38.
Lo Chh-Wen (3) 羅哲文
Ho-Lin-Ko-Erh Han Mu Pi-Hau chung So-Chhen ti I-Hiht Ku Chheng-Chhu 稱林格羅墓壁畫
Some Ancient Architecture in the Han Tomb
of Lin-I.
WW, 1974, 1, 31-7.
Lo Erh-Kang (3) 羅爾岦
Li-Ting Ping-Chhui 羅賢兵志
The Chinese Troops in the Chhing Dynasty.
Chung-Hua Shu-Chii, Peking, 1984.
Lo Fu-l (t) 羅福標
Lin-I Han-Chien Kt Shu 蘭縉漢簡校疏
A Resumé of the Han Bamboo Slips found at
Lin-I.
WP, 1974, 2, 32.
Lo Tzu-Hsiai (t) 羅子所
Han Wei Le-Tang Chhing-Chhui Kho Shien 漢魏
An examination of the remains of Han and Wei
At-Lang.
CJW, 1988, 2, 63-8.
Lo Yang Po-Wu Kuan (t) 洛陽博物館
Lo Yang Chung-Chhui Lu Han-Kuo Chhui-Ma Khang
BIBLIOGRAPHY B

Ma Nan-Thun (i) 馬南邨; (Teng Tho) (譚拓)
San Shih Liu Chi 三十六計
The Book of the Thirty-six Stratagems.
PWP, 1962, no. 9, 2.
Ma Nan-Thun (2) 馬南邨; (Teng Tho) (譚拓)
Yen-Shan Yeh-Hua 燕山夜話.
Night Stories on Yen Mountain.
Ma Shih-Chiang 馬世昌 (1).
Tung-Huang Hsien Po-Wu-Kuan Tshang 'Hsiang Thu','Chan Yun Chhi Shu' Tshang-Ch'ien —
Tun-Po Ti Wu-Pa Hao Chian-Tou Yen-
Chiu-chih San 敦煌縣博物館藏星圖、
占雲氣書殘卷－敦煌第五窟摩崖子
研究之三.
The 'Star Map' and Damaged Scroll of the Book
'Prognostication from Clouds and Vapours'
Held by the Tun-huang County Museum —
Researches on the Fifty-eighth Scroll in the
"Pei-Ching To Hsiieh Chung-Kuo Chung-Ku-Shih
Tshang H'ung-Hsin 北京大學中國中古
史研究中心, Tun-Huang Thu-Lu-Fan
Wen-Hsien Yen-Chiu Lun-Chi 敦煌吐魯
番文獻研討論集, Chung-Hua Shu-Chii,
Ma Shih-Chih (1) 馬世之.
Kuan-yü Chhun-Chhui Chan-Kuo Chheng ti Than-
Thao 關於春秋戰國的探討.
Inquiries Regarding Cities of the Springs and
Autumns and Warring States Period.
Ma Shih-Chih (2) 馬世之.
Shih-Lun Wo-Kwu Ku-Chheng Hsiang-Chhui ti Chi-Pen
Mo-Shih 試論我國古城形制的基本
模式.
A Preliminary Discussion (Hypothesis) of the
Basic Pattern of the Shape of Ancient Chinese
Cities.
Ma Shih-Chih (3) 馬世之.
Tsai Lun Wo-Kwu Ku-Chheng Hsiang-Chhui ti Chi-Pen
Mo-Shih — Tu Ho Yin-Ao Hsien-Sheng 'Tu Ma
Shih-Chih Hsiang-Sheng Wen Yw-Kan'
Yu-Kan 我國古城形制的基本模式
—讀賀雲鵬先生讀馬世之先生有感
又感.
Another discussion of the basic pattern of the
shape of my country's ancient cities—a
reaction to reading Mr Ho Yuen-Ao's 'A
Reaction to reading Mr Ma Shih-Chih's
article'.
Ma Shih-Chih (4) 馬世之.
Shih-Lun Chheng ti Chhun-Hsieng chi chi Fang-Yu
Chheng-Ning 試論城的出現及其斷階職能.
A Preliminary Discussion of the Appearance of
City Walls and Their Defensive Function.
CTW, 1988, 1, 66-71.
Mao Tse-Tung (1) 毛澤東
Mao Tse-Tung Su-Hsia Chang-Wai 毛澤東思

Ma Hsien-Hsing (1) 馬先醒.
Han-Chen-yu Han-Tai Ch'eng-Shih 漢簡與漢代
城市...
Han Slips and Han Dynasty Cities.
Chien-Tu Shih, Taipei, 1976.
Ma Kuo-Fan (1) 馬國凡.
Chheng Yu 成語.
Proverbs of China.

Lu Tzu-Kuang (1) 魯迅.
Shih Hsia-Hsiang Hua 神話叢話.
Essays on the Myths (of China).
Lu Hsien (1) 魯迅
Chung-Kuo Hsiao-Shuo Shih-Luhs 中國小說
史略.
A Brief History of Chinese Fiction.
Lu Hsien (2) 魯迅.
Tsong Sung Chhuan-Chhi Chi 唐宋傳奇集.
A Collection of Curious Tales from the Tang
and Sung Dynasties.
Wen-Hsiung Ku-Chhi Khan-Hsing Shê, Peking,
(1936), 1938.
Lu Mou-Tê (1) 魯慕齊.
Chung-Kuo Hsia-Ming Hua-Yao Hua-Phao Khaio
中國人發明火藥火器考.
A Study of the Invention of Gunpowder and
Gunpowder Weapons by the Chinese.
CHJ, 1928, 5-1, 1489.
Lu Ta-Chieh (1) 陸達節.
Li-Tai Ping-Shu Mu-Lu 歷代兵法目錄.
A Bibliography of (Chinese) Books on Military
Science [all periods].
Lu Ta-Chieh (2) 陸達節.
Chung-Kuo Ping-Hsiieh Hsien-Tsun Shu-Mu; fe
Li-Tai Ping-Shu K'ai-Lun 中國兵學現存
書目, 前歷代兵書概論.
A Bibliography of Extant Books on Military
Science, with an Appended Essay on this genre
of literature.
Kuang-Chou, 1944, repr. 1949.
Lu Ti (1) 魯地.
'Sun Kun Yen I' Lun-Chi 「三國演義」論集.
Collected Studies on the 'Romance of the Three
Kingdoms'.
Hang-Chou, 1957.
Lu Ti (2) 魯地.
Lun Fei Shui chih Chên 論淝水之戰
On the Battle of the Fei River.
Jen-Xin Chhuh-Pan Shê, Shanghai, 1975.
Lu Ti (3) 魯地.
Lun K'ang-Jih Yu-Chhich Chên 論抗日游擊戰.
The Guerrilla Resistance War Against Japan.
Yenan, 1940.

Ma Hsien-Hsing (1) 馬先醒.
Han-Chen-yu Han-Tai Ch'eng-Shih 漢簡與漢代
城市...
Han Slips and Han Dynasty Cities.
Chien-Tu Shih, Taipei, 1976.
Ma Kuo-Fan (1) 馬國凡.
Chheng Yu 成語.
Proverbs of China.
LONG LIVE MAO TSE-TUNG THOUGHT.
Hong Kong, 1969.

MAO TSE-TUNG (z) 毛泽东.
MAO TSE-TUNG HSIAN-CHI 毛泽东选集.
Selected Works of Mao Tse-Tung

MAO YING-PAI (f) 毛颖白.
"Sun Tai Ping Fa yu Sun Pin Ping Fa" Chien-Chieh
「孙子兵法」與「孫膑兵法」簡介.
A Comparative Study of 'Master Sun's Art of War' and 'Sun Pin's Art of War'.
Hong Kong, 1978.

Matsui, Hitoshi (f) 松井等.
Shina. No to Haseki 支那の砲と拵石.
The History of Catapults and Trebuchets in China.

MÉNG HAO 孟浩, CHIEN HUI 陳慧 & LIU LAI-CHANG (f) 劉來成.
Ho Pei Wu An Wu Chi Ko-Ching Fa-Chieh Chi 北武安午芝古城發掘記.
An Account of Excavations at the Old City of Wu-Chi at Wu-An in Hopei [including
details of iron gearwheels of H/Han date].

KTKH, 1957, 4, 43.

MIKAMI, YOSHIO (z) 三上義夫.
Sôte Chinkin 'Shokukoku' no tasaki ki no Kanetsu-Shageki 宋末的陳規的守城鑿之投石機
の間接射擊.
The Shou Chông Lu (Guide to the Defence of Cities) of Chôsen Kuei of the Sung Dynasty,
and the Use of Trebuchets.

TBCG, 1941, no. 600.

Miu THien-Hua (f) 開天華.
Chîhng-Tu Tien 成語典.
A Dictionary of Proverbs.

MIYAKAWA HISAYUKI (f) 宮川好彦.
Rûkûchô jîdai no mon ni tsuite 六朝時代の
村について.
On Villages of the Six Dynasties Period.

In HANEDA HAKUSHI SHÔJI KUROKI TOSHIKO RÔNÔ
羽田博士頌記念東洋史論叢, 875–912.

TOYOSHI, KEN'YUKAI, 1950. Kyoto rpr. in
MIYAKAWA HISAYUKI Rûkûchô Shû Kenkyû Seiji
Sakak Ben 宮川史研究政治社會篇.

GAKUJUSÔ SHINKÔ KAI, KYÔTO, 1956, 427–71.

MIYAZAKI ICHISADA (f) 宮崎市定.
Chågoku ni okeru Sonsei no Senjitsu 前世の戦争
Hôkai no Ichimnin 中國における村制の
成立古代帝國崩壊の一面.
The Development of the Village System, in
Ancient China; an Aspect of the Breakdown of
Imperial Power.

TSK, 1960, 18, 369.

ABSTR., RBS, 1967, 6, no. 30.

MIYAZAKI ICHISADA (f) 宮崎市定.
Shina Jôgaku no Kigen Isetsu, 支那城郭
の起源異義.
A Different Theory on the Origin and Inner

WALL and OUTER WALL of CHINESE CITIES.
Rekishi to Chirô 历史的地理, 1933, 32–3,

MIYAZAKI ICHISADA (f) 宮崎市定.
Chågoku ni okeru Shuraku Keitai no Hensei ni tsuite
中國における聚落形態の変遷に
ついて.
On Changes in the Shape of Settlements in
China.

MIYAZAKI ICHISADA (f) 宮崎市定.
Chågoku Jôgaku no kigen Isetsu 支那城郭の
起源異義.
A Different Theory of the Origin of Chinese
Cities.
In Ajia Kenkyû, Asianic Studies in Oriental
History, Kyoto University Tôyôshi Kenkyû
kai, 1, 50–65.

MIYAZAKI ICHISADA (f) 宮崎市定.
Kôdai no Rosse no Tôdai no Bôsei 漢代の里制
の唐代と坊制.
The System of Li (Wards) in the Han Dynasty
and the System of Pong (Wards) in the Thang.

NAKA TOSHIKA (f) 那波利貞.
Ushu Ke 建土系.
Researches on the Heads of Wu (villages).
TÔ A Jimbun Gakuhû 東亞人文學誌, 2, 4,
1–69 (467–533); rpr. Shôô 実史, Oct. 1971,
30, 68–104.

NII-MENG-KU Tzu-Chih Chû Po-Wu Kuan 内蒙古自治區博物館 & Nei-MENG-KU Tzu-
Chih Chû Wên-Wu Kung Tso Tui (f) 内蒙古自治區文物工作隊.

Ho-Lin-Ko-Erh Han-Mu Pi-Hua 和林格爾漢
墓壁畫.

Han Tomb Murals at Ho-Lin-Ko-Erh.

Nei-MENG-KU Wên-Wu Kung-Tso Tui 内蒙古文物
工作隊 & Nei-MENG-Ku Po-Wu Kuan (f) 内蒙古博物館.

Ho-Lin-Ko-Erh Fu-Hien I-Tso Chang Yui Tung
Han Pi-Hua Mu 和林格爾發現一座重要的
東漢壁畫墓.

An Important Eastern Han Tomb with Murals
Discovered at Ho-Lin-Ko-Erh.

WW, 1974, 1, 8–23.

ÔBO ŌSAMU (f) 大庭脩.
Kôdai ni okeru Kei ni yoru Shôshin ni tsuite 漢代
における地方による昇進について.
On Promotion Based on Rank in the Han
Dynasty.

TSK, Mar. 1953, 12, 3, 14–28.

ÔBO ŌSAMU (f) 大庭脩.
Zen Kanno Shôgun 前漢の將軍.

TSK, March 1967, 26, no. 4, 68–112.

ÔBO TSUNEKI & KAYAMOTO KAMARÔ
See ÜMEHARA SUEI, ÔBO TSUNEKI &
KAYAMOTO KAMARÔ.

ŌSHIMA TOSHIKAZU (f) 大島利一.
Chågoku Kodai no Shiro ni tsuite 支那古代の城

BIBLIOGRAPHY B 519
Sekino Tadashi, 髙野貞, Yatsui, S., 谷井兼, Kuiyama, S., 林山俊一, Oba, T.,
小倉恒雄, Ogawa, K., 小川敏吉, & Nomori, T. (1) 野守健.
Bibliography B

Shang Chang-Hsi (1) 商景熙

Tch'ao Ku-Ch'eng T'ao-Ch'iu Chi 蕃国故城

An Account of the Investigation of the Ancient City of the State of Tshai.

Shanshi Sheng Khao-Ku Yen-Chiu-So Hou-Ma Kung-Tsao Chan (1) 山西省考古研究所

Shanshi Hou-Ma, Chung-Kuo Ku-Ch'ang-Tshun Ku-Ch'eng 6 Shih-Chueh 山西侯馬晉國遺址

Trial Excavations of the ancient city of Niu-Tshun at the remains of the Ch'in capital, Hou-Ma, Shansi.

Shanshi Sheng Khao-Ku Yen-Chiu-So Hou-Ma Kung-Tsao Chan (2) 山西省考古研究所

Shanshi Hou-Ma, Chung-Wang Ku-Ch'eng 山西侯馬晉國古城

The ancient city of Chi-heng-Wang, Hou-Ma, Shansi.

Shanshi Wên-Kuan-Hui Hou-Ma Kung-Tsao Chan (1) 山西省文物會侯馬工作站.

Shanshi Hou-Ma, P'i-Hsi-Chuang Tung-Chou, Ch'ing-Li 侯馬北西蒼東周遗址的

Shanshi Wên-Kuan-Hui Hou-Ma Kung-Tsao Chan (2) 山西省文物會侯馬工作站.

Hou-Ma Tung-Chou Shih-T'ai Shao-Thao Ta-Ch'ing Fa-Ch'ueh Chi-T'ao 侯馬東周時代陶器

Summary of the Excavation of the Eastern Chou Period Pottery Kilns at Hou-Ma.

Shanshi Wên-Kuan-Hui Hou-Ma Kung-Tsao Chan (3) 山西省文物會侯馬工作站.

Hou-Ma T'ch'uan Tung-Chou Lung Hua Chang Yuan Ma Fa-Ch'ueh Ch'in-Pao 侯馬地區東

Brief Report of the Excavation of Eastern Chou, Western and Eastern Han, Thang, and Yuan

Dynasty Tombs in the Vicinity of Hou-Ma.
Investigation of the Ancient City in the Vicinities of Chao-Khang, Hsiang-Fen, Shansi.
KK, 1953, 10, 544-9.
Shanung Sheng Wen-Wu Khao-Ku Yen-Chiu So (i) 山東省文物考古研究所
Shanung Sheng Wen-Wu Kuan-Li Chhu (i) 山東省文物管理局
KK, 1951, 6, 289-97.
Shensi Chou-Yuen Kao-Ku Tui (i) 陝西省原考古隊.
WW, 1979, 10, 27-36.
KK, 1963, 8, 419-22.
Shensi Sheng Wen-Kuan Hui (i) 陝西省文物會.
Thung-Wan Ch'êng Ch'êng-Chih Khan-Tshe Chi 督遞城址勘查記.
Account of the Survey of the Remains of Thung-Wan Ch'êng.
KK, 1951, 3, 223-32.
Shensi Sheng Yung-Ch'êng Khao-Ku Tui (i) 陝西省雍城考古隊.
KK, 1951, 6, 27-36.
Shen Yang Pu-Tui 'Sun Pin Ping'Fa' Chiu-Shih Tsu (i) 孫蘭部隊 "孫蘭兵法" 注釋及.
Sun Pin Ping'Fa Chiu-Shih 孫蘭兵法注釋.
Annocation and Elucidation of Sun Pin's Art of War.
Liao-Ning Jen-Min Chhu-Pan She, Shen-Yang, 1975.
Shen Yü-Ch'êng 沈玉成 & Fu Hsüan-Tshung (i) 傳統考.
Chung-Ku-Wen Hsiieh Tshun-Khao 中國文學叢考.
A Series of Textual Criticisms of the Middle Ancient Chinese Literary Writings.
BIBLIOGRAPHY B

Shih Chang-Ju (2) 石璋如.

Ho-Nan An-Yang Hou-Kang ti Yin-Mu 河南安阳侯康的殷墟.

Burials of the Yin (Shang) Dynasty at Hou-Kang, Anyang.

Shih Chin-Chung (r) 施進鍾.

Fei Shui To-Chau 飛水大戰.
The Great Battle on the Fei River.
Jén-Min Chhu·Pan Shè, Shanghai, 1976.

Shu Hsin-Chêng and others (1) 舒新城等.

Tzu Hai 諸海.
The Sea of Words [encyclopedia].
Chung-Hua Shu-Chi, Shanghai, 1947.

Shui-Hu-Ti, Chhi Lung-Shih 睡虎地秦簡竹簡整理

Shui-Hu-Ti Chihin-Mu Ch'u-Chien Chêng-Li睡虎地秦簡竹簡整理

Bamboo Slips Discovered in a Ch'ihin Tomb at Shui-Hu-Ti.

Ssu-Chhuan Sheng-Po-Wu Kuan (r) 四川省博物館.

Chheng-Tu Pai-Hua-T'han Chung-Hsiêh Shih-Ho-Mu Fa-Chêh Chi 成都百代潭中十狐墓發掘記.
An Account of the Excavation of Tomb Number Ten, Pai-Tai-Than Middle School, Chhéng-Tu (Chengtu).

Su Pai (r) 蘇白.

Sui Thang Chhäng-An Chêng-ho Lo-Yang 隋唐長安城和洛陽城.
The Cities of Chhäng-An and Lo-Yang in the Sui and Thang dynasties.

Sugimoto Kenji (r) 杉本健司.

Chôgaku Jêgo-Rô Sôritsu Shû (Sakin no Hakktatsuri o Chushin m - 中國城郭成立試論－最近發掘例を中心に)
Preliminary Essay on the Formation of Inner and Outer City Walls in China - Focusing on Examples of the Most Recent Excavations.
Sengoku Jidai Shutsudo Bunbu no Kenkyû 戦國時代出土文物的研究, 147-95, ed.
Hayashi Mino 森田泰夫 (7).

Sui Hsien Lei-Ku-Tun I-Hao-Mu Hhiao-Ku Fa-Chhêch-Tui (r) 隴縣探藪一號墓考古發掘隊.
Hu-Pei Sui Hsien Tsong-Hou I Mu Fa-Chhêch Chên-Puo 晋北縣崔虎一號墓發掘簡報.
Brief Report of the Excavation of the Tomb of Marquis I of Ts'êng, Sui County, Hupei.

Sun Chung-Shan (r) 孫中山.

(Sun Yat-Sen)

Sun Chung-Shan Hsüan-Chi 孫中山選集.
Selected Works of Sun Yat-Sen.
Peking, 1956, 2 vols.

Sun I-Chih (r), ed. 孫一之.
Wu Chung Chi Shu: Jen-Shêng Chêh Chăn-T'ou 武經七書：軍事師中部.
The Military Septuagint; Human Life consists of Combat.
Ku Fang Tung Verzierungen, Aomén (Macao), ca.
1950.

Sun I-Jang (r) 孫炎譟.
Ms T'ou Hsüan-Ku 墨子閻誨.
Establishment of the Text of Ms T'ou.
Shanghai, 1894.

Sun I-Jang (r) 孫炎譟.
Chou Shu Chêh-Pu 周書點補.
Collation and Supplement of the Book of Chou.
Jun-An, 1900.

Sun Tzu Chou (r) 孫次舟.
"Ms T'ou Pê-Chêng Men i Hsiao Shu-Chên chih Chên-Wêr Yên-Thi" 墨子備城門以下數篇之真偽問題.
The Question of Authenticity of 'Preparation of City Walls and Gates' and Later Sections of Ms T'ou.
KSP, 6, 188-9.

Tanaka Tan (r) 田南.
Sen Shin Jidai Kyôshitsu Kenkyû-Jôsetsu 先秦時代官室建築序說.
Comments on Palace Architecture of the Pre-Chhin Period.

Than Chhia-Chi (r) 譚全基.
Ke-Tai Han-Tu Chêh-Chî 古代漢籍基礎.
Fundamentals of Classical Chinese Language.
Chung-Hua Shu-Chi, Hong Kong, 1978.

Than Tan-Chhuiung (r) 譚庭同.
Chung-Hua Min-Chhien Kung-l Thu Shuo 中華民間工藝圖說.
An Illustrated Account of the Industrial Arts as traditionally practiced among the Chinese People.
Chung-Hua Tshung-Shu, Taipei and Hong Kong, 1956.

Than Tan-Chhuiung (r) 譚庭同.
Chhéng-Tu Kung-Chhien Chhî-T suo Tho Chhâa Poo-Kao 成都弓箭製作調查報告.
AS/BHHP, 1951, 23, 199 (Fu Suu-Nien Festschrift).
Tr. C. Swinburne (unpub.),
Abstr. H. Franke (22), 258.

Thang Chia-hung (r) 周嘉弘.
Lüeh-Lun Yin Shang ti Tsao i chi chhî Yen-Liu 略論殷商的'作邑'及其次流.
A Brief Discussion of the Yin-Shang term
BIBLIOGRAPHY

An Examination of the origins and early development of the Central Plains States of Ancient China based on archaelogical data.

Tu Heng (1) 童恒
Shih-Lun Pai-Hua-Tan Ch'ien-Ti Thu-Hsiang T'ang-Hu 試論百花壇長壽壇考
Hypothesis Regarding the Inlaid Pictorial Bronze Hu-Vessel from Pai-Hua-Than.

WW, 1976, 3, 47-51.

Tuan Fang (1) 頌方
Thao-Chia Chi-Chin Lu 陶齋吉金録
Record of Inscribed Metal Objects preserved in the Porcelain Studio Collection.

Peking, 1908.

Tung-Chien-Chin (1) 董其沖
Tsung Sui Thang Chiang-An Chiheng Sung Tung-Ching Ch'eng Kan Wo-Kuo i-Hsien Tu-Ch'eng Pu-Ch'i Yen-Pien 從觀侯長
安城來東京看我國一些郡城布局的變
A look at some of the changes in the structure of my country's capitals from Chiang-An city of the Sui and Tang and the Eastern Capital (Kai-feng) of the Sung.

Ko-Chi Shih Wen-Chi 科技史文集, 1980, 5, 118-23.

Tung-Hsia-Feng Kao-Ku Tui (1) 東下馬考古

Shensi Hsien Tung-Hsia-Feng I-Chih Tung-Chsh, Ching-Chia Fe-Chieh Ch'ien-Pao 山西夏
縣東下馬遺址半坡-中窪發掘簡報
A brief report of the eastern and middle sections of the remains at Tung-Hsia-Feng, Hsia Hsien, Sha-shu.

Umehara Sueji 梅原未治, Oha Tsunekichi 小堀恒吉 & Kayamoto Kanemirō (1)

Rakuré Ōkō - 樂渡王光穆. The Tomb of Wang Kuang at Lo-Lang, Korea.

Soc. for the Study of Korean Antiquities Chōsen Koseki Kenkyū-Kai 朝鮮考古研究會,
Detaied Reports of Archaeological Research, no. 2 Seoul (Keijo), 1935, 2 vols.

Wang Chien-Ying (1) 王劍英

Han T'ai Ti Thun Tshen 漢代的屯田.
The t'ou-thien (military-agricultural colonies or settlements) in Han times.

LSCH, 1936, 9.

Wang Chung-Shu (2) 王仲殊

Han Ch'hung-An Ch'eheng Kao-Ku Kung-Tsai ti Chiu Pu Shou-Hu 襲長安考古工作的初步收穫
Preliminary Results of the Archaeological Work at the Han City of Ch'ang-An.

KKTH, 1957, 5, 102-10.

Wang Chung-Shu (3) 王仲殊

Han Ch'hung-An Ch'eheng Kao-Ku Kung-Tsai Hsü-Chi 漢長安考古工作續記
Continued Account of the Archaeological Work at the Han City of Ch'ang-An.

KKTH, 1958, 4, 23-32.

Wang Chung-Shu (Wang Zhongshu) (4) 王仲殊.

Chung-Kuo Kao-Tai Ti Ch'eheng Kai-Shuo 中國古代郡城概說
A Survey of Ancient Chinese Capitals

Wang Chen-Thu (1) 王恩田

Chih-Chu Fu Lu-Kwo Kuo Ch'eheng et Tien Tai chi chhi Hsiang-Kuan Wen-Thi 書阜漢國故城的年代及其相關問題.

The Date of the ancient city of the State of Lu,

Chih-Fu and Related Problems.

KKWW, 1988, 2, 48-55.

Wang Hsien-Chih (4) 王先欽

Han Shu-Pu-Chiu 漢書僲注

Supplementary Commentary on the History of the Han Dynasty.

Chiiang-Sha, Wang-Shih, 1900.

Wang Hsien-Chih (5) 王先欽

Han Fu Tui Chih-Chiu 傳者書補

Collected Explanations of the History of the Later Han Dynasty.

Published 1915, (by Fan Yen Teh和 Suso ma Piao 司馬彪) Reprinted by Yi-Wen Yin-Shu-Kuan ca. 1960.

Wang Hsien-Shen (1) 王先慎

Han Fei Tui Chih-Chiu 傳者書補

Collected Explanations of the Han Fei Tzu.

Orig, 1930.

Shang-Wu Yin-Shu Kuan, Taiwan, 1936.

Wang Hsien-Chih 王獻臣 & Hsu Pao-Lin (1)

Shi Hsien 故址

Miscellaneous Discourses on China's Ancient Military Books.

Chiu-Shih Ch'hu Pan Shè, Peking, 1983.

Wang Kuo-Wei 王國維 & Lo Chen-Yii (1)

Pai Shui Chiang-Pei Chiu-Chen 流沙鈎

A Trial Transcription of the Lost Slips from the Drifting Sands.

Published by Lo Chen-Yu, Shang-yi, 1934.

Wang Shih-Min (1) 王世民

Chih-Chih-Huang Thung-I Chung-Kuo ti Li-Shi Tho-Tung - Tshung Kao-Ku-Hsiieh shang Khan Wen-Tzu Tu-Liang-Heng ho Hsiao-Pi ti Chang-I 泰始皇統一中國的歷史作用—從考古學上看文字度量衡和貨幣的統一.

KK, 1973, 6, 368.

Wang Ning-Sheng (2) 王秉生

Bibl, Customs and Social Organisation of the Yang-Shao Culture—A Discussion of the
Wen-Wu "ien·Chi
Wei
Watana� Takashi
Watanabe
Wang Yu-Chhuan
The 'Thr� S
Miwg.
Cltltl� Ha�
LSrC,
..,.
::iJ,'iIf1''=:+,
..:
(2)
T"MHsii u. If.:riiH.
la
u
a
k
htl'Cfru Chi,-'
Smt_Slrili
L
Gentleman of
Yang-Shao
BIBLIOGRAPHY B
Theory of Matrilineal Society in Yang-Shao
Culture and its Methodology.
Wang Tzu-Chin 王子令 & Ma Chen-Chih (丁)
馬銘智
Chin Han 'Fu-Tao' Khao 泰漢'復道'考.
Research on 'Flying Galleries'.
HP, 1984, 3: 20-4
Wang Yu-Chhuan (丁) 王敏鍾
Ming-Tai Ch'in-Hsun Ch'iu-Tu i-Ji-Shih Yuan-Yuan
chi chi T'he-Tien 明代軍屯制度的歷史
渊源及其特點.
Regulations for the chun-hsun
(military-agricultural colonies or settlements)
in Ming times, and their special features.
LSYIC, 1939, 6.
Wang Yu-Chhuan (丁) 王敏鍾
Ming-Tai-ti Ch'in-Hsu 明代的軍戶.
The Military Households in the Ming Dynasty.
LSYIC, 1939, 8.
Watanabe Takashi (丁) 渡辺卓
Bokka no heiyagusho ni tsuite 墨家の兵
技巧書について
On the Technical Military Treatises of the
Mohists.
Watanabe Takashi (丁) 渡辺卓
Bokka no Momohito Jyay ni tuite 墨家の
守した城邑について
On: Towns and Villages protected by Mo-Chia
(the Mohists).
Wei Ju-Lin (丁) 魏汝霖
'Sun Tzu' Chin-Chu Chin-I 「孫子」今註今譯.
The 'Book of Master Sun (on the Art of War)'
rendered into modern Chinese with
Commentaries and Explanations.
Wei Ju-Lin (丁) 魏汝霖
'Huang Shih Kung San Lien' Chin-Chu Chin-I
黃鴻公略今註今譯.
The 'Three Stratagems of the Old Gentleman of
the Yellow Stone' rendered into modern
Chinese, with Commentaries and
Explanations.
Wei Ju-Lin 魏汝霖 & Liu Chung-Phing (丁)
劉仲平
Chuang-Kuo Chin-Shih Ssu-Hsiao Shih 中國軍事
思想史.
Wen Teng 文登 & Pi I-Hsun (丁) 興以殉.
San Tzu Hsueh Lu 孫子叙錄.
A Discourse on the 'Sun Tzu' [Ping Fa].
In Collected Works of the Masters Chu Tzu Chi
Chihêng 孫子集成, Peking, 1956, vol. 6,
1-18.
Wen-Wu Pien-Chi Wei-Yuan Hui (ed.) (丁) 文物
編輯委員會
Wen-Wu Kao-Ku Kang-Tao Sau-Shih Nien 文物
考古工作三十年.
Thirty Years of Historical Relic Archaeological
Work.
Wen-Wu Chhu-Pan She', Peking, 1979.
Wên Jên-Chin (丁) 閩人域
'Meng Chi Fu T'ien' Kung Yu Liu Shan Khao 「夢
漢奏幡」弓有佳書考
A Study of the Expression 'the bow has Six
Advantages' in the Dream Pool Essays.
HCTP (JHU), 1984, 14-4, 148, 1985, 15-3, 82.
The second part has the words 'A reply to Mr Li
Tzu-Yao' in addition.
Wu Chêng-Chih (丁) 吳承志.
Hsien-Chai Win-Chih 顯示文集.
Literary Collections from the Modesty Studio.
ca. 1920.
Wu Chêng-La (丁) 吳承洛
Chuang Kuo Tu Liang Heng Shih 中國度
量衡史.
History of Chinese Metrology. Commercial
Press, Shanghai, 1937; 2nd ed., Shanghai,
1957.
Wu Chiu-Lung 吳九龍 (丁)
Yin-Chhih-Shen Hsueh-Chin-Shih Wen 銀雀山漢
簡釋文.
Transcription of the Han Slips from
Silver-Sparrows Mountain.
Wen-Wu Chhu-Pan She', Peking, 1985.
Wu Ju-Sung 吳如鼎 & Wang Hsien-Chhên (丁)
王顯臣 (ed. & comm.)
Li Wei-Kung Win-Ta Chiao-Chu. 李衛公問對
校注.
Collated Commentary on the Book 'Questions and
Answers of Li, Duke of Wei'.
Chung-Hua Shu-Chu, Peking, 1983.
Wu Ku (丁) 無谷
San-Shih-Liu Chí 三十六計.
On the 'Book of Thirty-six Stratagems'.
Chihlín, 1979.
Wu Ming-Shêng 吳銘生 & Tai Ya-Tung (丁)
戴亞東
Chuang-Sa Chhu-Ti Sun-Tao Ta-Hsing Mu-Kuo
Mu 長沙出土的三型木棺槨.
Excavation of Three [Chhu] Tombs containing
Large Wooden Sarcophagi at Chiang-Sha
[dating from the Warring States Period, and
yielding the oldest known Chinese example of
the equal-armed balance].
442.
Wu Shih-Hsien (丁) 吳石仙.
Hsin Chên Lüeh 新戰略.
Outline of a New Strategy.
Liang-Chêng Hao-Yu Shê Yin-Hang,
Shanghai, 1924.
Yang Chia-Lo (2) 孫家濱

Sun Teu Ping Fa Hui 孫子兵法集

Preface to Master Sun’s Art of War (Chêng Lin's edition and translation).
Chungking, 1945 and Shanghai, 1946.

Yang Fu-Tou (1) 楊富斗

Hou-Ma Hsii Fa-Hsien I-Tso Ku-Chhieng Hou-Ma 胡馬氏兵記 一 墜 馬 頭 交 近 一 座 古 城 遺 址

Newly Discovered Remains of an Ancient City West of Houcha.

Yang Hung (1) 楊弘

Chung-Kuo Ku Ping-Chhi Lun-Tshung 中國古兵器論叢

Ancient Chinese Weapons and War-Gear.

Yang Hung (2) 楊弘

Chiao ho Khai; Chung-Kuo Ku Tai Chio-Shih Chiang Pei Choo-Chhi chih San 鐵 羅 古 地 布 案 甲 中 國 古代軍事裝備札記之三

Armour and Helmet; Third Note on Ancient Chinese Military Equipment.

Yang Hung (3) 楊弘

Chao-Chî-yu Chî-chen Chou-Chung Pei Choo-Chhi chih I 戰 車 車 車 中 國 古 代軍事 裝 備札記之一

War Chariots and Chariot Fighting; First Note on Ancient Chinese Military Equipment.

W. W., 1977, 15, 82.

Yang Hung (4) 楊弘

Kuan-yu Thê-Chia, Ma-Khai, ho Mu-Têng 軍 書 馬 化 威 本 部

Wên-Thu 關 于 勢 甲 部 化 威 問 題

On the Question of [the History of] Iron Armour, Horse Armour and the Stirrup.

KK, 1961, 1, 933.

Yang Hung (5) 楊弘

Chung-Kuo Ku Tai ti Chio-Chou 中國古代的甲胄

Studies on Ancient Chinese Armour and Helmets.

KK, 1976, 1, 191976, 2, 59.

Yang Hung (6) 楊弘

Shih-Chen ho Chau-Choun Chung-Kuo Ku Tai Chio-Shih Chiang Pei Choo-Chhi chih Wu 軍 車 中 國 古 代軍事 裝 備札記之五

Naval Battles and Waships: The Fifth Note Regarding Ancient Chinese Military Equipment.

W. W., 1979, 3, 76-82; rpt’d in Chung-Kuo Ku Tai Ping-Chhi Lun-Tshung, 105-14.

Yang Hung (7) 楊弘

I Pu Kuan-Chhê Fo-Chhi Lu-Hsien ti Ku-Tai

Bi bliography B

Chih-Shih Chi-Tso – Ta Chu-Chen Pin Sun Pin Ping Fa 一部貫徹各家路線的古代軍事著作 - 聽筒簡本《孫臏兵法》

An Ancient Military Treatise in the Service of the Legalist Political Line - Notes on the Bamboo-Slip Copy of ‘Sun Ping’s Art of War’.

KK, 1974, 6, 345-355.

Yang Hung (8) 楊弘

Kung Ho Nu 弓和弩

Bows and Crossbows.

Yang Khuan (3) 楊寬

Chiao-Kuo Shih 戰國史

History of the Warring States Period.

Yang Pao-Chhêng (1) 楊寶成

Têng-Pêng Wang-Chêng-Kang K’iu Yi-Tu Chhêng-Chih 竜 頭 中 國 國 閣 勝 馬鈴 城

Wang-Chêng-Kang, Têng-Pêng and Yiang-Chêng, the Capital of Yi.

W. W., 1984, 2, 63-4, 54.

YangPing-An (1) 楊萍安

Sun Tsu Chi-Chiao 孫子集校

A Survey of the Textual Differences in the Versions of ‘Master Sun’s Art of War’.

Shanghai, 1959.

Yang Tê-Ping (1) 楊德炳

Kuan-yu Thê-Tai ti Huan-Ping Pin-Shih ti Chau-Li yu Chhêng Lian ting Wên-Thu ti Chau-Pu Than-Sa 關 于 軍事 治 兵 士 的 處 理 與 資 源 等 問 題 的 初 步 探 索

Preliminary Exploration of Issues Regarding the Treatment of Sick Soldiers and Military Provisioning etc. in the Thang Dynasty.

In Wu-Han Ta-Hsüeh Li-Shih Hai Wei-Chin Nan-Pei Chiao Sui Shang Shi Yen-Chiu Shih, 舊 朝 北 頭 頭 碩 王 之 章

Preliminary Exploration of Issues Regarding the Treatment of Sick Soldiers and Military Provisioning etc. in the Thang Dynasty.

In Wu-Han Ta-Hsüeh Li-Shih Hai Wei-Chin Nan-Pei Chiao Sui Shang Shi Yen-Chiu Shih, 舊 朝 北 頭 頭 碩 王 之 章

Preliminary Exploration of Issues Regarding the Treatment of Sick Soldiers and Military Provisioning etc. in the Thang Dynasty.

In Wu-Han Ta-Hsüeh Li-Shih Hai Wei-Chin Nan-Pei Chiao Sui Shang Shi Yen-Chiu Shih, 舊 朝 北 頭 頭 碩 王 之 章

Preliminary Exploration of Issues Regarding the Treatment of Sick Soldiers and Military Provisioning etc. in the Thang Dynasty.

In Wu-Han Ta-Hsüeh Li-Shih Hai Wei-Chin Nan-Pei Chiao Sui Shang Shi Yen-Chiu Shih, 舊 朝 北 頭 頭 碩 王 之 章

Preliminary Exploration of Issues Regarding the Treatment of Sick Soldiers and Military Provisioning etc. in the Thang Dynasty.
BIBLIOGRAPHY B

Preliminary Discussion of the Shang City Wall, Chêng-Chou.

Yeh Hsiêh-Ming (1) 孫學明.

Hsin-Mu Niu-Tshun Ku-Chêng Nan Tung Chou I-Chih Chhu-Thu Hao-Chhi Fên-Chi: 侯禹牛村古城南東周遺址出土陶器的分期.

Classification of the Stages of the Pottery Vessels Excavated from the Southern Section of the Ancient Eastern Chou City at Niu-Tshun, Hon-Ma.

WW, 1962, 4, 45-54.

Yen Ling-Feng (1) 鄭靈峰.

Mo Tzu Chi-Chêng 孟子集成 (40 vols).
The Book of Master Mo (Series).

Chêng-Wên Chhu-Pan Shê, Taiwan, 1973.

Yin-Chhüeh-Shan Han-Mu Chhu-Chien Chêng-Li Hsiao-Tsu (1) 銀雀山漢墓竹簡整理小組.

Li-I Yin-Chhüeh-Shan Han-Mu Chhu-Tsu 'Sun Pin Ping-Fa' Shih-Wén: 銀雀銀雀山漢墓出土「孫平兵法」釋文.

Transcription of Sun Pin's Art of War Discovered in a Han Tomb at Yin-Chhüeh-Shan, Lin-I.

WW, 1975, 1, 27-34.

Yin-Chhüeh-Shan Han-Mu Chhu-Chien Chêng-Li Hsiao-Tsu (2) 銀雀山漢墓竹簡整理小組.

Sun-Tzu Ping-Fa 孫子兵法.

Sun-Tzu's Art of War.

Yin-Chhüeh-Shan Han-Mu Chhu-Chien Chêng-Li Hsiao-Tsu (3) 銀雀山漢墓竹簡整理小組.

Sun Pin Ping-Fa 孫臏兵法.

Sun Pin’s Art of War.

Yin-Chhüeh-Shan Han-Mu Chhu-Chien Chêng-Li Hsiao-Tsu (4) 銀雀山漢墓竹簡整理小組.

Yin-Chhüeh-Shan Chi-Shu 'Shou Fa' 'Shou Liang' Jêng Shih-Sau Phêh 聽雀銀雀竹書「守法」「守令」等十三篇.

Thirteen Sections, ‘Rules for Defence,’ ‘Orders for Defence,’ etc. of the Bamboo Books from Yin-Chhüeh-Shan.

Yin Ta (1) 尹達.

Hsiu-Shih-Chhi Shih-Tai 新石器時代.

The Neolithic Age.

Yü Tun-Khhang (1) 楊俊康.

Tshung I Chhîn ta 'I Chhuan' 從「易經」到「易傳」.

From the 'I Ching' to the 'I Chuan'.

CKCH, 1982, 1.

Yü Wei-Chhao (1) 俞偉超.

Han Chhàng-An Chêng Hsi-Pei-Pu 漢長安城西北部勘驗記.

An Account of the Survey of the Northwestern Section of the Han City of Chhàng-An.

Yü Wei-Chhao (2) 俞偉超.

Chung-Kuo Ku-Tai Tu-Chhêng Kuei-Hú-ti Fa-Chan Chieh-Tu-tuan Hsi-Pu Chung-Kuo Khao-Ku Hsi-Chêng-Hui Ti-Wu-Tzhu Nien-Hui er Hsu Tso 中國古代都城規劃的發展階段性－為中國考古學會第五次年會而作.

The phased nature of the development of city planning in ancient China - composed for the Fifth Annual Conference on Chinese Archaeology.

WW, 1985, 2, 52-60.

Yü Yüeh (1) 俞樾.

Chu-Tzu Phêng-ê 諸子平議.

Fair Discussions of the Philosophers.

In Mo Tzu Chi-Chêng, vol. 10.

Yüan Tê-Hsing (ed.) (2) 袁德星.

Chung-Hua Li-Shih Wên-Wén 中華歷史文物 (2 vols).

Chinese Historical Relics.

Ho-Lo Thu-Shu Chhu-Pan Shê, Taipei, 1976.

Yün-Mêng Hsien Po-Wu Kuan (1) 雲夢縣博物館.

Hu-Pêi Yün-Mêng La-Li-Tun I-Hao Mu Chhêng-Li Chêm-Pao 湖北雲夢縣筒墳一號墓清理簡報.

Brief Report of the Clearing of Tomb Number One, La-Li-Tun, Yün-Mêng, Hupei.

Yün-Mêng Hsien Wên-Hua Kuan Wên-Wu Kung-Tse Tsu (1) 雲夢縣文物工作隊 (Writer Chang Tê-Tung, 張澤棟).

Yün-Mêng Chhu-Tsu Tung Han Thao-Lou 雲夢出土東漢陶樓.

A Pottery Tower of Eastern Han Date Excavated in Yün-Mêng.

CHKK, 1982, 1, 79-82.

Adler, B. (2). 'Die Bogen Nordasiens' (including the Chinese bow) IAE, 1902, 15, 1. (With notes by G. Schlegel, pp. 316 ff. and footnotes in the paper itself by Ratzel and Conrady.)

Alexiev, V. M. (1). 'Otrazhenie borby s zavoevatelyami v istorii i literature Kitaja.' Izvestiya AN SSSR, 1945, 4, 187.

Allan, Sarah (1). 'Sons of Sun; Myth and Totemism in early China.' BLSOAS, 1981, 44, 290.

Allan, Sarah (2). 'The ideas of Tai Gong Wang (太公望) in Zhou and Han Literature.' MS, 1972-3, 30 57-99.

Amiot, J.-J.-M. (1). 'Sur l'Art Militaire des Chinois.' MCHSAMUC, 1782, 2, 316-75. Supplément. 1782, 8, 327-75. (The translations of Sun Tzu's Art and Wu Tzu were first sent to Europe in 1766.) The material of the main part first appeared in a separate book: Art Militaire des Chinois, ou Recueil d'anciens Traitez sur la Guerre, comprenant l'Art Chinois, par divers Générals Chinois. On lesquels les Aspirants aux Grades Militaires sont obligés de s'aborder avec. On y a joint Dix Préceptes adressés aux Troupes par l'Empereur Yong-Tchang, père de l'Empereur regnant, et des Planches gravées pour l'Intelligence des Exercices, des Évolutions, des Habiletés, des Armes et des Instruments Militaires des Chiens - Traduit en Frangais par le P. Amiot, Missionnaire a Pe-King, renu et publié par M. de Guignes. Didot et Nyon, Paris, 1772. This prompted the work of de St Maurice & de Puy-Ségur (q.v.). The Supplement was assimilated by remarks in the Recherches Philosophiques sur les Egyptiens et les Chiens de de Pauw (q.v.).

Amiot, J.-J.-M., see de Rochemont (q.v.).

Anon. (1). Mittelalterlicher Hausbuch. Album of an arches-maker, containing various engineering drawings.

528

BODE, DERK (15). *Statesman, Patriot and General in Ancient China. Three Shi-Hi Biographies of the Ch’in Dynasty (255-206 B.C).* Amer. Or. Soc., New Haven, Conn. 1940. (Biographies of Li Pu-Wei, Ching Kho and Meng Thien.)

Vol. 1 First Part, chs. 1-4, Artillery on the Battlefield 1328 to 1643.
Vol. 3 Third Part, chs. 1-9 History of Gunpowder and Artillery to 1650.
Vol. 4 Third Part, chs. 10-14 History of Artillery 1650-1793.

SCHNEIDER (1), 10. gives date and place of first publication Liège, 1847, and SARTON (1), vol. 3, 726, describes 6 vols. to 1871.

BIBLIOGRAPHY C

Brewitt-Taylor, C. H. (tr.) (1). 'San Ku' or the Romance of the Three Kingdoms. Kelly & Walsh, Shanghai, 1926.

Re-issued as Lo Kuan-Chung's 'Romance of the Three Kingdoms', San Ku Chih Yen I. Tuttle, Rutland, Vermont, and Tokyo, 1959.

Cafareli e Comitini Tow, Annales Januas. ser. Pertz, G. H. (1).

Cahen, C. (1). 'Un Traité d'Armurerie composé pour Saladin.' [Salah al-Din, + 1193 to 1199] (The al-Tahira ... fir Hurb ... [Explanations of Defence and Descriptions of Military Equipment] written by Mûri'd al-Abîn Mûri'd el-Tarsûzî, an Armenian of Alexandria, about + 1185.] BEQ/IFD, 1947, 12, 103.

Callois, R. (1). 'Lois de la Guerre en Chine.' (A study of Sun Tzu, Wu Tsu, Su-ma Ping Fa, etc. after Amiot (2).) PIFS, 1956, 16, 16–30.

Chavannes, P. C. (1). The Art of War in Ancient India. Dacca, 1941.

Chang Chih-Shu (1). 'The Han Colonists and their Settlements on the Chii-Yen Frontier.' CHJ, December 1955, 8, 2.

Chavannes, E. (12). 'Introduction to the 'Documents Chinois découverts par Aurel Stein dans les Sables du Turkestan Oriental', tr. Mme. Chavannes & H. W. House. ACR, 1922, 4, 341 (Reprinted, with Stein (6, 7) and H. K. Wright, in brochure form, Peiping, 1940.)

BIBLIOGRAPHY C

CHEIREPANOVA, A. I. (1). Zapisiki sovremenno sovetnika o kitais'iz history persoi grajdanskoj revolutionnoj voiny (1924-1927 g.g.). Moscow, 1964.

de LA CROIX, HORST (1). 'The Literature of Statecraft in Renaissance Italy.' TCUL, 1963, 4, 30-50.

CUSHING, F. H. (1). 'The Arrow.' AAN. 1895, 8, 34.

BIBLIOGRAPHY C

Vol. I. Altertum;

II. Räume und Gemäme, Völkerwanderung, Übergang ins Mittelalter;

III. Mittelalter;

IV-VII. Neuerzeit (completed by E. Daniels & O. Hainz). 15.

Dehlie, Paul (13). *Gäute und Droiwe en Chine.* In Dehlie (11)

Diels, H. & Schramm, E. (ed. & tr.) (2). *Philon's Belopoika [Bk. iv of the Mechanica].* APW/PH, 1918 no. 16.

Diesinger, Günter, R. (1). *Vom General zum Gatt: Kuan T'ou (gest. +220) und seine 'posthume Karriere'.* Haag & Herden, Frankfurt a/M, 1984. (Heidelberger Schriften, Ostasienskunde, no. 3.)

Vol. I. pp. 1-146: 'superstitious' practices, birth, marriage and death customs (VS, no. 32.)

Vol. II. pp. 147-216: talismans, exorcisms and charms (VS, no. 33.)

Vol. III. pp. 217-322: divination methods (VS, no. 34.)

Vol. IV. pp. 323-488: seasonal festivals and miscellaneous magic (VS, no. 35.)

Vol. V. pp. 349-480: seasonal festivals and miscellaneous magic (VS, no. 36.)

Vol. VI. pp. 481-586: *Pantheon* (VS, no. 37.)

Vol. VII. pp. 587-660: *Pantheon* (VS, no. 38.)

Vol. VIII. pp. 661-720: *Pantheon* (VS, no. 39.)

BIBLIOGRAPHY C

DUBOIS-REYMOND, C. (2). 'Notes on Chinese Archery.' JRAS/NCB, 1912, 13, 32.

DUBS, H. H. (3). 'The Victory of Han Confucianism.' JAOS, 1938, 58, 435. (Reprinted in Dubs (2), 341 ff.)

DUBS, H. H. (6). 'A Military Contact between Chinese and Romans in 36 b.c.' TP, 1940, 36, 64.

EBERHARD, ALIDE & EBERHARD, WOLFRAM (1). Die Mode der Han- und Chin-Zeit. de Sikkel, Antwerp, 1946.

ELMY, D. G. (1). 'The Han Dynasty Crossbow.' JSAAS, 1967, 10, 41.

ELOFF, MILAN E. (1). 'Why We Miss.' ARCH, 1965, 51.

VAN EERDBERG CONSTEN, ELKINOR (2). 'A Han with Pictorial Decoration.' ACASA, 1952, 6, 18–32.

ERKES, E. (tr.) (1). 'Das Weltsystem der Han.' OAZ, 1918, 5, 27.

FENG CHIA-SHENG (1). "The Origin of Gunpowder and its Diffusion Westwards." Unpub. MS.

FITZGERALD, B. J. (tr.) (1). "Zen and Confucius in the Art of Swordsmanship; the 'T'ung-gejutsu-ron' of Chozan Shizai.*

FLAVIUS VEGETIUS RENATES (from recension of Nicholas Swobod). De Re Militari (5 Books). Societas Bipartina, Argentaria. 1806.

FRANK, A. (tr.) (5). "Me Ti (Mo Ti) of the Song-Huang Emperor and his School of Philosophers. Berlin, 1922. (MSOS, Beibande, 26 to 25.)

FRANK, A. (17). "Der Festungskrieg im alten China." *OAZ*, 1919, 8, 103. (Repr. from Forke (3), 99ff.)

GALT.

GARL.

GILET, A. A. (2.) Gen of Chinese Literature: Prose and ed. Kelly & Walsh, Shanghai, 1923. (i) For texts see Lockhart (1); (ii) abridged edition, without acknowledgment of authorship but with the inclusion of the Chinese texts of the piece selected, ed. Chiang Feng-Wei (1), Chukung, 1942.

GOLUSHEV, V. (2.) 'Quelques Sculptures Chinoises.' O.A.R., 1913, 2, 326.

GOODRICH, CHANCEY S. (2.) 'Riding A stride and the Saddle in Ancient China.' HJAS, 1984 (December), 44, 7, 379-396.

GOODRICH, L. CARRINGTON & FENG CHIA-SHENG. (1.) 'The Early Development of Firearms in China.' ISIS, 1946, 36, 114-30. With important addendum giving a missing page ISIS, 1946, 36, 250.

Graham, A. C. (11.) 'Later Mohist Treatises on Ethics and Logic reconstructed from the Ta-Chhu Chapter of the Mo Tzu Book.' A.M., 1972, 17 (N.S.), 137.

Granet, Marcel (10.) 'La droite et la gauche en Chine.' BIFS, 1933, 3, 3-10, 67-116; repr. in Granet, Marcel (6), 261-78. Eng. translat. in R. Needham (tr.) (1), 43-58.

Grayson, Charles E. (1.) 'Stone Bows.' JSAA, 1966, 9, 32.

Groslier, G. (1.) 'Recherches sur les Cambodgiens.' Challamel, Paris, 1921.

Groslier, G. (2.) 'La Battellerie Camboigesienne du 8e au 13e siècle de notre Ère.' RA, 1917 (5th ser.), 5, 198.

BIBLIOGRAPHY C

Harada, Yoshito & Komai, Kazuchika (1). Chinese Antiquities. Pt 1, Arms and Armour; Pt 2, Vessels [Ships] and Vehicles. Academy of Oriental Culture, Tokyo Institute, Tokyo, 1937.

Hein, J. (1). 'Bogenhandwerk und Bogensport bei den Osmanen.' [Archery among the Ottoman Turks]. D/ 1923, 14, 289.

Himly, K. (9). 'Die Abteilung der Spiele im Spiegel der Mandschu-Sprache.' TP, 1895, 6, 238, 343; 1896, 7, 135; 1897, 8, 153; 1898, 9, 299; 1900, 10, 369; 1901 (N.S.), 7, 1.

Ho Pêng-Tî (3). 'Loyang (+ 495 10 + 334); a Study of Physical and Socio-Economic Planning of a Metropolitan Area.' HJAS, 1956, 28, 32.

Hollister-Short, G. (1). 'The Sector and Chain; a Historical Enquiry.' HOT, 1979, 4, 159.

Hollister-Short, G. J. (5). 'Precedents and Anticipations of the Newcomen Engine.' TNS, 1980, 52, 103.

Holt, Alan (1). 'An Unusual Chinese Arrow.' JSAA, 1979, 22, 16.
HOPKINS, E. W. (1). 'The Social and Military Position of the Ruling Class in India, as represented by the Sanskrit Epic.' J.AOS, 1899, 13, 57-572 (with index) (military techniques, 81-329).

HORWITZ, H. T. (15). 'Zur Entwicklungsgeschichte der Armbrust.' ZHWK, 1919, 8, 311. With two supplementary notes under the same title, ZHWK, 1921, 9, 73, 11, 139.

HORWITZ, H. T. (17). 'Scheiber an antiken Geschützen.' ZHWK, 1921, 9, 139.

Hsu, Francis, see Hu Luang-Kuang.

Vol. 2. Die Völker unter babylonischen Kultureinfluss; Aufstieg des giganten Bieres.

HURI, K. (1). 'Zur Geschichte des mittelalterlichen Geschützwerks aus orientalischen Quellen.' SOF, 1941, 9, 3.

JACKSON, J. H. (1). Water Margin (Shui Hw Ch'uan). London, 1937. (A translation based on the 70-chapter version but without the verses.)

JACKSON, J. H. (1). ‘Water Margin (Shui Hw Ch'uan).’ London, 1937. (A translation based on the 70-chapter version but without the verses.)

BIBLIOGRAPHY C

Klopetko, P. E. (1). Turkish Archery and the Composite Bow. pr. pr., Evanston, Ill. 1947 (2nd ed.).
Krause, F. (1). 'Fluss- und Siegfechte nach Chinesischen Quellen aus der Zeit der Chou- und Han-Dynastie und der Drei Reichs.' MSOS, 1913, 18, 51.
Lacoste, E. (tr.) (1). La Poiocritique d'Apollodore de Damas.' REG, 1890, 3, 268.
Lang, Olga (2). 'The Good Iron of the New Chinese Army.' PA, 1939, 12, 1, 203.
This page contains a bibliography that includes references to various books, articles, and works of Chinese history and literature. The names of authors and titles are listed in a structured format, indicating the source, title, and publication details. The bibliography is likely part of a larger academic work, possibly a textbook or a research paper, given the formal and systematic presentation of the references.
BIBLIOGRAPHY C

LII JUNG-PANG (10). 'The Art of War in the Chin and Han Periods; -221 to +220.' MS.

LOEWE, MICHAEL (18). 'Han Administrative Documents: Recent Finds from the North West.' TP, 1986, 72, 291-314.

MCGRINDE, J. W. (2). Ancient India as described by Kersaw the Kinner, being a translation of the abridgment of his Indica by Politics, and of the fragments of that work preserved in other writers, with notes, etc. Thacker & Spink, Calcutta, 1882.

MC LEOD, WALLACE E. (2). 'Were Egyptian Composite Bows Made in Asia?' JSAA, 1969, 12, 19.

DE MAILLA, J. A. M. DE MOVRIAC (tr.) (1). Histoire Générale de la Chine, ou Annales de cet Empire, traduites d'un Tong
BIBLIOGRAPHY C

Kien Kang Mou [Thung Chen Kang Mou]. 13 vols. Pierrès & Clousier, Paris, 1777. (This translation was made from the edition of 41708; Hummel (2), 689.)

Mansi, J. D. et al. (1). Sacrorum Conciliorum Nova et Amplissima Collectio. Florence 1759 to 1798.

Mao Tse-Tung (1). On Practice. (Orig. Supplement to People's China), Peking 1951.

Maspero, H. (1). 'La Composition et la Date du Tao Chuan.' MCB, 1931, i, 137.

Meήhurst W. H. (1). The 'Shao King' [Shu Ching] or Historical Classic, being the most ancient authentic record of the Annals of the Chinese Empire, illustrated by later commentators. Mission Press, Shanghai, 1846. (Word by word translation with inserted Chinese characters).

Minisky, V. F. (ed. & tr.) (4). Shara' al-Zamān Tāhir al-Murawāz on China, the Turks and India (c. 1200). Royal Asiatic Soc., London, 1942 (Forlong Fund Series, no. 22.)

Morgan, E. tr. (1). Two Great Luminaries: Essays from Huai Nan Tsu, with introductory articles, notes and analyses. Kelly and Walsh, Shanghai, n.d. (1932?).

Morse, E. S. (1). 'Ancient and Modern Methods of Arrow-Release.' BEL, 1883, 17, 10-12, 150.

Moye, F. W. (1). 'The 'Tu'-mu Incident of 1449.' In Kiernan & Fairbank (1), 243-47.

Moule, A. C. (3). 'The Siege of Saianfu [Hsiang-yang] and the Murder of Achmach Balo; two chapters of Marco Polo.' JRAI, NCB, 1927, 58, 1; 1928, 59, 256.
BIBLIOGRAPHY C

PRZMAIER, A. (53) (tr.). ‘Die Aufstände Wei-Ngao’s und Kungsun Scho’s.’ (Wei Ao and Kung-sun Shu). SH/AV/PH, 1895, 54, 159. (Tr. ch. 43 Hau Hon Shu.)

PRZMAIER, A. (66) (tr.). ‘Zur Geschichte d. Aufstände gegen das Haus Sui.’ SW/AV/PH, 1878, 24, 179, 243, 264, 276, 299. (Tr. chs. 1, 85, 86 Hsin Thang Shu.)

PRZMAIER, A. (67) (tr.). ‘Scharakteren aus den Zeiten d. Thang’ I and II. SW/AV/PH, 1879, 94, 7, 11, 19, 21, SW/AV/PH, 1881, 96, 293. (Tr. chs. 3, 56 Wu Hsien Chih, 88, 89 Hsin Thang Shu.)

PRZMAIER, A. (68) (tr.). ‘Darstellung der chinesischen Armer.’ DW/AV/PH, 1879, 29, 141, 170, 213, 1880, 301, 303, 341. (Tr. chs. 46, 47, 48, 19a Hsin Thang Shu cf. des Rotours (1).)

PRZMAIER, A. (69) (tr.). ‘Die Sämlchläuter der Lebenkönige Chinas.’ SW/AV/PH, 1885, 95, 919. (Tr. ch. 50a Hsin Thang Shu cf. des Rotours (1).)

PRZMAIER, A. (70) (tr.). ‘Über einige chinesische Christenwerke des siebenten und achten Jahrhunderts n. Chr.’ SW/AV/PH, 1879, 93, 217, 159. (Tr. chs. 57, 59 (in part) I Wm Chih including agriculture, astronomy, mathematics; war, five-element section) Hsin Thang Shu.)

PRZMAIER, A. (71) (tr.). ‘Die philosophischen Werke Chinas in dem Zeitalter der Thang.’ SW/AV/PH, 1878, 28, 159. (Tr. ch. 59 (in part) I Wm Chih, including agriculture, mathematics; war, five-element section including Buddhism) Hsin Thang Shu.)

PRZMAIER, A. (72) (tr.). ‘Der Stand der chinesischen Geschichtsschreibung in dem Zeitalter der Thang’ (original has Sung as misprint). SW/AV/PH, 1877, 27, 309, 383. (Tr. chs. 57 (in part), 58 (I Wm Chih, history and classics section) Hsin Thang Shu.)

PRZMAIER, A. (74) (tr.). ‘Nachrichten von Gelehrten Chinas.’ (Scholars such as Khung Ying-Ta, Ouyang Hsun, etc.) SW/AV/PH, 1885, 92, 694, 734, 736. (Tr. chs. 163, 199, 200 Hsin Thang Shu.)

PLATT, COM. (1). ‘The Castle in Medieval England and Wales’ (Scholars such as Khung Ying-Ta, Ouyang Hsun, etc.). SW/AV/PH, 1879, 91, 694, 734, 736. (Tr. chs. 163, 199, 200 Hsin Thang Shu.)

POUX, JOSEPH (1). La Cité de Carcassonne; Précis Historique, Archéologique et Descriptif. Toulouse, E. Privat, 1923.

PUTYATA, D. V. (1). Foorkom ase kitay, St Petersburg, 1889.

PUTYATA, D. V. (2). Kiyo; Ocherki geografii, ekonomicheskogo sostoyaniya, administratsionogo i voennogo ustroista Sere-dinnoi Imperii voennogo znacheniya pogranichnoi s Rosiej palos. Voennaya Tipografiya, St Petersburg, 1895.

ROGERS, S. L. (1). 'The Aboriginal Bow and Arrow in North America and East Asia.' *AAN*, 1940, 42, 255.

RODE, F. (2). 'Die Abzugsvorrichtung der frühen Armbrust und ihre Entwicklung.' *ZHWK*, 1933, 13 (NF 4), 100.

DE ST DENYS, SEED 'HERVEY ST DENYS.

SCHLEGEL, G. (7). *Problemes GéOGRAPHIQUES; les Peuples Étrangers chez les Historiens Chinois.*

(m) Ni-Li Kuo (ident. Kamchatka and the Chukchi). *TP*, 1894, 5, 179.

(r) San Hsien Shan (the magical islands in the Eastern Sea, perhaps partly Japan). TP, 1895, 6, 1.
(5) Liu-Chu Kuo (the Liu Chuhsu islands, partly confused with Taiwan, Formosa). Ibid., 165.
(l) Nü-Jen Kuo (legendary, also in Japanese fable). Ibid., 247. A volume of these reprints, collected, but
lacking the original pagination, is in the Library of the Royal Geographical Society Chinese transl. under
name Hu Lo-Ka. (Rev. F. de Mély, JS, 1904.)

SCHLEGEL, G. (9). Geographical Notes.
(a) The Nicobar and Andaman Islands. TP, 1898, 9, 177.
(b) Lang-ga-su (Lang-yâ-hsù), Lang-ga-su (Lang-yâ-hsù) and Sih-lan-shan (Sîh-lan-shan), (ident. Ceylon).
Ibid., 191.
(d) Malur and Malayu. Ibid., 288.
(e) Ting-ki-gi (Ting-chi-i), (ident. Ting-gu). Ibid., 292.
(f) Ma-th, Ma-thung, Ma-ic-pung. Ibid., 355.
(g) Tun-sun, or Tao-sun (Tien-sun), (ident. Tenasserim or Tannah-sari). TP, 1899, 10, 33.
(h) Pa-hoang (Pho-huang Kuo), Pang-khang (Phêng-khéng Kuo), Pang-hang (Phêng-héng Kuo), (ident.
Pahang or Panggang). Ibid., 38.
(i) Dziu-hut (Jou-fo Kuo), (ident. Djohor, Johore). Ibid., 47.
(j) To-ho-lo, or Tok-ho-lo (Tu-ho-lo), (ident. Takola or Takkola). Ibid., 155.
(k) Ho-lo-tan (Kho-lo-tan) or Ki-lan-tan (Chi-lan-tan), (ident. Kelantan). Ibid., 159.
(m) Tan-tan, or Dan-dang (ident. Dodin?). Ibid., 439.
(n) Ko-lo (Ko-lo) or Ko-la-pu-sa-lo (Ko-lo-pu-sha-lo), (ident. Kora-besar). Ibid., 464.
(o) Moan-la-ka (Man-la-chia), (ident. Malacca). Ibid., 470.

SCHLIESSL, HENRY (1). Illos: The City and Country of Trojans: The Results of Researches and Discoveries on the Site of
Troy and throughout the Troad in the Years 1871-72-74-75-78-79. Including an Autobiography of the Author. John

SCHLIESSL, HENRY (2). Troja: Results of the Latest Researches and Discoveries on the Site of Homer's Troy and in the
Heroic Tumuli and other Sites made in the Year 1886 and a Narrative of a Journey in the Troad in 1881. Harper and
Brothers, New York, 1884.

SCHMIDT, H. H. (1). Die Drei Strategien des Herrn vom Gelben Stein (Huang Shih Kung San Lueh). Lang, Frankfurt-am-
Main, 1913. (Wurzburger Sino-Japanica, no. 1.)

SCHMIDT, RUDOLF (1). Die äußliche des Mittelalters, nach den Angaben der Zeitgenossen dargestellt. Weidmann,
Berlin, 1910.

SCHMIDT, RUDOLF (2). Geschütze nach handschuli sichtlichen Bildern. Metz, 1907.

SCHMIDT, RUDOLF (4). 'Griechischer Poliorkester.' AGV/G/PH 1908, (nF) 10, no. 1; 1908, 11, no. 1; 1912, 12,
no. 5; JGLG 1905, 17, 24.

1, 1898f.

SCHMIDT, RUDOLF (6). 'Anfang und Ende der Torsionsgeschütze.' NZKA, 1909, 23, 133.

SCHRAMM, E. (1). Griecheöhrische Geschütze: Bemerkungen zu der Rekonstruktion. Schirra, Metz, 1910 (with plates
almost identical with those in Diels & Schramm, t. 2, 3; also JGLG, 1904, 16, 1, 142; 1906, 18, 276, 1909,
21, 66.

SCHRAMM, E. (2). 'Poliorke её [d. Griechen o. Römer].' In Kromayer & Veith, Heerwesen und Kriegsführung

SCHULZ, ALWIN (1). Das höfische Leben zur Zeit der Minnesänger [12th & 13th cents.]. 2 vols. 2nd edn. Hirzel,
Leipzig, 1889.

SCHWIND, C. G. (6). 'Note on the Preparation and Use of the Kenyah [Sarawak] Dart-Poison. ipoh.' JRAl,
1902, 22, 299. 'On the Physiological Action of the Kenyah Dart-2 Poison ipoh, and its active principle
Athinur.' JOP, 1905, 29, 39.

SEYHAB, C. A. (1). The Clems and Reality of the Right Way (chén tao) of Confucianism, and the Development of the
'Strategies' (chi) of the 'Way of Deception' (kwâ tao), as the True Principles of Politics in Ancient
München, 1979 (mimeograph).

SHAMASKR, R. (tr.) (1). Kautilya's 'Arthasastra.' With introduction by J. F. Fleet. Wesleyan Mission Press,
Mysore, 1930.

SHAUGHNESSY, EDWARD L. (1). 'Historical Perspectives on the Introduction of the Chariot into China.' HJAS,
1988 (June), 48, 1, 189-297.

SHEPPARD, HAJI A. MURIN (1). Malayan Forts. Museum Directorate, Federation of Malaya, Kuala Lumpur,
1961.

SHIM, VINCENT, JIANH SHIH-YU CHUNG.
BIBLIOGRAPHY C

TACCOLA, JACOPO MARIANO. Collections of Technical Drawings in Hydraulic and other aspects of Engineering sometimes entitled De Machini (Libri Decem), c. 1438-49. MSS. Cod. Lat. XIX, 5, San Marco, Venice and Paris, BN 7239. See Saront (1) vol. 3, 1552; Berthelot (4); Bonaparte & Favé (1) vol. 3, pl. iii, 45ff.; Thorndike (9); Reinard & Favé (1).

TASKIN, V. S. (1) , see Vavlovolochich R. (1).

TIAN, AN (THIEN AN) (1). David D. Bucy. ‘Archaeological Exploration of the Lu City at Qufu (Chihhi Fu).’ [Translation of Qu fu Lu-Chihêng Kanyun] Chhi-Fu Lu-Chihêng Khan-Than Wê We (Cultural Reics) 1982, 12, 1-12. Chinese Sociology and Anthropology Fall, 1988, 197a, 9-34.

WIESEL. H. J. (3). 'China's March towards the Tropics: A discussion of the southward penetration of China's culture, peoples and political control in relation to the non-Han peoples of South China, and in the perspective of historical and cultural geography.' Shoestring, Hamden, Conn., 1954.

WU: JOUNG, CHING-HSIANG.

WU: SHIH-MING (1). 'A Short History of Chinese Prose Literature.

Zhang Xuqian (Chang Hshen-Hai) (1). Trans. David D. Buck. 'Discussion of the Periodization and Basic Groundplan of the Lu City at Qufu.' In Archaeological Explorations at the Ancient Capital of Lu at Qufu in Shaoang Province, Chinese Sociology and Anthropology, Fall 1986, 19, 1, 35-48.
GENERAL INDEX

by BARBARA HIRD

NOTES

(1) The various parts of hyphenated words are treated as separate words in the alphabetical sequence. It should be remembered that, in accordance with the conventions adopted, some Chinese proper names are written as separate syllables while others are written as one word.

(2) Arabic words beginning with the prefix ‘al-’ are indexed under the letter immediately following.

(3) References to footnotes are indicated by brackets containing the superscript letter of the footnote.

(4) References to the Chinese military encyclopaedias and to modern works are confined to major citations.

(5) References in italics denote illustrative

A-Chu (Archu, Mongol general, fl. + 1267), 220
A-Li-Hai-Ya (Ariq Qaya, Uighur general in Mongol army, fl. + 1283), 226
A-T a-Hai (Mongol general, fl. + 1283), 226
Abbo (fl. +890)
De Bello Parisio, 233
abstinhol. See artemisia
Abû Bakr (Pu-Pai, artillery general, fl. +1274), 221, 222
Abûl Mojd (Fu-Mou-Chih, artillery general, fl. + 1300), 221 (d)
Acre, siege of (+ 1291), 239
action, principles of, 31-7
administration, civil
army’s involvement, 73, 74-7, 78, 84, 99
provincial, 79
urban centres, 323-4
advisers, Soviet military, 67, 81 (g)
Aegidius Romanus (fl. +1280)
De Regiminis Principum, 233
Aeneas Tacticus (fl. +357(+367), 270, 317 (g), 343
(i), 344 (k)
aerotolos (Alexandrian compressed air catapult), 186
Afranjah, siege of (+793), 233
agents, secret, 15, 53-4, 73, 343 (c), 459
Agincourt, battle of, 436 (a)
agriculture
organisation, 74-5
waterways and, 332
Aigues Mortes 322 (a), 326-5
Aikah Nowin (Chingiz Khan’s chief engineer), 218
(c)
arms of warfare, 37
Ainu people, 135
air, compressed, 186
‘Alâ’-al-Din (A-Lao-Wa-Ting, engineer, fl. +1271), 220-2
Albertus Aquensis (c. +1060/+1120), 233 (c)
alchemy, 9, 192
Alekseev, V. M. (2), 81
Alexandrian technology, 171, 172-3, 186
See also Biton, Heron
altar of sail (shd), 243 (e)
ambushes, 461-2
arbales in, 161
in mine, 477, 478
multiple-bolt crossbows in, 157, 190
in rampart and gate a mile outside city, 461-2, 463
Amerindian peoples
bows, 189
Amiot, J. J. M., SJ (fl. +1782), 28 (f)
Ammianus Marcellinus (b. c. +336), 186
Amu Darya
floating bridge, 222 (d)
an (peace), 94
An-L (capital of Wei), 250-1, 253, 456
An Lu-Shan rebellion, 211, 339
An-Phing
Han tomb mural, 319 (b), 327
An-Tun embassy, 173 (b)
An-Yang (Hou-Kang), 292 (b), 431
anaesthesia, 93 (a)
ancestor cult, 42, 98, 243, 244
anchors (mao or miao), 459
Andaman Islands
bows, 102 (c)
‘Andernach’ gates, Roman, 354, 359
Andries, R., 69
Angers, siege of (+873), 233-4
Angkor Thom (Bayon, Cambodia), 193-5, 196, 197
animals
association with war, 93
effigies on weapons and armrour, 10-11
Four, and battle formations, 56, 58, 59
use in warfare, 10, 27, 67-8
Anna Comnena (Byzantine princess, +1083/+1148), 147, 173-4
annihilation of enemy, avoidance of, 67, 96
anti-like approach (iifu). See infantry (mass assault)
INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>557</td>
</tr>
</tbody>
</table>

axes, 275, 484
for chopping hands, _shou zhu_ 290, 291
long _shang-chi_ 277, 279
sapper's, phoenix-headed _sheng zhu_ 480

Babylonia, 4, 102–3, 201
Bactria, Greek kingdom of, 175
badges _fu_ 270–7
Bagh-durzeljin
Tho-Tho _hou-kuan_ 335
balconies
'enemy' (ti phong), 339, 342
'movable' (hau chen), 411
Balfour, H. (3, 4), 102, 103 (a, b)
ballets, 285, 186
rotary, 200–3
ballistic machinery, 84–240
definitions and distribution, 184–7
deployment, 307, 412
distribution and diffusion, 231–49
projectile weights and ranges, 187
simplification of design, progressive, 237
See also arculballistics; ballistics; catapults;
mangonels; slings; swape; trebuchets
ballistics, study of, 2
balls, stone, 184, 186
bamboo
arrows set under water around fortifications, 270
guns, 2–3
incendiaries, 164 (b), 168
rockets, 168
screens on city walls, 340
See also slips, Han
Bamborough Castle, siege of (464), 239
banners and flags
colours, 57–8, 384
commander's family name on, 42 (c)
deceptive use, 49, 267, 269, 461
and divisions of space, 57
naval, 460
siege defence materials marked by, 280–1, 283–4
for signalling, 15, 206, 384
symbols of heavenly bodies, 56
warning, 317, 329–30
Bantay Chmør, Cambodia; reliefs, 194–5, 197
Barbarians
Han practice of pitting against each other, 124, 125
barbican, curved, 338, 353
Barcelona
Roman gate, 360
battizan, Chinese, 375, 376
Basel Chronicle, 229 (c)
bastion _ung-chhêng_ 337, 398, 353, 370
battering-rams. See rams
Bauer, W. (4), 86
Bayan (Po-Yen, Mongol general, +1237) 10 +1294), 222
Bayon, Cambodia, 193–5, 196, 197
beacons, signalling, 25
Beck, T. (3), 170, 172, 184 (a)
Belisarius (Roman general, +505/+565), 232 (c)
bell-boards, hanging (chhui chung pan), 384, 385
bellows
double-acting piston, 465 (a)
'fire pumped by' (flamethrower), 445
fau and tho, 465
and mining, 463, 464, 465
bells to warn of attack, 267
belt-claw, crossbowman's, 147–8, 149
Beni-Hasan wall-paintings 429, 430
biffa (European trebuchet), 233
bill, long _chhong-chi_ 124
Binh Thu Ton Luc (A Summary of the Military Books) by Tran Quoc Tuan, 88 (c)
Biot, E. (19), 3 (d), 110 (c)
Biot, J. B., 110 (c)
Biton (3rd or 2nd cent.) 171–2, 184, 188 (a), 239
blast furnaces, 463
Blochet, E. (1), 276, 237
blockhouses to defend roads, 260, 265
boards
caltrop, 264 (a), 289, 470
hanging bell, 384, 385
mine support, 463, 466, 467
wolf's tooth striking, 415, 485
boats
against flooding attack, 456–7, 438–9
paddle-wheel, 210, 220
bodyguards, 143
Boghazköy, 430
bolus, 201
bombarde, 29
bombs, 27
delivered by trebuchet, 204, 205, 209–10
fire-, 209–10, 445
bone, armour made from, 180
Book of Lord Shang. See _Shang Chén Shu_
Boots, J. L. (1), 161, 165, 167
border, 5, 7–8, 27, 126, 141–3
Han forts, 264, 266–7, 309, 314
Thang look-out posts, 262
bows, 101–20
aiming, 153
appearance, 103
arrow-tubes, 166–7, 168
chariot-fighting period, 4
Ch'ing dynasty example, 102, 103, 104, 105–7
composite, 4, 102
crossbow outranges, 125, 177 (a)
deployment, 28, 214
draw-strengths, 102 (c), 114, 115, 176–7
'eats', 105–7, 108, 109
Eastern Han example, 106
general classification, 102
glue, 101–2, 111–13, 185
horse-archers, 5, 6, 7–8
Korean, 103 (c), 109, 110 (n), 117, 118, 167, 168
longbow, 102, 174, 176–7
materials, 101–2, 104, 105, 109, 111–13, 185
mechanical properties, 113–15
Ming improvements, 107, 108
Mongolian release, 117–18, 119
INDEX

bowed (cont.)

origin, 10, 115-17
pellet-bow, 115-17
reflex, 4, 102
reinforced or compound, 102
sandalwood, 110
Scythian, 105, 107-8
self, 102, 114, 174, 176-7
social role, 178-83
stiffening with plates of bone or antler, 105-7
structure, 104, 109
technical data, 176-7
technical terms for parts of, 109-10
technique, 117-18, 119
testing, 114, 115
thumb-rings, 117-18, 119
See also arrows
Boxer uprising. See I-Ho-Thuan
Bradbury, J. (2), 204
bravery as stimulated by expectation of death, 42-3
bridges, 25, 364-70, 371
double-tracked creste-, 222 (d)
'fishing' (cho ch'ushe, drawbridge), 25, 339, 371, 372
floating, 219, 220, 222 (d)
'golden' (passage for retreat), 67
'movable sky-bridges', 419 (a), 420
'releaseable' or 'revolving', 364-5, 367, 370, 371
suspension, 118
Britain, Roman, 307 (e), 330, 331, 332, 356, 359, 361, 362
bronze
armour, 180 (d)
spings, Alexandrian, 186
See also crossbows (trigger mechanisms), and under
vessels
bronze age
archery, 102 (d)
city planning, 322 (a)
Western defences, 429
See also Shang dynasty
brotherhoods, 84
brushwood
fences, 329, 329-4, 445
pallisade, combustible, 450, 481
'tie' (ch'ushe shan), 333-4
Bucket, counterweighted bailing. See swape
Buddhism
bodily control, 111 (d)
and Chinese annihilation of Tibet, 99 (a)
and ideological suicide, 43 (a)
Kuan Yü cult and, 85
Lamaist, 99 (a)
lokapala, 86 (a)
martial arts, 87 (b)
and militarism, 85-6
monasteries, 67 (b)
reincarnation, 42
Zen, 111 (d)
Budhā, Muhammad
Hidayat al-rami (The Archer's Guide), 166 (j)
building. See construction
bureaucracy
anti-militarism, 19, 98-9
feudal, 79, 100, 240
longevity, 75
military/civil relationship, 76-7
Burials. See tombs
Burma, 212 (c)
Busca, G. (c. +1540/+1600), 261
business. See trade
Byzantium
Gothic wars, 232
military theorists, See De Be Militari; De Rebus
Bellicis; Maurice; Treatise on Strategy
siege engineers at Angers, 233-4
trebuchet transmitted from China via Turks, 215
Cacogliati (Italian military architect, fl. +1693), 262
Cafras, Annals of (Genoese, c. +1285), 234-5
caltrops (chi ti), 264, 365, 277
around camps, 267
boards, 264 (f), 289, 470
cylindrical (chi li thiou), 433, 445
iron (chi li), against tanks, 425-6
iron water-cbestnut (chi lik chao), 287, 288, 289
outside walls, 20 binder infantry assault, 481
Sung, 287
Cambodia; reliefs of arcuballiste, 193-5, 196-7, 199
camps
defences around, 267
distance from city under siege, 269
lay-outs, 56
canisters, self-propelled bamboo, 168
cannon, 29
bamboo precursors, 168
trebuchets replaced by, 215, 229, 230
ture metal barrel-, 1, 2-3, 26 (e), 28, 168, 229, 230
capitalism, 99-100
Carcassonne, 309, 314, 357, 359-60
Cardiff
Roman fortifications, 330 (e), 356, 361
Carpini, John of Plano (b. c. 1220), 175 (l)
carts. See assault wagons; moats (carts for filling in);
overlooks; screens (mobile wooden; wooden); and
following types of cart: cloud; Double Hook; Duke
Lu's; fire-; fork; head; high-sided; hook; hook
parapet; hungry falcon; knife; nest; rake; step;
toad; tower; watchtower; windlass
cash (chhi m), 337
castles
Japanese, fire-proofing, 345, 347, 349-9
role of Chinese, 290-
catapults, 5
crossbow type, 150, 159
See also arcuballiste
pellet-bow (lan kung), 115-17
projectile weights and ranges, 187
torsion types, 170-2, 184, 185, 186, 232-3, 238
Western, 170-2, 173, 185, 186, 232-3, 238
Catholic Church, 1, 174
catty (unit of measurement), 154-5
cauldrons, 274
cavalry, 8, 26, 28, 124, 125
INDEX

Caves of the Thousand Buddhas, Tun-Huang, 387, 388-9
centrifugal principle, 200-3
Chagatai (Mongol leader, + 13th cent.), 222 (d)
chain-mail armour, 180, 275
Chalcedon (bronze spring), 186
Champa (South Vietnam), 145, 199, 222 (b)
Ch'ao Ku T'ou T'ai (Historical Tales of the Intrigues of the Warring States), 50, 117 (l), 140, 146, 405
Ch'ao T'un Chi Shu (Divination from Clouds and Vapours), 56 (h)
Chang, K. C. (9), 243
Chang Chhi·Yiin (4), 17
Chang Chhi·Yin (general, fl. + 1562), 145
Chang Chun·Shu (4), 329, 353
Chang Chlin·Tso (artillerist, c. + 1230/- 1284), 215 (i), 222
Chang family (Chinese engineers in service of Mongols, + 12th/- 13th centuries), 222 (d)
Chang Fei (military deity, d. + 221), 84
Chang Han (Chhin general, fl. -206), 428-6
Chang Heng (astronomer, + 78/- 139), 120
Chang Hui (arrow-smith, + 1St cent.), 117
Chang Jou (crossbow maker), 134
Chang Jung (Wu·Su·Chhih, engineer in service of Mongols, + 1159/- 1230), 222 (d)
Chang Kang (military engineer and catapult-maker, + 5th cent.), 198-9
Chang Kuei (Sung officer, fl. + 1272), 220
Chang Liang (Han counsellor, d. - 187), 21 (d), 88 (c)
Chang Lin (engineer in service of Mongols, fl. + 1283), 226
Chang Nn·Pei (engineer in service of Mongols, + 1189/- 1262), 222 (d)
Chang Shun (Sung officer, fl. + 1272), 220
Chang Tan. See Yuanan Chi Wu Chhau Huang
Chang T'ing·Yiin (statesman and scholar, + 1670/- 1756), 239
Chang Ting·Shun (official, fl. + 1004/- 1007), 214
Chang·Yeh, military colonies, 25 (c)
Chang Yen (military author, + 3rd cent.), 191 (d), 206
Chang Yu (Sung military author), 27
Chang Yung (soldier, fl. + 988), 215 (c)
Chao, Lady (+ 3rd cent.), 112 (k)
Chao, State of, 7
assault of Wei, Han and Chih on Chin·Yang (- 455/- 453), 455-6
Han·Tan as capital, 49, 250
Sun Pin's attack, 96 (d), 71
Chao Chhing·Kuo (general, - 137/- 52), 25 (c)
Chao I (statesman and author, + 1727/- 1814), 230
Chao Ju·Kuo (geographical author, + 13th cent.), 120, 190 (f)
Chao·Khang·Chen, probable site of Chiang, 251-2, 255
Chao Tho, Viceroy of the South (d. - 137), 190-1
Chao Yeh. See Wu·Yeh Chhau Chhau

Chariot warfare, 4, 5, 15, 124, 126, 127
Charlemagne, capitular list of (c. + 800), 233
Charles the Bald (Emperor, king of France, + 823/- 877), 233-4
Charon of Magnesia (inventor of arcuballista), 171
charts, sailing, 29
Chavannes, E., 6, 29, 142
charbballista, 172 (g)
chemical warfare. See gas
Ch'ên Chi (Records of Army Formations and Tactics), by Ho Liang·Chhên, 27
Chênh Thinh·Yian and Li Chen (t), 3 (b)
Chêng·Tzu·Yiin of Chhu's attack (- 66), 348, 350-1
Chêng·Chou, 292, 294, 342, 351, 431
Chêng·Chung (writer, c. + 80), 153
Chêng·Hsuan (scholar, + 127/+ 209), 153
Chêng·Su·Hsiao
His Shih (c. + 1300), 221
Chêng·Tê·Khun, Dr, 144 (c)
Chêng·Yu·Tzu (officer of Thang, fl. - 566), 442
Chevaux-de-frise
cha ma, 334, 335
hsiung ma, 461, 462
Chhau·An, Han city of (Sian) caltrop, 265
drainage, 314 (b), 316
gates, 348, 349
grid system, 322, 326-7
no releasable bridges found, 370
walls, 302
Chhau·Chhou
siege (+ 1275), 225
Chhau·Hsing bow shop, Chhèng·Tu, Szechuan, 102 (c)
Chhau·Yang·Fu (Rhapsody on the Chhau·Yang Palace)
Yang Hsiung 424
Chhau·Tsho (Earlier Han scholar and politician), 33 (c), 123-5, 144 (c)
Chênh·Shu. See arcuballistae (multiple· bolt)
Chhên Chhi (- 11th cent.), 82
Chhên·Ching (t), 132
Chhên·Hsi (retainer of king of Hêng·Shan, fl. - 125), 435 (a)
Chhên·Hsien (defender of Hsian·Hu·Chhêng, + 450), 496
Chhên·Kuei (civil magistrate of Tê·An, fl. + 1126), 27, 192
Chhên·Lin (scholar, + 2nd cent.)
Wu·Chhau·Fu, 415-16, 484
Chhên·Shou (writer, fl. + 290). See San·Kuo·Chih
Chhên·Thang (officer, fl. - 36), 144
Chhên·Tshang, siege of (+ 229), 451-2
Chhên·Wang Chhing (Liu Chhing, artillerist, fl. + 173), 152, 154
Chhên·Yin (archer, - 5th cent.), 115-16, 137-9, 153
Chhêng, siege of (- 547), 461
Chhêng·Chhun·Tou (crossbow expert, + 16th cent.), 134
Chhêng·Hsin·Fu, 157, 161
INDEX

Chiang Nu Chiang-Chin Wang Wei Shê Fa (Manual of Archery by Wang Wei, General of Crossbowmen), 144
Chiang Tzu-Ya (statesman, + 11th/ + 12th cent.), 96 (d)
Chiao Shê Ching (Crossbowman’s Manual), by Wang Chii, 122, 150
Chiao Yu (+ 14th cent.)
Hua Lung Ching 27 (b), 88 (c)
Chiao-Ho, 339 (a) 341
Chiao-chou Wai Tü Chi (Record of the Countries beyond Annam), 190-1
chêh chê (large trebuchet), 412
chêh kao. See under donkey, wooden
Chih clan
assault on Chin-Yang (−455/−453), 455-6
chhi li (officer of city), 465
chin (catty), 154-5
Chin, State of
breakup, 455
cities, 249, 249-50, 251-2, 255, 386
poisoning of Ching river, 270
use of deception, 267
victory over mountain barbarians, 5, 7
war against Chhu, 5, 421
Chin dynasty (Jurchen)
gunpowder-projectiles, 9
iron plate armour, 180
military literature, 29
technicians enlisted by Mongols, 225
wars against Sung, 1, 9, 27, 270
Chin Hsiang (officer of Chu-ko Liang, fl. + 229), 451
Chin-Kuan, 264, 267, 268
Chin Tartars, 145, 215
Chin Thang Chih Chiu Shih-Erh Chou (Twelve Suggestions for Impregnable Defence), 28 (d)
Chin Wang (Li Kho-Yung, fl. + 915), 269
Chin-Yang
attacked by Wei, Han and Chih clans (−455/−453), 455-6
siege by Li Kho-Yung (+ 915), 269
Ching-Chhi (musician, of state of Chhin), 455-6
Ching Kho (Yen envoy to Chhin, −3rd cent.), 41
Ching river; poisoning by Chih, 270
Ching-Tê reign-period (+ 1004/ + 1007), 214
Ching-thian (well-field system), 75, 244, 245 (a)
Chungiz Khan (Thai Tsu, r. + 1206/ + 1227), 222 (d), 223
Chin Chiang San Shu (Nine Chapters on the Mathematical Art), 302, 332, 335, 375
Chiu-Chhuan
military colonies 25 (c)
Chiu Ho (retainer of king of Hêng-Shan, fl. − 125), 435 (a)
chhu kung (‘nine mansions’), 51
Chiu Ming Shu (On Saving the Situation), by Liu Khun, 26 (d)
chivalry, 4-5, 18-19
cho chiao (drawbridge), 339, 371, 372
Cho Lu Mountain, battle of, 11
choppers (chüa), 177
Chou, Eastern
cities and towns, 241, 243-4
screen in siege defence, 405
See also Spring and Autumn period; Warring States period
Chou, Western
cities and towns, 241, 243-4
screen in siege defence, 405
Chou Hsin (emperor, fl. + 1172), 112
Chou Li (Record of the Institutions of Chou)
on archery, 118, 180-1
military literature, 19-20, 29; see also Sun Tzu Ping Fa
mining and metallurgy, 463
palaces, 244, 431
secret agents, 53
vulnerability of upper classes, 180-1
Chou Hsin (emperor, fl. + 1172), 82
Chou Li (Record of the Institutions of Chou)
on archery, 119-120, 112, 113 (d), 117
on crosses, 140-1, 153
social organisation, 74, 243 (c)
Chou Mi. See Wu Lin Chiu Shih
Chou Wei, 3 (d)
Chou Ya-Fu (general, fl. − 152), 52 (a), 143
Chozan Shissan (Japanese author, fl. + 1729), 92
Chu Chhiian (Diagrams and Explanations of a Variety of Machines), by Wang Chêng, 134-5
Chu Chhiian-Chung (founder of Liang dynasty, fl. + 907), 339
Chu Chiin (Nan-Yang), siege of (− 1845), 445-6
Chu Chüan Thu (Han military map), 262, 265, 387
Chu Fan Chih (Record of Foreign Peoples), by Chao Ju-Kua, 120, 190 (f)
Chu-ko Liang (Captain-General of State of Shu, + 181 to + 234), 1, 22-3, 40
and archillesae, 163, 192
devices and curtains, 49, 71-2, 87
Eight Formations Plan, 58
empty stronghold stratagem, 71-2, 81, 83
inventions attributed to, 8
persistence of importance in 20th cent., 67
in Romance of the Three Kingdoms, 80, 81
siege of Chên Tshang, 451-2
Chu-ko (Liang) nu (magazine crossbow), 163
Chu Lu Chi (Record of Hunting the Deer), by Wang Wei, 229 (c)

561
INDEX

Chu ma (cheval-de-frise), 334, 335
Chu Pien (writer, f. c. 1 + 139), 156
Chu Tê (Communist leader, + 1888/9 + 1976), 51
Chu Yen (Juian), Han inscribed bamboo slips from, 203, 309 (a), 353, 408, 444
Chu Yüan-Chang (Ming Kao Huang Tê, emperor, + 1328/1399), 202-9
chuan šā-ch'i ('revolving shooting machine'), 203, 412-13, 450
chuan-yü (archers' protective shutters), 309, 312
Chuang T'zu (Book of Master Chuang), 89-90, 111 (d), 116, 140
Chiêh Chang Hsin Fa (Manual of Foot-Armed Crossbows), by Chêng Chhunh-Tou, 157, 161
Chukchi crossbow, 135
chuan (unit of measurement), 155
Ch'in Chêng (Military Administration), 12, 15
Ch'in Chih (Army Management), 12
Chung Hsiung Chêng Thu (painting), by Hsiao Chao, 344-46
Chung Khuci (military deity), 85 (f)
Chung-Shan, State of, 250, 252
Church, Catholic, 1, 174
Cimmerian Bosphorus (Crimea), 343 (d)
cities administrative centres, 290-1, 323-4
artisans' quarters, 245, 337-8
burial within, 301
and castles, 290-1
Chou; typology, 243-53, 292 (c)
customs dues, 337
directions and orientation, 300
early development, 243, 253-4
economic function, 291-2, 329
extra-mural settlements, 337-8
Han dynasty, 291, 322, 394, 399
heriarchy, and size, 244
intra-muraldefences, 317, 319, 323, 342-3
'male' and 'female', 259
markets, 324 (a), 326
military headquarters, 272, 290-1
planning, 244, 300, 317, 320-1, 322-3, 326-7, 334-7
political importance, 291
population movement, 329
Shang era, 243, 244
sites, 259, 260
Spring and Autumn, 245
Thang development, 291, 329
wards, 317, 323-2, 326-7, 329
Warring States period, 245, 253-5
Wei dynasty, 329
See also gates; mao; poliorcetics; walls
civil and military elements in China, 76, 78-9, 85, 88-92, 98-9
See also wu (civil values); wu (military)
civil service examination, 145
Civil War, Communist-Kuominthang, 68 (b), 70 (b)
Clamps (küeh), 452
Clans, 91
foreign specialists resident in China, 221
war of Wei, Han and Chih against Chaos (¬ 455)
¬ 453), 455-6
class, social
archery and balance of power, 178-83
Clausenitz, Karl Marie von, 16, 44, 71
clocks, water-, 25, 26 (a)
cloud cars (yüen chêh), 435
cloud ladders (yüen thi, counterweighted ladders), 411-12, 424, 434, 438, 443, 446-8, 449, 450-2, 453, 484
cloud pavilions (yüen kou), 416
clouds, 56-7, 58, 59
coa, 465
dust blown into enemy mines, 477
colonies, military-agricultural (thun thien), 25, 74
colours
banner and flag, 37-8, 284, 384
and battle formations, 59
and divisions of space, 57, 384
Five Phase theories, 284
uniforms, 8-9
combat and competitiveness, 37-45
combat arts, 86-8
comets, 56
commandants (wei), 374
commandeering of private property, 271-2
commanderies, Han, 99 (a), 434-5, 438
commanders, 15, 49-52
administrative and political duties, 74, 78, 84
appointment, 52, 94 (a), 124
Chao T'ao on importance, 124
importance of eliminating enemy, 384, 461
personal relationship with men, 42, 274
personality, 42, 50, 274
post. (ting wei), 375
ruler's relationship with, 51-2
commercialisation of society, 337-8
communes, administrative, 74, 75
communications, 26
See also signalling
Communist Party
Civil War, 68 (b), 70 (b)
virtuous in liberating China, 64 (g)
war against Japan, 43 (d), 51, 67 (g), 68
competitiveness, 37-45
compulsion, 71, 92 (c)
Condeixa-a-Velha
Roman gate, 360
conditions, physical 33, 45, 50, 54
and siege warfare, 257-8, 259, 260, 261
Sun Tzu on, 15, 33
conflict, avoidance of. See victory without fighting
Confucian School (Ju Chia)
on acting in accordance with Tao, 51
and general principles of action, 31
on importance of will of people in warfare, 78
Sun Wu's affinity, 19
on victory without fighting, 38
Wu Chh'ê's affinity, 20
Confucianism
on acting in accordance with Tao, 44, 51
on force as necessary for State, 22, 95-6
Confucianism (cont.)
and harmony and peace, 94, 95
on interdependence of military preparations and
civil administration, 78
and militarism, 85-6, 98-9
on moral, spiritual and human factors in war, 44,
62, 64-5, 78
persuasion, explanation and propaganda, 180-3
popular heroes assimilated to, 88
on social solidarity, 180-3
on 'way of deception', 91
See also Confucian School
Constantine VII Porphyrogenitus (Byzantine
Emperor, +905/+959), 174 (b)
construction on building
corvee labour, 307
stamped earth, 244, 250, 292, 306, 351, 360-1,
375, 386
See also mud (fire prevention)
continuity of Chinese military thought, 67-70
controversies within Chinese military thought, 54-66
conveyor chains, linked (huan li shuai), 464 (a)
Coria
Roman gate, 360
Cortés, Hernando (conquistador, +1485/+1547),
174
corvee labour, 307
Counterweights, 185, 186-7, 205
See also cloud ladders; swape; trebuchets
(counterweighted)
Crécy, battle of (+1346), 177 (a)
credentials, personal security, 270-1, 317, 319, 344
Cree, H. G., 98 (c), 178
crenellations, 25, 339
Cretor, 174 (b)
Crime, Chhin policing of, 321-2
Crete, 343 (d)
Cromwell, Oliver (statesman and general, +1599/+1658), 9 (a), 55 (f), 79
crossbow platforms (nu than), 378-81, 382, 384, 385
crossbows, 120-83
Alexandrian, 172-3
ambush, 157, 159
Arabs and, 174-5, 178
armin, 121, 141, 146-51, 156, 157, 160, 412
arrow-groove (chian), 126, 127
arrows, 139, 433 (b), 470
belt-claw, 147-8, 149
bowstave, 126, 156
'box-and-tube' (kan chang mu nui), 169
catapult types, 150, 159
from chariots, 126, 127
Chhao Tsho on, 124
deployment, 121-2, 124, 143
drawing, see arming above
drill, three-rank, 122, 125
European, 170-8, 239, 259; arming, 148, 150;
mounted crossbowmen, 144 (c), 150; poisoned
bolts, 136 (c); steel spring bowstave, 232 (c), 238
(g)
'folded-in-layers' (chi uh nu), 169
gaasteropes, 170, 171-2, 238 (a)
goatfoot lever, 150-1, 157
Han era, 8, 141, 142, 307
horse-archers, 122, 144, 150, 162
Korean, 126, 127, 144, 161, 165
leaf-spring type, 136, 156, 157, 232 (a), 238 (g)
literature on, 15, 22, 27, 39, 144
lock, 126
magazine or repeating, 8, 136 (c), 150-1, 157,
159-70, 172-3
materials, 126
Miao peoples, 157
multiple-boh, (tim nu), 156-7, 158-8, 188, 229
origin and development, 135-46
pellet crossbow, 153 (c)
periods of use, 238
'piled-up' (chi nu), 169
poisoned darts, 156-7, 162
range, 123, 125, 176-7
recreational use, 116-17, 141, 145-6, 164, 170, 174
revolving, 203
sighting, 130, 136, 138-9, 151-4, 203
slur-bow, 116, 120, 163-4, 166
social role, 178-83
sporting, 173, 145-6, 162
stirrup-arming, 146, 147, 148, 156
stock, 120, 126, 177, 167
stringing of, 126, 128
Sung dynasty, 145-6, 169
technical characteristics, 176-7
technical terms for paru, 132-3, 138, 159-60
testing, 154-5
Thang dynasty, 122, 145
'tiller-detent', 178, 179
traps, 120-1, 132 (w), 135, 141, 157, 159
trigger mechanisms, 8, 15, 120, 121, 126-35, 143,
144, 178
'trivet' type, 126
for underground fighting (huan nui), 470
'wooden' (mu nui, heavy static type), 412, 433-4,
445
Civnades, 147, 173-4, 233, 322 (a)
crystallisation, study of, 2
culture
East Asian, and art of war, 68-9, 70, 92, 98
popular, and classical theory of war, 70
current, following the, 44
curtains, siege defence, 443, 453
against cloud ladders, 449, 450, 453
hemp (pu muan), 403-4, 405
straw or rush (chieh nui), 375, 402, 411, 449, 450
See also screens
customs dues, 337
cycles of history, 94-5
cylinders, study of, 2
daims, 100
dams, breaching of, 67 (g)
Darwinism, social 89
De Re Militari (prefaced by Paulus Sanclinus, c.
+1395), 235 (b)
De Rebus Bellicis (Byzantine, c. +370), 232 (c)
INDEX

Elements, Five (cont.)
and divisions of space, 57
importance, after 2nd cent., 24
invention of gunpowder promotes study of, 2
Kwei Ku Tso on, 31
and man vs nature controversy, 54, 55
metal, 55–93
and ‘natural spirit’ (thien Chi), 55–6
and predictions of victory, 58
works listed in Chien Han Shu bibliography, 22
elephants, Indian war., 7 (d)
elevator, 432, 433
embrasures (pi ni), 307
Empress-Dowager Tzu-Hsi (+1834/+1908), 75 (d)
emptiness, striking with fulness against, 35
Empty Stronghold Stratagem, 71–2, 81, 83
encirclement of enemy
avoidance of, 67
‘of Wei to save Chao’, 36 (d), 71
encyclopaedists, military, 24–30
See also individual works
engines, steam and internal combustion, 2, 205
epics, 70 (a, b), 80–1, 81–2, 90
See also Sun Kun Chi Hsii Ten I
Erben, W. (t), 234–5
Erh Shih (second Chhin Emperor, r. 210/1–207), 143
eskimo
bows, 104–5
Europe
ballistic machinery, 231–40
Chiang Kai-Shek’s interest in, 68 (b)
city planning, 261–3, 322 (a), 324–5
feudalism, 7 (a), 178, 239–40
guns, 238
humanitarianism, 93 (a)
longbow, 174
mangonels, 233
military thought compared with Chinese, 9, 16, 37, 67
military in world-view, 79, 99–100
swape, 237, 239
triangular fortifications, 261–3
See also individual places, and under arcubalistae;
catapalts; crossbows; Crusades; trebuchets
Euhtyton (Greek, torsion catapult), 183, 186
evacuation of area around city, 271
excrement, human: use in siege, 280, 478–9
exercises, physical, 28, 87 (b)
Exeter
fortifications, 330 (c)
experimental weapons, 187 (e, f), 217 (g)
extra-mural settlements, 337–8

Fa Chi. See Legalists
face, saving of, 97
Falkenhausen, L. von (t), 247 (b)
family as model for army, 42
Fan-Chheng, siege of, 219–23
Fan Chheng-Ta (author, fl. c. +1175), 135, 157
Fan I, king of Champa (fl. +315), 145
Fan Li Pung Fa (Military Manual), possibly by Fan Li, 206
Fan Li (Yüeh statesman, fl. +48o), 206
Fan Thien-Shun (defender of Hsiang-Yang and Fan-Chheng, d. +1272), 219, 220
Fan Wei-Chheng (writer, fl. +1630), 228 (a)
Fan Wen, king of Champa (formerly Nu Wen, Chinese officer), 145 (c)
Fan Wen-Hu (Chinese general in charge of Mongol expedition to Japan, +1281), 226
Fan-Yang county
late Han illustration of, 391, 392
Fan Yü-Chhi (3rd cent.)
suicide 41
fang ward system, 329
fans to propel smoke and impurities into mine, 477, 478
fat, incendiaries dipped in, 425, 426
fausse-branches, 308
Fei Chhiu, siege of (–205), 456
Fei I (counsellor to king of Chao, warrior), 8
fences
brushwood, 329, 332–4, 445
mobile collapsible, 261
Feng Chia-Shing (2), 205 (c), 231
Feng Hou (minister to Huang Ti), 11–12
Feng Hou Wo Chi Ching (Feng Hou’s Manual of Grasping Extraordinary and Strange Events), 11–12, 56 (b)
Feng Li (general, fl. +204), 463
Feng Lin Chou (Manchuria), 113
Feng Meng (legendary or –7th cent. archer), 137
Feng Meng (Han author on archery), 118
feng shan chieh (fans), 477, 478
Feng Shih Pang (Pass-Lists of the Deified Heroes), 81
Feng Shih Ten I (Stories of the Promotions of the Martial Genii), 81–2
feng shou fu (phoenix-headed axe), 486
Feng Yin (general of crossbowmen, fl. +25), 169
Feng Yun-P’ning, 143
Ferghana, 173
feudalism
bureaucratic nature of Chinese, 79, 100, 240
chariot-fighting, 4, 5
demise, 5, 7 (a), 178, 239–40
Japanese, 100
tows, 244, 290–1
fields
‘heavenly’ (thien thien; raked area around fort), 264 (b), 266–7
late Han walled, 393
filtration, study of, 2
fire, attacks with, 15
battle of Cho Lu Mountain, 11
in siege warfare, 5
stamping animals with blazing hemp, 67–8
See also incendiary devices and individual weapons
fire, suspended (tsüan huo), 481
fire-arrows, 15, 117, 341, 446, 451, 452
fireballs (yao), 477
firebombs, 269–70, 445
Fire carts (hao chieh), 419
INDEX

fire cauldron, wandering (yu huo kiang, incendiary device), 471, 472
fire fighting
- with hemp mops, 340, 475, 476
- in mines, 474-5, 476
- with mud, 340, 475
- with sand, 277, 345 (a)
- with water, 280, 344-5
fire-javelins, 446
fire-lances (tsuan huo), 27, 277
fire poles, 436-7
fire prevention
- acidic solutions, 345 (a)
- hides, 200, 272, 341, 345 (a), 426
- mud, 272, 334, 344-5, 348-9, 351, 407, 426
fire-robe, non-combustible (huo shang), 477
fire screens (shang), 405, 407-8, 409, 449, 450
fire-throwers
- huo tu (tough of burning material), 482
- ‘windmill’, Western, 402
fish glue, 112
Five Phase theories (Wu-Hsing), 284
flags. See banners and flags
flags, linked, 275, 277, 297, 408, 483-4
flamethrowers, 9, 27, 168, 445
flanking movements, strategic, 33 (c)
flight, study of, 2
flooding, attack by (shui or kwan), 5, 11, 67 (g), 241, 243, 453-60, 484
- walls as protection, 241 (c), 337
flooding, natural
- defensive value 293
fo-lang-chi (Portuguese breech-loading cannon), 28
folklore, 10-11
Kuan Yu, 89, 89, 84-6
force
- avoidance, see victory without fighting
- justifiable, 64 (i), 85-6, 94
- Confucius on value to state, 95-6
- minimum use, 96
- wu identified with, 92, 93
fork cart (ta chhe), 415, 416
form (kung), 34, 35, 74
fortifications, battle, 58-63, 61-3
- in chariot-fighting period, 4
Eight Formations Plan, 58-9
Four Animals (tsu hou), 56
heavenly bodies and, 56
- legendary introduction by Huang Ti, 10
- magical models, 24
- recumbent crescent (yen yueh), 26
- square, 123
Ten, 60
Yin-Chhiuch-Shan military texts, 60
Formosa, South
- archery, 120
fortifications
- and feudal system, 239, 240
Japanese, 334, 335, 336, 345, 347, 348-9
- mansions, later Han, 393-4, 395-404
Roman, 330, 337-9
Thang dynasty, 282
- triangular, 260, 261-3, 265
See also individual elements
fortune-telling, 56
fossa fastigata, fossa punica (Roman defences), 330, 331
fowling weapons
- crossbow 141, 145-6
- magazine crossbow, 159, 164
pellet-bow, 116
Franke, H. (24), 76
Frontier strategy, 5, 7-8, 27
Fu Chhi’ en (+160+189), 191 (d)
Fu Hsi-Nien (i), 364, 367-9
fu ping. See ambush
fu tsu chih chiu (‘Sons and Father Army’), 42
Fukien
- Mongol conquest, 215 (i)
- fullness and emptiness, 35
- Fu-Mou-Chih (Abol Mojod, artillery general, fl. +1300), 221 (d)

Gadfly, flying (fei ming, arrow), 470
Gailleard, Chateau, siege (+1204), 239
galleries, flying (fu tas), 393, 399
gallery, planted or interlocking (hsu pheng), 472, 473-4, 475
Gallo-Roman hunting crossbows, 172
- games (wa chhi), 92
- gas, artemisia (abunthol)
- use in mines, 462-3, 464-5, 466-7, 569, 470, 471
- vinegar as antidote, 469
gastraphetes (crossbow), 170, 171-2, 238 (a)
gates, 343-64
- appearance, 361-2, 363-9
- blocked by defenders, 280, 371, 373
- Chin, Yieu-Yang, 301 (d), 372
- doors covered with sheet metal, 344, 347, 349
- doors pierced to allow use of weapons, 347, 390
- fire prevention, 344-5, 348-9
- gassing enemy in, 462-3
- gatehouses, 292 (d), 294, 301 (d), 351-2, 386
- Greek world, 353-4, 356
- in intra-mural walls, 270, 317-18, 324, 329
- knife cart for blocking, 371, 373, 432
- Lu, Chhi-Fu Hsien, 296, 300
- model, Han, 361, 369
- Mohists on, 343
- portcullises, 347-51, 352
- posterns, Greek, 353-4, 356
- Roman, 345-7, 359-62, 366
- security restrictions on guards, 343
- Shang, 293
- shape, 351-64
- supplementary projecting wall, 352-3
a tenaille, 354, 357-8
- turn in wall to impede access, 266, 338, 353, 354, 355
- water gates, 301 (a), 302-3
See also sally-ports
INDEX

geaing, right-angle, 201 (b)
gelatins, fish-derived, 112
Genoa
Annals of Casarius, 234-5
arbaletes at battle of Crécy, 177 (a)
geography
concentric-zone concept, 94 (a)
geomancy, 22, 23, 24
gephones, 464, 465, 469
Gerona
Roman gates, 366
Ghent
s’Gravensteen, 309, 313
Geography, 463
Gobi desert
Han forts, 264, 266-7, 309, 314
Han ordnance records, 141
hongs, 15, 460, 461
Goodrich, L. Carrington & Fêng Ch’ia-Shêng (1), 205 (e), 231
Goths, 232
Graham, A. C. (112), 256
grain, 244, 337
granaries, Han, 344, 345
Granet, M. (3), 1 (d)
s’Gravensteen, Ghent, 309, 313
Greek fire, 345 (a)
Greek world
archery, 105, 105
catapults, 170-2, 173, 232
city planning, 317, 320-1, 322 (a)
gates, 344 (k), 353-4, 356-8
proper time (kairais), 55 (f)
grenades, paper, 477
Groslier, G. (1), 193, 194
ground, nature of, 123-4, 259, 360
guardhouses, 292 (d), 294, 301 (d), 351-2, 386
guards
‘curtain’ (bodyguards), 145
security restrictions on gatekeepers, 343
Guilelmus Tyrius (chronicler, c. +1130 to 1190), 233 (c)
gunpowder and gunpowder weapons
anti-personnel weapons, 222
bamboo devices for delivery, 2-3, 164 (b), 168
discovery, 1, 9
and end of feudalism, 178, 239-40
fireballs (334), 477
flamethrowers, 9
formula given by Tsêng Kung-Liang, 27
Japanese objections, 10, 178 (d)
multiple-spring arcaballistae and, 198
periods of use, 238
scientific work occasioned by, 2
in sieges of T’ê-An (+1127), 27
in ‘Stories of the Promotions of the’ Martial Genii’, 82
trebuchet projectiles, 204, 205, 209-10, 215, 220, 222
in West, 238
See also bombs; cannon; Huo Lung Ching

Hadrian’s Wall, 307 (c)
Hai Nei Shih Chou Chi (Record of the Ten Sea Islands), attr. Tung-fang Shuo, 113
Haichou, siege of (+1161), 215 (f)
haibirds, 4
chi, 277, 278
ko, 277
in naval warfare, 460
short, sappers (tsuan chi), 470
yü-fang, 457, 458
hammers, 484
long, 277, 280
Han, State of (Warring States period), 146
Han clan
attack on Chin-Yang (−457/−453), 455-6
Han Chung (leader of Yellow Turban, fl. +184), 446
Han dynasty
armour, 180
border forts, 264, 266-7, 309, 314
cities and towns, 291, 322, 394, 398
crossbow, 8, 141-5
crossbow-cataapults, 8
Eastern bow, arrows and quiver, 106
frontier strategy, 8
gates, 352-3
horse-archers, 6
Korea and Vietnam in commanderies, 99 (a)
military literature, 29
policing, 321-2
turbulent period at end of, 395, 394, 398, 435
wars against Hsiung-Nu, 1
weights and measures, 155
Western; city of I-Lou, 386
Han Fei Tzu (Book of Master Han Fei), 19, 90, 140, 455-6, 457
Han Kao Tsu, See Liu Pang
Han-Ku (Hsien-Ku) pass, 362, 365
Han Kuei (soldier, late 5th cent.), 455
Han-Shu bibliography, 16
Han-Tan (capital of Chao), 249, 250
Han Wu Ti. (215, 220)
Hangchow (Sung capital, late 11th cent.), 451
Harcourt, R. (280, 298, 301)
Harmon, J. W. (304, 311)
Harrison, R. (291, 301)
Hastings, Battle of (+1066), 173
Harada Yoshito
Harmony, 94
aim of military to uphold, 72, 74, 85-6
pre-eminence in Chinese philosophy, 95, 98
of rulers/officers and people, 181, 257-274
harness, horse, 4
Hasan al-Rammâh (fl. +1285), 226, 237
Hastings, Battle of (+1066), 173
Hayashi Minao (5), 3 (d), 419, 457, 458
head cart (tsou ch’ê), 472, 475, 476, 477
healing, Kuan Yu cult and, 84
heat-transferer (chu’un ts’ang), 482
INDEX

Heraldry, 55-6
and battle formations, 58, 59
correspondence between Earth, Man and, 93-4
Hedin, Sven, 105-6
helms, Shang bronze, 180
Hemp
curtains, 403-4, 405
mops, fire-lighting, 340, 475, 476
water containers, 344
Ho-Shan, king of (fl. -125), 435 (a)
horses, metaphor of dismounting after conquest, 79, 95
Huang-Cheng, of (中心城市), 93
Huang-Chih (leader, + 502), 334-347,
417-19, 424-5, 428 (a), 445
Huang-Chun-Chi (Thang general, fl. +630), 214
Hua Han Shu (History of the Later Han Dynasty), 38
(d), 39, 152, 169
Hua-Kang
Lungshanoid walls, 292, 341
Hua-Ma (Hsin-Thien, capital of Chin), 248, 249-50
Hua Jung (Western Jung), 484
Hua-Po (Hsia or Shang city at Yen-Shih Hsien), 295, 296
Hua-Yang phao (Portuguese barrel-guns), 230
Hua-Yü phao (Muslim trebuchets), 230
Hua-Yu Chi (Pilgrimage to the West), 80
hsia adventurers, 88
hsia chéng chiao chéh (windlass cart), 432, 433
Hsia dynasty
gates, 351
and Yang-Chhêng, 292 (c)
secret agents and overthrow of, 53
Hsia hou Shu. See Yü the Great
Hsi-Hsien
site of An-I, 250-1, 253
Hsia-Paii, siege of (+ 198), 456
Hsia-Tu (capital of Yen), 246, 248
hsiang (districts of Western Chou city), 244
Hsiang-Chou
flooding (+ 953), 337 (e)
Hsia-Ho-Phing, siege of (+ 238), 435-6
Hsiang-Ping Chia Ming Shu (On Saving the Situation by the (raising of), Militia), by Li Khun, 28
(d)
Hsia-Yang, siege of (+ 113th cent.), 203-4, 219-23, 237
Hsia-Yang phao (type of trebuchet), 237
Hsiao Chao (painter, Southern Sung), 344, 346
Hsiao Chêng, Prince of Chao (fl. - 250), 55
Hsiao Chien (2), 68
Hsiao Hsueh Kan Chiu (Eight Formations Plan), 58 (g)
Hsiao Ling, prince of Han, 143
Hsien-Ku (Han-Ku) pass, 362, 375
Hsien-Pi nomads, 391
Hsien-Yang
Chhin troop movement - 209, 143
releasable bridge, 367, 370
Hsin-Chêng (capital of States of Chêng and of Han), 205, 247-8
Hsin-Fan
Han market scene from, 228
Hsin Shih (History of Troubles Times), by Chêng
Ssu-Hsiao, 223, 225
Hsin Shu (Book of the Hearts and Minds), attr. Chu-
ko Liang, 23
Hunah, 122, 144, 150, 162
Hunah-kats, 479
Hunah-ko-erh, 186 (j)
INDEX

Hsin Thang Shu (New History of the Thang Dynasty), by Ou-Yang Hsiu and Sung Chhi, 75
Hsin-Thien (capital of Chin, at Hou-Ma), 248, 249-50
Hoong ma (cheval-de-frise), 461, 462
Hsü Ti (Punishments and Virtues), 22 (b)
Hsiung-Nu, 1
chariots or tanks, 424
Thung-Wan Chhêng, 388 (a)
Hsü (emptiness), 35
Hsi Ching (envoy to Korea, +12th cent.), 103 (c)
Hsi Ching-Lin (poet), 81
Hsi Ching-Shu (4), 118, 120, 152 (a), 169
Hsu Fu (magician, fl. -210), 188
Hsi-l, siege of (+451), 417
Hsu-Ko, battle of (-706), 266
Hsiu Phung (plaited or interlocking gallery), 472, 473-4, 475
Hsi Shen (scholar, d. +120), 206
See also Shuo Win Chhêng Tzu
Hsi Ta (general, +1392/+1383), 293
Hsu Tung (writer, +5970 to +1011). See Hsi Chien Ching
Hsian, Viscount of Wei (fl. -455/-453), 455-6
Hsien-Ho Feng Shih Kao Li Thu Chhing (Illustrated
Record of an Embassy to Korea), by Hsiu Ching
103 (c)
Hsian-Hu-Chhêng, siege of (+450), 436
Hsian men. See portcullises
Hsian-Wu Army, 195
Hsik beon. See sally ports
Hsien Chhing. See Hsien Tzu
Hsien Tzu (Book of Master Hsien), 30, 64 (f), 65, 74, 114 (a), 141, 182 (e)
Hsien Wu, Lord of Mu (fl. -540), 7
Hu barbarians, 125
Hu Chhien Ching (Tiger Seal Manual), by Hsi Tung
25-6, 39, 56 (f, h), 57 (b, c, f, g), 60, 60 (a), 423, 425-459
Hua Chih Shih Wang Ho Shih Shu (Book on Shooting,
by Wang Ho, Officer commanding Archery Training of Defence Formations), 144
Hu Fu (local deity of Chhu), 137
Hu San-Hsing (author, +1230/+1287), 166
Hu-Tun phuo (Crouching Tiger' trebuchet), 235,
237
Hu Yen (military writer, -7th cent.), 12
Hua Chhiaio (writer, Chhina), 152
Hua-Chhou, 455
Hua Miao people, 136 (c)
Hua Shu (Book of the Transformations in Nature), c.
+940), 155
Hua Yüan (officer of Sung, fl. -593), 441-2
Hua Nan Tzu (Book of the Prince of), Hua-Nan,
-120), 33 (a), 34 (a), 141, 169, 183, 191, 405, 438
Huang Chin (Yellow Turbans), 446
Huang Fa-Chhiu (admiral, fl. +573), 210
Huang I-Hsiu (crossbowman, Hangchow, early
+13th cent.), 146 (b)
Huang Shih Kang San Lien (The Three Stratagems
of the Old Gentleman of the Yellow Stone), 21
Huang Ti (Yellow Emperor), 10
climbs Khung-Tung, 419
and invention of battle formations, 58
and origin of archery, 137
Yin Fu Ching attributed to, 11, 88 (c)
Huang Tien Chhong Mian Lu (Records of the Imperial
Mongol Expedition against Burma, +1300),
212 (e)
Hucker, C. O. (5), 97
Hui Tsung (Sung emperor), 229
Hui Tzu (logician, +3rd/+4th cent.), 116
Hulagu Khan (fl. +1256), 177 (k), 199 (a), 219 (f)
human-heartedness (j'ai), 93
humanitarianism, European, 93 (a)
Hundred Days of Reform (1898), 75 (d)
Hung Tsun (official, +1120/+1174). 157 (j)
Hungarian, 218 (c)
hungry falcon cart (é ku chéjé), 415, 417
Huns, 1
Chhao Tsho on tactics against, 123-5
crossbows used against, 124, 125, 143, 177 (a)
Han defensive strategy against, 38 (d)
Ho Chhii-Ping's victories, -120, 25 (c)
Li-Ling shoots khan, 123, 191
hunting
with crossbow, 162, 170, 172, 174
crossbow traps, 120-7
Wang Mang's, 434-5
Huo chui (sapper's tool), 479
Huo kung. See fire, attack by
Huo Lung Chhing (Fire-Drake Manual), by Chhao Yü
23 (b), 88 (c)
Hurrians 431
Hussite arcuballista design (c. +1430), 232 (d)
Huuri, K. (1), 174, 184 (a), 216-17, 237
I (peoples), 295
I, Marquis of Tseng (Tséng Hou-f), 482, 483
I-Chhii tribe, 125
I Chhing (Book of Changes), 22, 23, 30, 101, 169
I Chhou Shou (Lost Records of the Chhou Dynasty), 24:
(b)
I fu ('ant-like approach'). See infantry (mass assault)
I-Ho-Thuan (Boxer) uprising, 56 (c), 75, 87 (b)
I Jên (1), 89 (c)
I-Lou tribe, 386
I Pin Chh (The I-Pin Collection), by Wang I, 23:
ping (Righteous Army), 64
I-Pu-La-Chhin. See Ibrhâm
I Yin (statesman), 90
Ibn Hudai (+14th cent.), 175 (f)
Ibrhâm (I-Pu-La-Chhin, Talib, artillery general, fl.
+1282), 221, 222
identity checks, 270-1, 317, 319, 344
illiteracy, 80
incendiary devices
bamboo tubes, 164 (b), 168
bundles of reeds and rushes, 402, 404, 405
fat-dipped, 426
late Han/San Kuo development, 8
literature on, 15, 25, 27, 28
in mines, 471
INDEX

incendiary devices (cont.)
- oil, 404-5, 426
- throwing-sticks, 164 (b)
- trebuchet-delivered, 210
- wax, 404-5, 426
See also flamethrowers; gunpowder; torches
- (phœnix-tail; swallow-tail); and individual weapons under fire.

India
- archery, 121, 167, 175 (b)
- astronomers and mathematicians in Thang China, 221 (e)
- elephants, 7 (d)
- military-administrative commands, 79
- indirect means, use of, 36
- 'encirclement of Wei to save Chao', 36 (d), 71

Indo-China
- arcuballista, 145
- crossbow triggers, 144-5
- poisoned arrows, 136 (c)
See also Cambodia; Champa; Vietnam
- industrialisation, Japanese, 70, 100
- inscriptions
- Shang oracle-bones, 241, 243
See also slips, Han
- intelligence. See agents, secret; deception

iron
- 'good iron is not used to make nails', 85 (g), 98
- manufacture, 140, 465
- molten, poured on enemy, 277
- plating of ram heads, 412, 413, 426, 417

Iran
- Roman gate, 360
- Isaiah, Book of, 55 (f)
- Ishikawa Mon
- Kanawajajo, 347, 349
- Isidorus of Abydos, 171

Isma'il (I-Su-Ma-Yin, engineer, fl. +1271), 220-2, 237

Ithy
- Roman gate, 362

Italy
- +17th/+18th triangular fortifications, 261

Jang
- iron-making, Han era, 140

Jannings, Werner
- hu, 417-8, 460

Japan
- archery technique, 117
- campaigns against Ezo (+8th/+9th cent.), 334
- commanders' paternalism, 47
- daimyō, 100
- feudalism, 100
- fortifications, 334, 335, 336, 345, 347, 348-9
- and gunpowder, 178 (d)
- industrialisation, 70, 100
- martial arts, 87 (b)
- militarism, 100
- Mongol expedition (+1274), 226
- mud fireproofing, 345, 347, 348-9
- Nanking Government, 70 (b)
- samurai, 100
- Thang contacts, 336
- traditionalism, 68, 70
- war against China (+1937/+1945), 43 (d), 51, 67
- javelins
- for arcuballista, 125, 184
- fire, 446
tethered, 190 (f)
- Jaya Indravarman, king of Champa, 145
- Jên (human-heartedness), 93
- Jen Hung (guards officer, fl. +30), 22, 30
- Jên Mù Jîh PaO (People's Daily), 396
- Jesus, 55 (f)
- Jesus, 55 (f)
- jow (softness), 93-4
- Ju Chia. See Confucian School
- Ju-Nan commandery, 436
- Ju Shun (writer, +3rd cent.), 437
- Judaism, 55 (f)
- Jude, 87 (b)

Jurcheus. See Chin dynasty (Jurchen)
- justice
- conviction in justice of one's cause, 13 (e), 182, 183-257
- early Portuguese travellers on Chinese, 93 (a)
- Kuan Yu cult and, 84
- popular military heroes uphold, 87-8
- punishments, 93 (a)
- Righteous Army and, 64
- violence justified to maintain, 85-6
- Al-Juwaini, 'Ali' al-Din (fl. +1260), 177 (k), 219 (f)
- Juyan. See Chi-Yen
- Al-Juzjani
- Tabaqāti Nāṣīrī, 218 (c)

Kai Yü Tshung Khao (Miscellaneous Notes made while attending his aged Mother), by Chao I, 230 (e)
- kairos (Greek, 'proper time'), 55 (f)
- kan thung mnu mnu ('box-and-tube wooden crossbow'), 169
- Kan Ying (envoy to Syria, fl. +97), 173 (b)
- Kanawajajo Kanemitsu. See Wakan Senpō-shū
- kanawajajo, 347, 349
- kung (hardness), 93-4
- Kansu, Han finds from, 126, 141, 393, 399
- Kao-Chhang, 214, 340
- Kao Chih-hung. See Shih Wu Chi Yün Chi Lai
- Kao Huan (general, +446/+547), 435, 444, 446
- Kao Ssu-Sun. See Wt Lüeh
- Kao Thung (mechanic, -2nd cent.), 190-1
- Kao Tsu. See Liu Pang
- Kao Ying (envoy to Syria, fl. +97), 173 (b)
- Kanawajajo Kanemitsu. See Wakan Senpō-shū
- kung (hardness), 93-4
- Kansu, Han finds from, 126, 141, 393, 399
- Kao-Chhang, 214, 340
- Kao Chih-hung. See Shih Wu Chi Yün Chi Lai
- Kao Huan (general, +446/+547), 435, 444, 446
- Kao Ssu-Sun. See Wt Lüeh
- Kao Thung (mechanic, -2nd cent.), 190-1
- Kao Tsu. See Liu Pang
- Kao Ying (envoy to Syria, fl. +97), 173 (b)
- Kanawajajo Kanemitsu. See Wakan Senpō-shū
- kung (hardness), 93-4
- Kansu, Han finds from, 126, 141, 393, 399
- Kao-Chhang, 214, 340
- Kao Chih-hung. See Shih Wu Chi Yün Chi Lai
- Kao Huan (general, +446/+547), 435, 444, 446
- Kao Ssu-Sun. See Wt Lüeh
- Kao Thung (mechanic, -2nd cent.), 190-1
- Kao Tsu. See Liu Pang

Kao Yu
- comm
- Kao Yue
- Karakhe
- karate, 8
- Karlgren
- katapela
- katarpelik
- Kauliva
- Artha
- Kayamo
- Keegan
- Kelimun
- Roman
- Khaiseng
- site of siege (Khang, 146)
- Khashars, 310
- Khto ti kung
- K hhAibaili, 226
- kung chih
- Kung C
- kung-ting
- kilns, 463
- Kingly W
- Kipling, I
- Kidah al-F
- on th Macl
- Kloosterg, 373
- knife cart
- Knights-er
- Ko Hung, G
- Korea
- archery, arrow to
crossbows
- Han era
- Thang era
- Kou Chien
- 15-1
- Ku-su Si
- Kuan-Tu
- Kuan Tzu
- Kuan Yu
- 84-6
- Kuang-Ch
- Han ton
- Kuang-Ha
- Han men
- Kuang Shih
- Encyc
- Kuang Sung
- Provist
<table>
<thead>
<tr>
<th>Index</th>
<th>571</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang Yu dictionary (+ 1011), 191 (d)</td>
<td></td>
</tr>
<tr>
<td>Kuangsi rebellion (+ 1186), 199 (d)</td>
<td></td>
</tr>
<tr>
<td>Kuro Hai Yu Hung Chih (Topography and Products of the Southern Provinces), by Fan Chheng-Ta, 157</td>
<td></td>
</tr>
<tr>
<td>Kuri Ku Tzu (Book of the Devil Valley Master), 30, 31-2</td>
<td></td>
</tr>
<tr>
<td>Kueita o (way of deception), 91, 96</td>
<td></td>
</tr>
<tr>
<td>Kuro T'an Ku, by Chang Heng, 120</td>
<td></td>
</tr>
<tr>
<td>Kun (father of Yu the Great, -3rd millennium), 242</td>
<td></td>
</tr>
<tr>
<td>Kung chih (assault wagon), 436</td>
<td></td>
</tr>
<tr>
<td>kung fu, 87 (b)</td>
<td></td>
</tr>
<tr>
<td>kung hsin (psychology), 23</td>
<td></td>
</tr>
<tr>
<td>Kung Nu Shu, Kung Nu Yian (crossbow factory), 145</td>
<td></td>
</tr>
<tr>
<td>Kung-shu Pan (engineer, rival of Mo-Tzu), 446-7, 450</td>
<td></td>
</tr>
<tr>
<td>Kung-Sun Tsan (Han loyalist general, d. +199), 435</td>
<td></td>
</tr>
<tr>
<td>Kung-sun Yian (warlord of Liao-tung, d. +238), 435-6</td>
<td></td>
</tr>
<tr>
<td>Kung Tang, 244</td>
<td></td>
</tr>
<tr>
<td>Kung Yang Chuan, 441</td>
<td></td>
</tr>
<tr>
<td>Kuo Jung (ruler of Later Chou, r. +954/+959), 215 (e)</td>
<td></td>
</tr>
<tr>
<td>Kuo Pa-Chin (3), 460 (b, d)</td>
<td></td>
</tr>
<tr>
<td>Kuo Pho (scholar, +276 to +234), 10 (e), 464 (a)</td>
<td></td>
</tr>
<tr>
<td>Kuo Tzu (Discourses of the ancient feudal, States), 32 (d), 243 (c)</td>
<td></td>
</tr>
<tr>
<td>Kuomintang, 64 (g), 68 (b), 70 (b)</td>
<td></td>
</tr>
<tr>
<td>See also Civil War</td>
<td></td>
</tr>
<tr>
<td>Kyeser, Konrad, von Eichstätt (fl. +1395) Bellfortis, 236, 237, 239 (d)</td>
<td></td>
</tr>
<tr>
<td>ladders (thi), 25, 26, 413, 446-55</td>
<td></td>
</tr>
<tr>
<td>counterweighted, 'cloud' (jwu thi), 411-12, 434, 438, 443, 446-8, 449, 450-2, 453, 484</td>
<td></td>
</tr>
<tr>
<td>flying (fu thi), 284 (d), 285, 416, 453, 454 with hooks, (kow thi), 414, 433</td>
<td></td>
</tr>
<tr>
<td>retractable, 381</td>
<td></td>
</tr>
<tr>
<td>rope, (sheng thi), 384, 385</td>
<td></td>
</tr>
<tr>
<td>Lai, capital of, 442</td>
<td></td>
</tr>
<tr>
<td>Lamb, Harold (1), 102</td>
<td></td>
</tr>
<tr>
<td>Lan Chih Tzu (Book of the Truth-through-Indolence Master), by Ma Yung-Chhing, 123</td>
<td></td>
</tr>
<tr>
<td>Lan Yung-Wei (r.), 3 (d)</td>
<td></td>
</tr>
<tr>
<td>lances (chhiang), 4, 290, 291</td>
<td></td>
</tr>
<tr>
<td>fire- (tsuan hua), 277</td>
<td></td>
</tr>
<tr>
<td>land-mines, 29</td>
<td></td>
</tr>
<tr>
<td>Landstuhl, siege of (+1323), 239-40</td>
<td></td>
</tr>
<tr>
<td>Lang, Olga, 85 (g)</td>
<td></td>
</tr>
<tr>
<td>Lang Chi (arrow-maker, +6th cent.), 117</td>
<td></td>
</tr>
<tr>
<td>Lang Chi T'uang T'ham (Impressions Collected during Official Travels), by Liang Chang-Chu, 230 (e)</td>
<td></td>
</tr>
<tr>
<td>Lao Kan (r., 6), 143, 437</td>
<td></td>
</tr>
<tr>
<td>Lao Tzu. See Lao Tzu, Li Erh</td>
<td></td>
</tr>
<tr>
<td>Lao Tzu (Book of Master Lao), 22 (b)</td>
<td></td>
</tr>
<tr>
<td>lasso, 204</td>
<td></td>
</tr>
<tr>
<td>Lateran Council, Second (+1159), 174</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Li Wei Kung Ping Fa (Li Wei Kung’s Art of War), 24, 39
Li Wei Kung Wen Tai (Li Wei Kung’s Answers to Questions), 21, 24−5, 33 (g), 38, 56 (b)
Li-Yang, siege of (+ 573), 210
Liang, State of, 334
Liangchow, 123
Liao (Chhi-tan), dynasty
military literature, 29
wars against Sung, 9, 27, 215
Libbrecht, U. (t), 375−8
Liddell-Hart, Basil Henry, 16
Lieh Na Chih Chuan (Records of Famous Countries of Old), 82

lieh tsuan (sapper’s drill), 479
Lieh Tsu, story of, in Chuang Tsu, 111 (d)
Lien Hu’o’ng, pre-Han tomb, 145
lin nu
multiple-bolt crossbow, 156
multiple-bolt archballista, 288

Lien Ping Shih Chi (Treatise on Military Training), by Chhi Chi-Kuang, 27−8
li’st, mobile counterweighted. See swape
li’u (Roman traps in ground), 330, 332
lime, 274
Lin-Chhiu, siege of (− 501), 432
Lin-I (Champa), 145
Lin-I, Shantung
finds of military texts, 18, 21 (b), 374, 412, 423
Lin-Ssu-Chiu niang (crossbow marksman of Hangchow, + 13th cent.), 117 (a), 146 (e)
Lin-Tzu (capital of Chhi), 247, 248, 314 (b), 315
Lin Wu (military theoretician, fl. − 250), 65
Ling, Duke of Chin (fl. − 606), 116
Ling-Shou-Chheng, Phng Shan Hsien, 250, 252
Ling Wu T’ai Tsu (Information on what & beyond the Fases), by Chou Chhi-Fci, 136 (c), 157 (b)
Ling Wang (king of Chh, r. − 539−527), 138
Ling Yang-Tsao (author, fl. + 799), 230 (e)
literature on art of war, 10−66
on combat and competiv venus, 37−45
cyclopaedists, 24−30
on general principles of action, 31−7
Kuan Yu cult and, 85
military theoreticians, 10−24
popular. See epics; tales
lithobolion (Greek, arcballista), 184
Liu Chan-Chheng (r), 126
Liu Chhè (Han Emperor). See Wu Ti
Liu Chhung (Chhén Wang Chhung, crossbow expert, fl. + 173), 152, 154
Liu clan
rebellion against Hsin dynasty, 434
siege of Watt, (+ 23), 451
Liu Feng-Shia, (writer, fl. + 1090), 125 (b)
Liu-Ho
defences, 338
Liu Hsi (writer, fl. + 100), 132−3
Liu Hsiang (− 80−9), 111, 116

INDEX
litrines, 280, 315, 317
law (fa), 93
Chhin, on liability for collapse of walls, 307
Le Puy
Gallo-Roman relief, 172
leaf-spring. See under crossbows
leather
armour, 180, 275
mats, for siege protection, 272, 371, 373, 473, 474, 475
screens, for miners, 477, 478
water containers, 344
See also skins, animal
Legislativ (Fa Chia), 17, 31
attempts to promote martial virtues, 98
and general principles of action, 31, 38, 44
on incitemt to war, 42 (d)
Sun Wu’s affinity, 19
legendary era, 10−11
Legge, J. (s), 140
Lei Hai-Tsung (f), 3
Lei-Kung, Lord of Thunder, 258 (c)
lei mu (thundersticks), 284, 285, 286, 287, 289
lei shih (thunder stones, hand missiles), 277
Leonardo de Vinci, 178 (b), 203, 204−5, 232 (a)
Leuco, tyrant of Cimmerian Bosphorus, 343 (d)
levee, goosfoot, 150−1, 157
Li, Mount, Shensi province
terracotta armies 127−8
Li Chhiuan (fl. + 759), 26, 150
See also Chi Po Yin Chheng, Yin Fu Chheng
Li Chhi (general, + 584/− 669), 211
Li Chh (Record of Rites), 23, 55 (g), 73
Li Chhing (general, + 571/− 649), 21, 24−5, 26
See also Li Wei Kung Ping Fa, Li Wei Kung Wen Tai
Li Chung Chheng (crossbow maker, + 13th cent.), 116 (b)
Li Erh. See Lao Tsu, Tao Té Chheng
Li Hung (Sung military inventor), 156, 188
Li Kang (soldier, + 1085/− 1140), 192
Li Khao-Yung the Prince of Chin (Chhin Wang, fl. + 915), 265
Li Kuang (Han general, d. − 125), 118
Li Kuang-Li (d. − 94), 9
Li Kuang-Pi (general, d. + 763), 211, 237
Li Liang-Fu (ambassador of Champa, fl. + 990), 145
Li Ling (general and archer, fl. − 99), 123, 191
Li Mu (Chhao general, d. − 249), 8
Li Phan (late Ming military writer), 28
Li Shan (scholar, c. + 660), 206 (i)
Li Shao Phén (Measuring the Ocean with a Calabash Ladle), by Ling Yang-Tsao, 230 (e)
Li Shih-Min (Chh Emperor). See Tsai Tsung
Li Sui (Chh emperor, d. − 208), 301 (f)
Li’st people, 155, 156
Li Táo Yen. See Shao Ching Chu
Li Thing (Tartar general in Yuan service, fl. + 1288), 215 (i)
Li Ting (possibly Li Hung, + 11th cent. engineer), 156
Li Tsu Yao (f), 101
INDEX
573

Liu Hsien (officer, fl. +915), 269
Liu I (Sung general), 370
Liu I-Ching, See Shih Shou Hsin Yu
Liu-Li-Ko, Hui Hsien, Honan
Warring States bronze vessel, 375, 376
Liu Pang (founder of Han dynasty, fl. -205), 123
(b), 143, 456
Liu Pin (writer, +1022/+1088), 191 (d)
Liu Shih-Yung (commander of Chhang-chou, fl. +1275), 225
Liu Sung dynasty, 1, 199
Liu Thao (The Six Quiver), 20
on ech of city and ability to withstand siege, 258
on collapsible fences and traps, 264
on commander, 49, 50-1
on crossbow sights, 153
on justifiable violence and deceit, 64 (i)
on natural forces and magic, 38, 56 (b), 57 (c)
on psychological warfare, 40
on rams in open field, 434
on siege engines, 191, 414, 416, 423-4
on surprise attack, 461-2
on weakness and strength, 33 (a), 44
Liu Thien-Ho (weaponry expert, fl. 1539), 176, 192
Liu Yu (founder of Liu Sung dynasty, +356/+423), 190
Liu Yu (prince of T'ang Wu, +519 cent.), 145
Liu Yung-Hsi (military engineer, fl. +1002), 214
liver, 93 (c)
livestock, in siege, 271, 272
Lo Ch'en-Yü (collector of weapons), 129 (a), 437
Lo Kuan-Chung (fl. 1330-1400). See San Kuo Chih Yen I
Lo kuo (outer city walls), 339
Lo-Yang (capital of Eastern Chou)
city plan, 250, 251, 322
Han tombs, 283, 377
Mongol siege (+1232), 194, 218
Thang siege, +7th cent., 211
walls, 202
lokapalas (Buddhist demigods), 86 (a)
Lolang
tomb of Wang Kuang, 126, 187, 144
longbow, 102, 174, 176-7
look-out posts, 374
cloud ladders as, 451
crowbow platforms as posts, 384
Thang border; round design, 262
towers on city walls, 463-4
See also overlooks
Lorini, B. (fl. +1591), 261
Lothar III
siege of Verdun (+984), 173
Lou Huan (counsellor to king of Chao), 8
Louis IV (king of France, d. +954), 173
loyalty, 42 (c), 85, 459
Lü, lü men (entrance to city wards), 324, 329
Lü, Duke. See Lü Shang
Lü, Empress (d. -180), 22, 30
Lu, State of
Chhi-Fu, 250, 295-6, 297-300, 352

Wu Chhi commander in, 20
Lu Chi (scholar, +261/+303), 472
Lu Chia (statesman, +2nd/+3rd cent.), 79, 95
lu chao mu (deerhorn wood), 209
Lu Hsi-Hsing (poet, +1520/c. +1601), 81-2
Lü Khun (+1536/+1618), 28 (d)
Lu Mou-Té (l, t), 205 (e)
Lu Pin (soldier, fl. +988), 215 (e)
Lü Pu (soldier, fl. +198), 456
Lü Shang (statesman, -12th cent.). See Thai-Kung
Wang
Lü Shih Chhun Chhia (Master Lü's Spring and Autumn Annals), 30, 64 (f), 140
Lu Ta-Chieh, 29-30
Lu Tê-Ming (scholar, +556/+627), 438 (d)
Lü Wén-Huan (Sung commander-in-chief, fl. +1267/+1273), 219 (g), 220
lu yün (sapper's shield), 467, 469
Lucca
fortifications, 263
Lugo
Roman gate, 360
Lun Chung Lun Ping Chh Chh Leï (Treatises on Government and Warfare), 35 (c)
Lun Heng (Discourses Weighed in the Balance), by Wang Chhun, 154 (c), 177 (e)
luan lu (crowsbomien's drill), 125 (f)
Lun Yu (Analects), of Confucius, 72, 91 (c)
lung ehâ (water-raising square-pallet endless-chain pump), 193
Lung-Shan culture, 386, 243, 292, 431
lung tshung (siege tower), 498
Ma-Chuang, Hsin-Thu, 248, 249
Ma Chhun (Wei engineer, +3rd cent.), 192, 200-1
Ma Jung (poet, scholar and official, +79/+166), 206
Ma Lung, battle of, 139-40
Ma Lung (Chin general), 123
ma mien. See towers (horse-face)
Ma Tuan-Lin. See Wen Hsien Thang Khao
Ma-Wang-Tui
finds of military texts, 29 (b), 262, 265, 387
Ma Yang-Chhing (writer, +12th cent.), 123
maces, 482, 483
McEwen, E., 167 (e), 168, 197, 198
Maghrîb, 204
magic. 24, 60
achieving easy victory by use of, 38-9
animal skins and effigies, to
commander's power as, 51
and interpreting signs of enemy activity, 49
of numbers, 58, 59, 75 (f)
op speech and sandalwood, 110
power of commander, 51
science mingled with, 54
secrecy about, 88
in 'Stories of the Promotions of the Martial Genii', 82
Sun Wu's rejection, 19
of weapons, 60

entries of attr. Lu
52
and the 74
30

Var), 24,
rs to
INDEX

Ma-Ha-Ma-Sha (Muhammad Shâh, artillery general, fl. +1312), 221, 222
Mâyâb of Ghaznah (+971/+1030), 7 (d), 236, 237
Maimâm-Diz, castle of, 177 (b)
Majrâ (Arabic, tube-bow), 166
man and nature, 54–5, 93–4
Man Wang (archer), 117 (a)
Manchu dynasty, 1
archery technique, 117
ban on possession of military books, 89 (a)
influence of classical military theory, 68 (b)
use ‘Romance of the Three Kingdoms’, 81 (b)

Manchuria
fish glues from, 113, 112–13
Western Han city of L-Lou trihe, 386
mangananou (Byzantine trebuchet), 234
mangonels, 186, 187 (a), 233, 238 (d)
See also trebuchet
Mangu Khan (Mongol khan, fl. +1253), 218
dÎ-mongqâq (Arabic trebuchet), 187 (a)
manors, fortified (later Han), 393–4, 305–404
mansions, nine (chiu kung), 57
Mantioce, 354, 358
Mantlets. See pavises
mao (spear or anchor), 458–9
Mao Shih T'ien I (Phonological and Semantic Glos ses on the Mao Odes), by Lu Tê-Ming, 438 (d)
Mao Tse-Tung (general and statesman, +1893/+1976)
aims to establish co-operativeness, 89 (c)
and classical military theory, 68 (b), 69 (b), 81
on military basis of political power, 79
on modern weapons, 65 (d)
on social life as struggle, 90 (c)
Mao Yuan-I (fl. +1621/+1628), 28, 134
See also Wu Pei Chih
maps, military
coastal, 29
Han, from Ma-Wang-Tui (Chu-Chân Thu), 22 (b),
262, 265, 387
Marco Polo, 222–3, 231
Mari, 430
markets, 324 (a), 388, 350, 391, 280
Marsden, E. D., 171 (d, f, g)
martial arts, 87 (b)
Martial Genii, Stories of the Promotions of the. See Feng Shêin Yen 1
mats. See under leather
Matsui Hitoshi (i), 205 (e)
mattocks
butterfly eyebrowed (a mei chhû), 479–80
chhang tzu, 277
Maurice (Byzantine emperor, r. +582/+602)
Strategikon, 170 (b), 269, 370–1
Mayers, W. F. (6), 231 (a)
measurement, units of. See catty; picul; tan; wei
meat, offered to sick, 274
meditation, 97
medical services, 25, 272, 273, 274
Mên Shen ('Door Gods'), 85 (f)

Mencius (Mêng Tsu, Confucian philosopher, +4th cent.). See Mêng Tsu
Mêng, See pavises
Mêng-Chhang Chin (rebel against Chin, d. –279),
362 (c)
Mêng Chhâ Pi Than (Dream Pool Essays), by Shen Kua, 101, 133–4, 152 (f), 154 (c), 156, 177
(b, g, h)
Mêng Khang (author, +2nd cent.), 144 (c)
Mêng Tsung-Chêng (general, fl. +1219), 215 (h)
Mêng Tzu (Book of Master Mêng (Mencius)), 30, 46
(a), 64, 78, 182–3
mentality. See psychology
merchant, Roman Syrian (Chhin Lun, fl. +226),
173 (b), 174
Messina
gate of Arcadia 354, 356–7
Metal (element), 2
metallurgy, 2, 87
Shang and Chou techniques, 463
welding of hard and soft steels, 105, 344
metaphors
dismounting from horse after conquest, 79, 95
treaty signed at city-walls, 71 (c)
metropolitan districts, Chou (hu), 243
Mexico, Cortes' conquest of. 174
Mi Pen Ping Fa (Secret Book on the Art of War). See San-Shih-Liu Chi
Miao people, 135 (c), 136 (c), 157
Miao Ta (crosbowman, Hangechow, +13th cent.),
146 (b)
might (shih), 34
mijrâ (Arabic, tube-bow), 166
Miletus
gates 353–4, 356
Military element. See uu
military men, attitudes to, 77, 79, 85 (g), 98
Military Theoreticians (Ping Chiah), 31
minefields
bamboo arrows, underwater, 270
See also caltrops; land-mines
mines, underground. See mining; siege
Ming dynasty, 1
armour, 180
ballistic machines, 215
bow improved under, 107, 108
Manchu invasion, 1
military literature, 9, 27–9
military-administrative syncretism, 74
Ming Shêh (History of the Ming Dynasty), by Chang Thing-Yü, 229 (c), 230 (g)
Ming Shêh Lu (Veritable Records of the Ming Dynasty), 229 (c)
Ming Shih-Tsung (Chu Hou-Tsung, emperor, r. +1521/+1566), 107
mining, metal-extraction
Thung-Lû Shan (Mount Verdigris), mining complex, 466, 468
mining, siege (hüsh), 5, 413, 463–80
ambush inside mine, 477, 478
boards, 463, 466, 467
INDEX

morality, 24, 65
justification of violence, 64 (i), 85-6, 94
See also righteousness
Morse, E. S. (1), 117, 119
motion, study of violence, 2
Moule, A. C. (13), 223
Mounding (yin). See under moats
mountings, Chinese preference for horizontal, 126 (d), 201
movement, independent spontaneous, 33-5
Mu-durbeljin
Chia-Chih hou-kuan, 335
Mu-Jung Chhao (leader of Yen, + 385 + 410), 198
mud
fire fighting, 340, 475
fire prevention, 272, 334, 344-5, 349-50, 407-8
waterproofing, 333
Muhammad Ghori (general, fl. + 1200), 7 (d)
Muhammad Shâh (Ma-Ha-Ma-Sha, artillery
general, fl. + 1312), 201, 222
Mus, P. (2), 193, 195, 197
muschatae ('gadflies; pellet-shooting crossbows'), 163 (c)
musical pitches, five, 50 (e)
Myin-saing, 212 (e)
ymystical arts (au-ku), 28 (a)
mythological era, 10-11
Na-khi people, 135 (d)
Naga people, 135 (d)
Nan Hua Chen Ching, See Chang Tzu
Nan Pei Chhao era, 29
Nan-Yang, siege of (+ 184), 445-6
Nan-Yang Chhun commandery, 434-5
Nang-Chia Tai (Mongol general, fl. + 1279), 225
Nanking
Chinese military technicians concentrated at, by
Mongols (+ 1280), 225
Liu Sung capital, 1
Nanking Government, 1940s, 70 (b)
Ming gates, 351
See also Chien-khang
Nantes
Roman gate, 356, 362
naphtha, 9, 219, 270
Napoleon I (Emperor of France, + 1769 + 1821), 79
Napoleon III (Emperor of France, + 1808 + 1873), 187 (f)
nationalism, 91, 98
naturalists (Yin Yang Chhia), 19, 51, 51
nature
forces of, 38-9 (see also individual forces)
man and, 54-5
physical features and obstacles, 61-6
principle of acting according to nature of things, 36
rationalism vs, 54-5
naval warfare
hook-fender device, 458
trebuchets, 226, 227-8
Warring States period, 226, 227-8, 459-60
nawak (Persian, tube-bow), 166
Neolithic era, 10-11
archery, 102 (d)
city planning, 322 (a)
gates, 351
Yang-Shao era, 252 (b)
See also Lung-Shan period
nest cart (chhao chhê), 421-2, 423, 438, 439 (a),
451
nets hung on towers, 200 (b), 225
Neugebauer, O. (6), 171
Neumagen
Roman gate, 359
neurotonoi (Greek, torsion machines), 186
New Year's images (nien hua), 80, 81, 83
Newcomen, Thomas (engineer, + 1663 + 1729), 205
nineteenth century reforms, 98
Ning-Ching, city of, 391, 392
Niu Fu (Sung officer, d. + 1272), 219, 220
Niu-Tshun, 248, 249
Nš-su people, 196 (c)
nomads, Asian, 5, 7-8
archery, 5, 7, 102 (c), 105, 167
later Han relations with, 391, 393
militarism, 100
tactics against, 123-5
See also Hsiung-nu; Huns
Normans
adaptation of Roman fortifications, 330 (c)
siege engines, 233
Northern and Southern Dynasties period, 1, 338
novels, popular
restrictions under Manchus, 89 (a)
See also San Ku Chih Ten I
nu See crossbow
nu chhê (mobile arcuballista), 123
Nu Fang
Thang crossbow-making factory, 145
Nu Wên (Chinese officer in Champa, fl. c. + 315), 145
Nubia
form, early dynastic period, 317, 318-19
Numbers, magic, 23, 38, 57, 58, 59, 73 (f), 93
numerical superiority offorses, 43, 65-6
Oba Tsunekichi & Kayamoto Kamejirî (I), 126, 144
offensive/defensive balance, 239-40
officials
military and civil, relationship, 76-7
See also bureaucracy, commanders
Ogotai Khan (Thai Tsung, emperor, r. + 1229 + 1242), 225
Ogyii Sorai
Shaho Ruiju Kokujikai, 108
Oil
boiling, 345
incendiaries dipped in, 404-5, 426, 445
Oman, Sir Charles, 239
omens, 258
onager, 185, 186, 187, 232 (f)
INDEX
INDEX

phao, (trebuchet) (cont.)
Hsi-Yipha (Muslim trebuchet), 221, 230
Hiang-Yang phao (Portuguese barrel-gun), 221, 230, 237
water-raising machine prototype, 218
See also trebuchets
Pheng Hsien
Han reliefs, 348, 349, 345
Philip I of Alsace (Count of Flanders, + 1137/1191), 309 (d)
Philip Augustus (Philip II of France, + 1165/1223), 239
Philip the Magnanimous (Landgrave of Hesse, +1504/1567), 239–40
Philon of Byzantium (~2nd cent.), 172, 186 (c), 270
philosophy
natural, 60 (b)
pre-eminence of harmony, 98
on primacy in warfare of political aims, 77
theory of war conforms to, 13, 91
See also Confucianism; Taoism
Phing, imacy of Chin
story of, in Lieh-Nu Chuan
Phing- صحيح'song, 125
Phing-Liang-Thai, 292, 314 (b), 316, 319
Phing-Yang (capital of Han clan), 456
Phu Chu Tzu (the Rush-and-Hemp Master), 120
Pi Li Tsa Tsun (Miscellaneous Records of Pi-Li), by Tung Han-Yang, 228 (a)
Pi-Yang, 351
picul (unit of measurement), 155
Pien-Chou, 339
pikemen, disposition of, 26, 124
Phung Chia (Military Theoreticians), 31
pipes for delivering missiles/impurities into mine
466–7, 469
PiracUs
Long Walls, 354, 358
pistons, 9
double-acting piston belows, 465 (a)
pit-prop frames, 26
Pitt-Rivers, A. H. Lane-Fox, 102
pivot machine (shu chih), 169
places, laws of proper, 90
planets, 93
planning, strategic, 32, 73–4
platforms
for arcuballistae, 440
See also crossbow platforms; galleries; hoards
Plath, J. H. (2), 3 (d)
Po-Hun Wu-Jen
story of, in Chuang Tzu, 111 (d)
Po Wu Chih (Record of the Investigation of Things), by Chang Hua, 137
Po-Yen (Bayan, Mongol general, +1237/+1294), 222
poisoning
arrows, bolts and darts, 136–7, 162, 167
rivers and wells, 269–70
pole (chih), 36
pole-hook (kou kan), 290, 291
pole-prong (chhui kan), 275, 276, 289–90, 454
policing, 74, 76, 321–2
Seals/Sealorder
poliorcetia, 5, 241–485
attack, twelve types of, 413–85
bridges, 364–70, 371
conditions, and likelihood of success, 257–8, 259, 260
defensive/offensive balance, 239
equipment, preparation of, 275–90
gates, 343–64
general instructions for defence, 256–60
initial preparations for defence, 260–75
literature on, 15, 25, 26
sally-ports, 370–1
towers, 373–98
walls, 290–343; devices on, 398–413
Politicians, School of (Tsung Heng Chia), 38
politics
cities and, 291
and classical military theory, 24, 89
primacy in warfare of political aims, 71, 77
preference for victory by political and diplomatic means, 96–8
Polo, Marco, 222–3
polybolon (Alexandrian magazine catapult), 172–3
pomorum (road running inside city wall), 315, 317, 318–22
popularity of military thought, 19, 70, 80–8
population movements, 329
Portchester
Roman gate, 362
portcullises (Khsien men, phai pan), 334, 347–51, 352
Portugal
cannon, 1, 28, 230
ey early travellers in China, 93 (a)
posts (thang)
Chin and Han system of policing, 321–2
for commanders of sects of defences, 375
Primitakov, Vitalii M. (1), 57
prisoners, sacrifice of, 4, 10 (c)
Procopius (historian, c. +499/+565)
De Bello Gothico, 232 (g)
production, organisation of, 76
professionalisation of art of war, 24
profit
general principle of action, 18–19, 32, 35
prongs (chhui kan), 275, 276, 289–90, 454
propagation, Confucian use of, 180–3
proteins, structure, 186
psychology in warfare, 38–45
psychological warfare, 38–45
early writings on, 23
INDEX

Red Cliff, Battle of the, 8
Red Eyebrows, 434
reeds and rushes, 274
burning, dropped onto enemy, 402, 404, 405
See also under screens
reforms, +19th/+20th cent.
and military-agrarian systems, 75
and status of military, 98
Regino (abbot of Prüm, d. +915), 233–4
Rehm, A. & Schramm, E. (1), 171, 184 (d)
Reinard, J. T. & Fave, L. (1), 230–1, 235
reincarnation, 42
religion, 60
and anti-militarism, 98
deities of war, 11, 82, 83, 84–6, 88
and orientation of cities, 300
Sun Tzu rejects magico-religious attitude to war, 19
See also magic
Renaissance, Western, 69 (a)
retreat, allowing enemy passage for, 67
revolving shooting machine (chuan shè chì), 203, 412–13, 459
Richard I (king of England, +1157/+1199), 174
Richborough
Roman gate, 359
Richerus Remensis (historian, fl. +995). 173, 232–3
Righteous Army (jī pāng), 64
righteousness (i), 64, 85, 93
of cause, and military success, 13 (e), 182, 183, 257
rings, iron, for catching battering-rams, 437
rinoceros hide armour, 180
ritual
drums for, 10
sacrifice of prisoners, 4, 10 (c)
rivers
crossings, 25
poisoning of, 269–70
roads
defence of, 260, 263
grid system in cities, 322–3, 326–7
intramural, see pomerium
Rock, J. F. (1), 135, 136
rocket-launcher batteries, 29
rockets, bamboo, 168
Romance of the Three Kingdoms. See San Kuo Chih Yen I
Rome
Aurelian gates, 355, 359
catapults, 170–2, 173, 185, 186, 232
Chinese contacts, 173, 174
city planning, 322 (a)
concept of war, 44, 45
crossbow technology, 173, 174
ditches, 330, 332–5
gates, 354–7, 359–62, 366
hospitals for military, 272, 273, 274
lioda (traps), 330, 332
military basis of power in early Empire, 181
onager, 465, 186
siege of (+536/+538), 232 (c)
slaves, 181

pulleys (cont.)
for removing earth from mine, 26, 464
on tower or nest cart, 422
pumps
double-acting, 9
pendulum, 205
square-pallet chain, 193, 200
punishment
judicial, 93 (a)
war as 'punishment of transgressors', 94
Putyata, D. V., 65
pyun chun (Korean, arrow-tube), 167, 168
al-qaddaf (Arabic, onager), 186 (k)
aqal-ul-nawakfiyâ (Arabic, tube-bow), 166
qaus al-riji, qaus al-canbarak, qaus al-faranjiyâ (Arabic, crossbow), 175
quiver, 106, 117
Qum-Darya river, Sinkiang, 105–6
rain as omen, 258
Rain Dance Platform (wu yü ch'ai), Chhu-Fu Hsien, 300
rake carts (pa chiâ), 419 (a), 420
raked areas around forts. See fields, heavenly
rampart (let) a mile outside city to mount ambush, 465–2, 469
ramps (yên), 408, 411, 413, 441–6
at Chien-Kiang (+ 549), 418
Hittite use, 430–1
at Hsiang-Phing (+ 238), 435
mining spoil used in, 464
Mohists on, 189, 442–3, 444–5
'sheep's bank' (yang ling), 437–8, 442, 443–4, 445
thusan, 435
at Yu-Pi (+546), 436
Rams (chhung), 413, 429–37
chhung chiâ, 418, 435, 452
defensive use, 411, 412, 449, 450, 452
dropped onto tanks, 426, 427
flying (jâ chhung), 412, 413, 434
iron plating of head, 413, 415, 426, 427
iron rings for capturing, 437
literature on, 15, 414, 424
in open field, 434
Roman, 354
turn in wall prevents use against gates, 353
wooden (chü), 411, 412
Rashid al-Din al-Hamadâni (fl. +1310)
 Jama al-Tawdikh (Collection of Histories), 219 (f), 221–2
ratcheting action, 150 (g)
Rathgen, B. (1), 184 (a)
rationalism, 18–19, 24, 51
Nature opposition to Nature, 54–5
Sun Wu, 13–14, 18–19, 51, 55
Rausign, G. (1), 105
Raverty, H. G. (1), 218–19
Rawson, Jessica (1), 126
Razin, E. A. (1), 16, 69
receptacles. See vessels
recruitment, military, 74
INDEX

Rome (cont.)

Sodiana campaign (-96), 144 (g)
Spartacus', revolt, 181
status of military, 79, 99
testudo shield formation, 144 (g)
Trajan's Column, 172
rooms on walls, small exposed (pai lu wu), 339-40, 342
ropes, non-combustible fire-, 477
Ruhlmann, R., 87-8
ruler, role of, 51-2, 124, 257
rushes. See under reeds; screens
Russia, 67, 81 (g), 175, 218 (c)
Rusticianus of Pisa (fl. +1298), 223

sacrifice, 11 (c), 25, 54, 57
human, 4, 10 (c)

Saladino

Roman gate, 356, 367
Sammarqand, siege of, 215 (h)
sambuke (Greek, swipe), 239
samarai, culture of, 100

San Kuo Chhi (History of the Three Kingdoms), by Ch' e Shou, 200 (a)
San Kuo Chhi Yen I (Romance of the Three Kingdoms), by Lo Kuan-Chung, 23, 70 (b), 80-1, 85, 95 (d)
San Kuo period (+3rd cent.), See Three Kingdoms
San Lueh (Three Stratagems), 14 (b), 21, 38, 64 (i), 416

San Shih Liu Chi (Thirty-Six Stratagems), attr. Thao-Chhi 23, 88 (c), 89 (a)
sand

dropping in eyes of enemy, 408, 450, 484
fire extinguisher, 277, 345 (a)
sandalwood, 110
sandbags, 215
Sanuto, Marino (Venetian statesman and geographer, c. +1260/-1338), 163 (c), 226 (e), 233
sapping. See mining, siege
Sarmatians, 175 (b)
saws, mechanical, 220
Sayings (chhong yu)
'people eat people', 89 (e)
on restraining violence in war, 71
and stratagems, 90
See also proverbs
scaling assault, khung-tung possibly type of, 419

Schaan

Roman gate, 359
Schlegel, G. (g), 231 (a)
Schneider, R. (i, 6), 184 (a), 232

Science

gunpowder and development of, 2
and magic, 54
and military thought, 13-14, 56 (f)
modern, 93 (a), 99, 100 (b)
scorched earth policy, 271, 461
scorpio (catapult), 185, 186
scouts
search ground around city for tracks, 267
support ambush, 461
screens (pi), 405-11
bamboo, on watchmen's rooms, 340
shah, 405, 406, 407
felt, 383, 477, 478
infantry assault protected by, 484-5
against ladders, 443
leather (phi man), 477, 478
mobile wooden, (mu nu), 484-5
'movable city walls' (king chheung), 408, 411, 443, 449, 459
against ramp attack, 411, 443
against rams, 436
rush (chueh nu), 375, 402, 402, 411, 449, 450
terrace city walls (thai chheung), 408, 411
for walls, 375, 384, 402-4
wooden (mu man, assault machine), 426, 428
at Yü-Pi, 443-4
See also curtains; fire-screens; pavilions

Scythians, 105, 175 (b)
secrecy about military knowledge, 88, 144, 223
sector-and-chain devices, 205
security restrictions, 317, 319, 343, 344
Selinus, 317, 320-1
Senlis, siege of (+947), 173
settlements, military-agricultural (thun thien), 74
Sha-Yang, 215 (i)
shadufs, 398, 402, 404, 405
Shan Hsien
Han tomb models, 379-81
Shan-Piao-Chen, Chi Hsien
bronze vessel, 228, 447-8, 460
Shang Chih Shu (Book of the Lord Shang), attr.
Kung-sun Yang, 30, 365, 367, 464 (b)

Shang dynasty
archery, 103
bronze helmets, 180
chariot-fighting, 4
cities, 242, 244
gates, 351
mining and metallurgy, 463
oracle bone inscriptions, 241, 243
secret agents, 53
stamped-earth wall construction, 292-3, 295
walls, 292-3, 295, 431
Wu, king of Chou, attacks, 258 (c)
Shang-Sun-Chia-Chai village, Chchinghai
finds of military texts, 18
Shang-Tshai, 252-3, 256
Shang Yang (lawgiver, d. -373), 90
INDEX

Shannan kingdom, 143
Shasho Ruiya Kokujikai (Classified Collection of Facts about Archery), by Ogyu Sorai, 108
Shaughnessy, Edward, 3 (d)
Shi
altar of soil, 243 (e)
to shoot, 105
Shi Ch'ing, See Chiao Shi Ch'ing
Shi fien (officer of city), 465
sheep's bank ramp (yang ling), 437–8, 442, 443–4, 445
shell, sea-
armour, 180
shen chi (portcullis trigger mechanism), 347
Shen Chi Chih Ti Tai Po Yin Ch'ing, See Tai Po Ying Ching
Shen Kua (author, +1030/ +1093). See Meng Chhi Pi T'han
Shen Nung (legendary emperor, -3rd millennium), 137
Shen Phei (defender of Yeh, fl. +204), 463
Shen-thu Chia (archer and statesman, -2nd cent.), 145–4
Shih Wu (Emperor of Chhi), 455
shields, 275, 296
ch'i, 405, 406, 407
laager of mobile, 28
ya, 467, 469
Shih Chao (writer, fl. +1090), 166
Shih Chi (Historical Records), by Ssu-ma Than and Ssu-ma Chhiien
on battle of Ma Ling, 139–40
biographical notes: Chou Ya-Fu, 52 (a); Pai Kuei, 90; Sun Wu, 16–17, 52 (a)
on Chhin Shih Huang Ti, 188
on conquest by uu, government by wên, 95 (b)
on crossbows, 139–40, 141
on military heroes, 88 (a)
on music, 56 (b)
on political suicides, 43 (a)
on victory without fighting, 39, 41
Shih Ching (Book of Odes), 38 (d), 72, 73
Ode 93, 352
Ode 241 ’Huang I’, 241 (b), 414, 431, 438
Ta Ming ode, 206
Shih T Chi (Memoirs on Neglected Matters), by Wang Chia, 112
Shih Meng (Expositor of Names), by Liu Hui, 110, 139–3, 169
Shih Shuo Hsin Yu (New Discourses on the Talk of the Times), by Liu I-Ching, 432
Shih Wu Chi Yuan Chi Lei (The Recorded Origins of Things, Categorised), by Kao Chheng, 277 (c)
Shih Yung-Thu (author, +17th cent.), 29
ships, war- (lau ch'uan), 226, 227
shock troops, 28
shock weapons, 22, 27
shooting machines, revolving (chuan shih chi), 203, 412–13, 459
Shou (Mohist Defender), 343, 344
Shou Chheng (Art of War), by Duke Wei, 464 (a)

Shou Chheng Chiu Ming Shu (On Saving the Situation by the (Successful) Defence of Cities), by Liu Khun 28 (d)
Shou Chheng Lu (Guide to the Defence of Cities), by Thang Tao and Chhien Kuei, 27
Shou-Chhun-Fu
+13th cent. weapons production, 169
Shou-Chou
tomb of Yu Wang (d. –228), 143
Shou-Yang, siege of (+466), 210, 428–9
shovels (chha), 277, 282
Shu Ching (Book of Documents), 30, 72, 153–4
shuang kou ch'ih (Double Hook Cart), 415, 418
Shu Ching Chu (A Commentary to the Classic of Waterways), by Li Tao-Yiian, 190–1
Shui Hu Chuan (Stories of the River Banks), 80
shui ping (water level), 436
Shuo county, Shatsi
ey early arrows from, 102 (d)
Shuo Wen Chhieh T'ai dictionary (+ 2nd cent.), 403
Shuo Yu Chhuan Chuan (Complete History of General Y'o Fei), by Chhien Tshai, 80
Shuo Yuan (Garden of Discourses), by Liu Hsiian, 116
shutters, adjustable wooden (protective device for archers), 309, 312–14
Sian
archaeological finds from, 134, 192, 265
Yang-Shao village, Pan-Pho, 241, 242
See also, Chiang-An
Siberia
bows, 102 (c)
fish glues, 112–13
sickles, long (chhang lien), 277, 281
siege warfare. See poliorcetics
signalling
banners and flags, 15
beacons, 25
drums and gongs, 10, 15, 449, 450
naval, 450
Thai Po Yin Ching on, 25
Ts'eng Kung-Liang on, 26
signs given by enemy activities, 48–9
deceptive exploitation, 49, 265, 267, 269, 461
Silk Road, Otd, 141, 173 (b), 174
Silver Sparrows Mountain (Yin-Chhiieh-Shan), 18, 60
simplification of design, progressive, 237
Sinkiang
bow from, 105, 106
bridges, 222 (d)
Chinese absorption, 99 (a), 214
Han ordnance records, 141
Pan Chhiiu's rebellion, 143
ispar (Persian, tube-bow), 167
sites of cities, 259, 260
Six Dynasties
armour, 8, 275
society, 394 (b), 398
walls, 336
skins, animal
protection for buildings, 200, 272, 341, 345 (a), 426
INDEX

skins, animal (cont.)
sheepskin waterbag, 475, 476
swimming on inflated, 25
wearing of, 2, 4, 10
See also leather
sky-bridges, movable, 419 (a), 420
slings, 116, 185, 186, 203
slips, Han inscribed bamboo or wood, 18, 141-3, 154, 177 (c), 203, 309 (a), 333, 408, 441, 457
slur-bow, 116, 180, 183-4, 186
smithing, 105, 344
smoke
canisters of toxic, 27
propelled into mines, 477, 478
snipers, tube-bow, 166, 167 (d)
Snow, Edgar (1), 51
So-Tu (Sogatu, Mongol general), 215 (1)
social life as struggle, 89
societies, secret, 84, 86
society
army's role in organisation, 74-7, 99
attitudes to military, 77, 79, 85 (g), 98
centralisation, 239-40
classical theory of war and organisation, 70, 92
commercialisation, 437-8
defensive/defensive capability, balance of, 239-40
solidarity, 180-3
Three Kingdoms period, 394 (b), 398
urban decline, Six Dynasties/Three Kingdoms period, 394 (b), 398
upper classes' vulnerability to attack by lower class, 178-83
See also economic history; feudalism; people sofness (fu), 93-4
Sogatu (So-Tu, Mongol general), 215 (1)
Sogdiana, 144, 175
soil, colour of, 58
solidarity, social, 180-3
Solomon, R. H. (1), 89 (c)
Sons and Father Army (ju tse chih chun), 42
sound, five pitches of, 56
space, divisions of, 57-8
spades (ehka), 275, 277, 282
Spain
Muslim crossbow, 175
Roman town gates, 355, 360
Spartacus, revolt of, (−73/71), 181
spears
long, in naval warfare, 460
short, 124, 469-70
spicondom (Byzantine onager), 186 (k)
spikes, wooden or iron, 277
spirit
education of, in martial arts, 87 (b)
natural (thien chi), 55-6
spirit vessels (ming chi), 348
Spiritual factors in military matters, 61-6
spleen, suspended (hsuan ph), 482
Splen
Roman gate, 356, 358
Spring and Autumn period
chivalry, 18-19
and origin of Sun Tzu Ping Fa, 17
separation of army and State towards end of, 76
status of military, 98 (d)
towns, 245
walls, 444, 431
Yen-Ch'eng, 251, 254
springs, bronze, 186
leaf, see under crossbows
Su (possibly type of tower), 257
Su Chhao Wm Chien Lu (Record of Things Seen and Heard at Four Imperial Courts), by Yeh Shao-Ong, 157 (i)
Su Kung Shih (Superintendent of Archery Equipment), 117, 141
Su-ma Chhien. See Shih Chi
Su-ma Fa (The Marshal's Art of War), 20
on army/State separation, 52
on moral, spiritual and human factors in war, 62, 64
on proper time, 55 (g)
on victory without fighting, 38
Su-ma I (founder of line of Chin dynasty, +178/251), 435-6
Su-ma Jang-Cuw. (of Chhi, −6th cent.), 20
Su-ma Kuan. See Tsu Chh Thanh Chien
Su-ma Than. See Shih Chi
Su-ma Tzu-Fan (officer of Chhu, −593), 441-2
Su-ma Tzu-Ju (fl. late 5th cent.), 455
Su shou (Four Animals), 56
Su Shu Chiu Chang (mathematical manual, +13th cent.), 375-8
Su Ta Thien Chiang (Four Great Heavenly Generals), 85 (f)
su ti (place of death), 42-3, 47
staircases in city walls, 317
stakes
around camps, 267
in ditches, 364, 365
around fortifications, 264, 267, 268, 480-1
in wall parapets, 264, 444-5, 480-1
State and army, relationship of, 51-2
steel, welding of hard and soft, 105, 344
steeleyard, 114, 115
Stein, Sir Aurel (4), 196
step cars (chie chieh chieh), 418-19
stirrup
crossbow, 146, 147, 148, 156
riding, 8, 147
stones
siege materials, 277, 284
trebuchet delivery, 210
stores
fire-proofing of storehouses, 347 (a)
stockpiling in besieged city, 257, 258, 271, 272, 274-5, 277, 280-1, 283-4, 317
stoves, movable, 277, 280, 283
strangers, 91
stratagems (chi), 24, 67, 73-4, 99-1
Chu-ko Liang and, 25, 71-2, 83
'empty stronghold', 71-2, 81, 83
See also Sam Lueh; Sun-Shih-liu Chh
Stratigraph. See under Maurice
INDEX

strategy
planning (ch'üan mou), 73-4
relationship with tactics, 37 (c)
war as duel of minds, 55, 67
streamers (pho), 267, 269
strips, Han inscribed bamboo or wood. See slips
Su Chhin (statesman, d. -317), 140, 432
Su Tung-Pho (author, d. +1101), 80-1
Suchou (Ku-su), siege of (+1366), 228, 229
Sui (area of city), 244
Sui dynasty, 1
Kung Nu Shu crossbow factory, 145
military literature, 29
Thang attack on capital (+617), 211
wars against Turks (+600), 270
Sui Sha, 210
Sui Yang-Kuan (Yang Kuan, Sui emperor, +618), 777 (e)
suicide, political, 41, 42
Sulaiman al-Tajir (Arab merchant in China, + 9th Cent.), 175, 178
sumpl as defence against Hooding attack, 456-7, 458-9
sumptuary regulations, ritual, 301-2
Sun Chho (+314/+371), 472
Sun Chhiian (Wu emperor, +317/+371), 110 (n), 112 (k)
Sun I-Jang, 333, 419, 461
Sun Pin (general, -4th cent.), 17, 22, 31 (e), 139-40
See also Sun Pin Ping Fa (Sun and Wu's Art of War), 12-19, 31, 32-7
authenticity and authorship, 16-18
on battle formations, 58 (g), 60 (a)
on commander, 50, 51
‘encirclement of Wei to save Chao’, 36 (d), 71
on general principles of action, 35 (c)
on national forces and magic, 38, 57 (b, g, h), 65 (b), 259
and natural philosophy, 55
on numerical superiority, 43
on ‘Righteous Army’, 64 (i)
on stratagems, 64 (i)
text found at Yin-Chhiieh-Shan, 18
on trebuchets, 207
on virtues vs material factors, 65 (b)
Sun Tzu Ping Fa (Master Sun's Art of War), by Sun Wu, 12-19, 31, 32-7
authenticity and authorship, 16-18
on avoiding attacking cities, 259
on commander, 14, 49, 50, 51-2
commentaries, 24, 25, 80
on crossbow, 139
on diplomacy, 38
and divination, 14, 19
on general principles of action, 31, 32-7
on intelligence, 53-4
lasting importance, 16, 67, 68, 69 (b)
Lin-I text, 423
on material factors, 62
on numerical superiority, 43, 65-6
on offensive warfare, 44-5
on profit, 18-19, 32-35
on psychological attack, 23, 34-5
on ramps, 442
rationalism, 13-14, 18-19, 51, 55
on signs given by enemy activities, 48-9
on tanks, 422-3
and Tao, 13, 15, 19, 77
on territory, 46-7
on united will of ruler and people, 181
on victory without fighting, 23, 38, 39, 72-3
Sun Tzu Shib-I Chia Chu (Eleven Commentaries on the Sun Tzu Ping Fa), 19 (d)
Sun Wu (officer of State of Wu, -6th to -5th cent.)
commands detachments of court women, 52 (a)
Confucian and Legalist affinities, 19
lost writings, 18
Pai Kuei on, 90
question of existence, 16-17
See also Sun Tzu Ping Fa
Sun Wu Ping Fa (Sun and Wu's Art of War), 20
Sun Yat-Sen (statesman, +1866/+1925), 43 (a), 65 (d), 91 (h)
Sung, siege of (-593), 441-2, 447
Sung dynasty
areuballitae, multiple-spring, 198, 199
capitals: Hangchow, 1, 27; Kaifeng, 339
city planning, 323
crossbows, 145-6, 169
education of military, 20-1
gunpowder-projectiles, 9, 164 (b)
military literature, 25-7, 29, 157
mining, 47-80
nationalism, 91 (f)
Northern, 19 (d)
pellet-bow, 116-17
throwing-sticks, 164 (b)
thundersticks, 284
trebuchets, 215
views on conditions leading to defeat of city, 261
wars: against (Jurchen), Chin, 1, 9, 27, 270;against Liao, 9, 27, 215; against Mongols, 215
weights and measures, 155
Sung Lien. See Yuan Shih
Sung Shih (History of the Sung Dynasty), 169
Sung Yung-Hsing (writer, ft. +1637), 114, 115, 162
superiority of forces, numerical, 65-6
supplies. See stores
surprise attack (to), 413, 461-3
swape, 185, 186-7, 206, 218, 232, 237, 239
swords, 275, 277, 278
deployment, 124, 449, 450
fired by movable parapet, 432
magical properties, 60
smithing, 5, 185, 344
syncretism, military/civilian, 70-9
Syracuse, Sicily, 171, 172, 354-357
Ta Hsüeh Yen I Pu (Restoration and Extension of the Ideas of the Great Learning), by Chhiu Chün 229, 237
Ta-Liang, siege of (-225), 456
Ta-Ma-Chhéng (formerly Chching-Yüan Chhêng), 386
INDEX

Ta-Ming palace, 364, 368-9
Ta-Yuan, battle (-540), 7
Taccola, Jacopo Mariano (fl. +1432/+1449), 205, 266 (e)
tactics, 15, 28, 37 (c)
See also stratagems
tales, 76 (a), 86, 85, 89 (a)
Tâlîb (artillery general, fl. +1282). See Ibrahim
talies, security (fa), 344
tamper (cb), 277
tan (unit of measurement), 153
Tan Prince of Yen (-3rd cent.), 4
tan kung (pellet-bow), 115-17
Tang, son of Phan Wang (Chhu warrior, fl. -574), 4-5
Tang-Lo-Pao, 215 (i)
Tangut translation of Sun Tzu Ping Fa, 19 (d)
tanks, 442, 422-9
tschung chhê, 418
fen wên, 414, 422-9, 457, 458, 459
fnian, 15
mu li ('wooden donkey'), 404, 424-5, 426, 427
mu nii ('wooden ox'), 471-2, 473
Tao
- of archery, 111, 137, 198-9
tschung (right), 91
- commander and ruler's understanding, 15, 51
- and Eight Formations Plan, 58
- and general principles of action, 34, 36
- as leading to victory, 13, 64, 96, 182-3
- =morale, 15
- natural philosophy and, 60 (b)
- =solidarity through conviction of justice of cause, 13 (c), 183
Sun Wu on, 13, 15, 77
See also Taoism
Tao Chia. See Taoism
Tao Ti Ching (Canon of the Virtue of the Tao), attr.
- Li Erh (Lao Tsu), 4, 13 (g), 51
- anti-militarism, 86, 96
- on military matters, 30, 68 (c)
Taoism
- alchemy, 9
- and defensive strategies, 24
- on following the current, 36, 44
- and general principles of action, 31, 36
- on numerical superiority, 43
- and psychological warfare, 44
- Sun Wu and, 19
- tutelary deity of trebuchet, 231
See also Tao
taxation, 244, 337
Tê-An, sieges of (+1127 to +1132), 27, 192, 215 (f)
temples
- of ancestors, Chou, 243, 244
- Buddhist cave, Mo-Kao-Khu, 86 (a)
Têng Than Pi Chiu (Knowledge Necessary for Army Commanders), by Wang Ming-Hao, 28
Têng Gu, 215 (i)
Têng Gu T'ai Ch'iên (Discourse on the Arts of the Mountain; Demons), by Chozan Shissai, 92 (a)
Terence, John, S.I, 134
terrestrial city walls (thai obbing; screens), 408, 411, 443
terraces (thai), 411
terracotta armies, Mount Li, 127-8
territory (thu), 45-8
tesiade shield formation, 144 (g)
tetrare (Byzantine trebuchet), 234
Thai Kung Ping Fa (The Grand Duke's Art of War)
- legend of transmission, 21 (d), 88 (c)
- on natural forces, 55 (g), 56 (b, b, g)
See also Huwang Shih Kung Sun Luch
Thai-kung Wang (Li Shang, Chou statesman), 20, 21 (a), 44, 90 (d), 258 (c), 439, 440, 451
Thai Pai (planet Venus), 93
Thai Pheng Yua Lan encyclopedia, ed. Li Fang, 414, 439
Thai Po Yin Ching (Canon of the White and Gloomy Planet of War), by Li Chuian (fl. +759), 25, 157
- Eight Formations Plan, 58 (g), 59
- on fortifications, 336, 347, 351, 380-1, 384, 404
- on mining, 471
- on natural forces and magic, 38, 56 (a, d, d), 57
- (b, c, e, f), 58 (d, g), 59 (a, c)
- on siege engines, 192-3, 198, 211, 226, 421, 424, 435, 484
Thai-Shen, 248, 249
Thai Tai (Chinghiz Khan, r. +1206/+1227), 222 (d), 225
Thai Tsung (Ogotai Khan, r. +1209/+1242), 225
Thai Tsung (Li Shih-Min, Thang Emperor, +597/+649), 21, 24, 64 (g), 91, 214
Thai-Wu (Wei Emperor, r. +424/+452), 417
Thai-Yuan fu, defences, 338
Thaiphing, 62, 75, 75 (f), 91
than (spear?), 277
Than Tao-Chi (d. +436). See Sun Shih Liu Chi
Thang dynasty, 1
- alchemy, 9
- archery, 167, 169
- arcuballistae, 193, 198
- cities develop economic function, 291, 329
- crossbows, 122, 145
- fang ward system, 329
- fortifications, 262, 267, 364, 368-9
- illumination of besieged city, 313-14
- Japanese contacts, 336
- military literature, 24, 29, 122, 157
- mining, 470-1
- provincial governors, 79
- Ta-Ming palace, 364, 368-9
- thundersticks, 284
- trebuchets, 211, 214
- Turkish contacts, 167, 169
- Western contacts, 214
Thang Tao (soldier and writer, +12th cent), 27, 192
Thang Thai Tsung (Thang emperor). See Thai Tsung
Thao Chai Chi Chin Lu (Record of Inscribed Metal Objects preserved in the Porcelain Studio Collection), by Tuan Fang, 129 (a), 143, 151
Thao Chêng-Kang (+), 386
Thao Ku (+902/+970), 193
thaumaturgy, 24
thematic
Theo
Theo
Theo
Theo
Thie
<table>
<thead>
<tr>
<th>Index</th>
<th>585</th>
</tr>
</thead>
<tbody>
<tr>
<td>theatre, 80, 81, 85</td>
<td></td>
</tr>
<tr>
<td>Théodose II (Roman Emperor, c. +346/+395), 172</td>
<td></td>
</tr>
<tr>
<td>Theoreticians, Military (Ping Chia), 31</td>
<td></td>
</tr>
<tr>
<td>theory, military, 46–54</td>
<td></td>
</tr>
<tr>
<td>change of emphasis from philosophical to practical, after +5th cent., 23–4</td>
<td></td>
</tr>
<tr>
<td>combat and competition, 37–43</td>
<td></td>
</tr>
<tr>
<td>general principles of action, 31–7</td>
<td></td>
</tr>
<tr>
<td>literature, 19–24</td>
<td></td>
</tr>
<tr>
<td>scientific mentality, 13–14</td>
<td></td>
</tr>
<tr>
<td>Yin-Yang, Su (chairs), 13–14</td>
<td></td>
</tr>
<tr>
<td>Thien An, 258</td>
<td></td>
</tr>
<tr>
<td>See also individual works</td>
<td></td>
</tr>
<tr>
<td>thermodynamics, study of, 2</td>
<td></td>
</tr>
<tr>
<td>Thien An (i), 296, 300</td>
<td></td>
</tr>
<tr>
<td>Thien Kung Kai Wu (The Exploitation of the Works of Nature), by Sung Yung-Hsing, 114, 115, 159, 162</td>
<td></td>
</tr>
<tr>
<td>Thien Mao-Kuang (engineer-general, ±617), 211</td>
<td></td>
</tr>
<tr>
<td>Thien Mai (heavenly fields, raked area around fortified), 266–7</td>
<td></td>
</tr>
<tr>
<td>Tho Pa Wei, 436</td>
<td></td>
</tr>
<tr>
<td>Tho-Tho (Togata), See Sung Shih</td>
<td></td>
</tr>
<tr>
<td>Tho-Tho Liu-kwan, Bagha-durbêjîn, 335</td>
<td></td>
</tr>
<tr>
<td>Three Kingdoms, 115</td>
<td></td>
</tr>
<tr>
<td>'empty stronghold' stratagem, 71–2, 81, 83</td>
<td></td>
</tr>
<tr>
<td>military technology, 8, 180, 210</td>
<td></td>
</tr>
<tr>
<td>military writings, 22–5, 29</td>
<td></td>
</tr>
<tr>
<td>Romance of, see San Kwo Chih Yen I</td>
<td></td>
</tr>
<tr>
<td>society, 394 (b), 398</td>
<td></td>
</tr>
<tr>
<td>throwing-stick, 115, 164 (b)</td>
<td></td>
</tr>
<tr>
<td>thu (surprise attack), 413, 461–3</td>
<td></td>
</tr>
<tr>
<td>thu (territory), 46–8</td>
<td></td>
</tr>
<tr>
<td>Thu mên. See sally-ports</td>
<td></td>
</tr>
<tr>
<td>Thu Shu Chih Chêng (Imperial Encyclopaedia, +1726)</td>
<td></td>
</tr>
<tr>
<td>on crosbows, 125 (f), 147, 149, 157, 158</td>
<td></td>
</tr>
<tr>
<td>on military literature, 30 (b)</td>
<td></td>
</tr>
<tr>
<td>on trebuchets, 214, 216–17, 223, 224, 226, 227</td>
<td></td>
</tr>
<tr>
<td>thumb-rings, archers', 117–18, 119</td>
<td></td>
</tr>
<tr>
<td>than than (military-agricultural colonies), 25, 74</td>
<td></td>
</tr>
<tr>
<td>thunder as omen, 258</td>
<td></td>
</tr>
<tr>
<td>thunder carriages (phi li chê, trebuchets), 210</td>
<td></td>
</tr>
<tr>
<td>thunder stones (li chê, hand missiles), 287</td>
<td></td>
</tr>
<tr>
<td>Thundersticks, (tsu mu), 275, 284, 285, 286, 287, 289, 427, 433</td>
<td></td>
</tr>
<tr>
<td>Thung chên. See arrow-tubes</td>
<td></td>
</tr>
<tr>
<td>Thung Chinh Shih Wên (Explanation of Passages in the Comprehensive Mirror), by Shih Chao, 166</td>
<td></td>
</tr>
<tr>
<td>Thung-Lu-Shan, 285 (b), 466, 468</td>
<td></td>
</tr>
<tr>
<td>thung pien (whip-tube' on crosbow), 164, 166, 168</td>
<td></td>
</tr>
<tr>
<td>Thung Tuin (Comprehensive Institute), by Tu Yu</td>
<td></td>
</tr>
<tr>
<td>on flooding attack, 437, 459</td>
<td></td>
</tr>
<tr>
<td>on mining, 470–1</td>
<td></td>
</tr>
<tr>
<td>on moats, 332</td>
<td></td>
</tr>
<tr>
<td>on naval trebuchets, 226</td>
<td></td>
</tr>
<tr>
<td>on sheep-horse wall, 336</td>
<td></td>
</tr>
<tr>
<td>on siege defence, 274–5, 284, 289–90, 313–14, 403, 424–5</td>
<td></td>
</tr>
<tr>
<td>on siege engines, 226, 421, 423, 425</td>
<td></td>
</tr>
<tr>
<td>Thung-Wan Chêng, 388–9 (a), 390–1</td>
<td></td>
</tr>
<tr>
<td>Ti peoples, 386</td>
<td></td>
</tr>
<tr>
<td>ti (caltrop board), 289</td>
<td></td>
</tr>
<tr>
<td>Ti Ssu-Mi (warrior, ±563), 408</td>
<td></td>
</tr>
<tr>
<td>Tibet</td>
<td></td>
</tr>
<tr>
<td>archery technique, 117</td>
<td></td>
</tr>
<tr>
<td>Chinese annexation, 99 (a)</td>
<td></td>
</tr>
<tr>
<td>request Chinese for books on art of war, (+8th cent.), 73</td>
<td></td>
</tr>
<tr>
<td>twitch (walls, parapets), 307–8</td>
<td></td>
</tr>
<tr>
<td>Tien-shih</td>
<td></td>
</tr>
<tr>
<td>battle (+1925), 68 (a)</td>
<td></td>
</tr>
<tr>
<td>tiles, Han tomb, 348, 376</td>
<td></td>
</tr>
<tr>
<td>timber</td>
<td></td>
</tr>
<tr>
<td>stockpiling in besieged city, 271, 272, 274</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td></td>
</tr>
<tr>
<td>appropriate, 31, 55, 90</td>
<td></td>
</tr>
<tr>
<td>measurement of, see water-clocks</td>
<td></td>
</tr>
<tr>
<td>Ting, Duke of Lu (±501), 432</td>
<td></td>
</tr>
<tr>
<td>Ting the butcher, 36 (c)</td>
<td></td>
</tr>
<tr>
<td>Ting-Chin Shan, 165</td>
<td></td>
</tr>
<tr>
<td>Ting Tu (official and scholar, +990/+1053), 26 (b)</td>
<td></td>
</tr>
<tr>
<td>toad carts (ka ma chê), 428–9, 436</td>
<td></td>
</tr>
<tr>
<td>Toledo, siege of (+761), 233</td>
<td></td>
</tr>
<tr>
<td>tombs</td>
<td></td>
</tr>
<tr>
<td>of Chinh Shih Huáng Ti, 127–8, 141</td>
<td></td>
</tr>
<tr>
<td>in cities, 301</td>
<td></td>
</tr>
<tr>
<td>crossbow traps, 141</td>
<td></td>
</tr>
<tr>
<td>Ho-Lin-Ko-Erh, 391, 392–4</td>
<td></td>
</tr>
<tr>
<td>tiles, 348, 376</td>
<td></td>
</tr>
<tr>
<td>See also models</td>
<td></td>
</tr>
<tr>
<td>Torah, 55 (f)</td>
<td></td>
</tr>
<tr>
<td>torch holes, 309, 449, 450</td>
<td></td>
</tr>
<tr>
<td>torches</td>
<td></td>
</tr>
<tr>
<td>on city walls, 309, 313–14, 432–3</td>
<td></td>
</tr>
<tr>
<td>Han, 209 (c)</td>
<td></td>
</tr>
<tr>
<td>pheasant tail (chih wei chê), 425–6</td>
<td></td>
</tr>
<tr>
<td>swallow tail (jen wei chê), 402, 404, 405, 426, 427</td>
<td></td>
</tr>
<tr>
<td>use to mark enemy's progress through city's defences, 329</td>
<td></td>
</tr>
<tr>
<td>torsion, sinew-bundle. See catapults (tension types)</td>
<td></td>
</tr>
<tr>
<td>torture, 93</td>
<td></td>
</tr>
<tr>
<td>Tower carts</td>
<td></td>
</tr>
<tr>
<td>lou chê, 418, 419, 421, 422, 423, 438–9</td>
<td></td>
</tr>
<tr>
<td>pheng chê, 434–5, 438</td>
<td></td>
</tr>
<tr>
<td>towers, mobile siege missiles, 5, 25, 200, 435, 438</td>
<td></td>
</tr>
<tr>
<td>'flying' (fei lou), 418, 424</td>
<td></td>
</tr>
<tr>
<td>Hittite, 430–1</td>
<td></td>
</tr>
<tr>
<td>That Po Yiu Ching on, 25</td>
<td></td>
</tr>
<tr>
<td>'well-raising' (ching lan), 451</td>
<td></td>
</tr>
<tr>
<td>towers, mobile siege defence, 408, 411, 449, 450</td>
<td></td>
</tr>
<tr>
<td>towers, permanent defensive, 373–98</td>
<td></td>
</tr>
<tr>
<td>gate, 352</td>
<td></td>
</tr>
<tr>
<td>horse-face (ma mien), 339: 340, 342, 386, 387–90, 391</td>
<td></td>
</tr>
<tr>
<td>Mo Tu on, 257</td>
<td></td>
</tr>
<tr>
<td>protective nets and screens, 223, 375</td>
<td></td>
</tr>
<tr>
<td>cu, 352–3</td>
<td></td>
</tr>
<tr>
<td>See also crossbow platforms; watchtowers</td>
<td></td>
</tr>
<tr>
<td>towns. See cities</td>
<td></td>
</tr>
<tr>
<td>Toynbee, Arnold, 69 (d), 99</td>
<td></td>
</tr>
<tr>
<td>trebuchet (European trebuchet), 233, 235</td>
<td></td>
</tr>
</tbody>
</table>
Tung Chun-Shu (disciple of Confucius, b. +320), 53 (c)
Tung-Fu Chêng, siege of (+548/+549), 417–18
Tung Han-Yang, See Pi Li Tia Tshun
Tung-Pa-Chia, Chih-Fen Hsia, Liaoning
Lungshanoid village, 43 (c)
Tung-Pho Chik Lin (Journal and Miscellany of Su
"Tung-Pho), 80–1
Tungus people, 133
Turk
Kao-Chiang, 214, 340
Turkish
archery, 102 (c), 103, 108, 112, 117, 118, 126 (h),
167
crossbow, 169
Sui wars against (+600), 270
Thang contacts, 167, 169
transmit trebuchet designs to West, 215
tuyère (low), 469
laggar (crossbow), 173–4
Tzu-Chan of Cheng (+547), 461
Tzu Chih Thang Chien (Comprehensive Mirror for Aid
in Government), by Su-ma Kuang, 166
Tzu Chih Chien Mien Wu (Commentary on Tzu
Chih Thang Chien), by Hu San-Hsing, 166
Tzu-Hsi (Empress Dowager, +1834/+1908), 75 (d)
Tzu-Hsi (pupil of Confucius), 20
Tzu-Yian of Chhu
attack on Chêng (+66), 348, 350–1
Tuchou, siege of (+988), 215 (e)
Ulan-durbeljin
Chien-Shui hou-luan, 355
Umehara, S. (i), 144
uniforms, military, 8–9
disguising soldiers in foreign, 67
Union of Soviet Socialist Republics
military advisers in China, 67, 81 (g)
upper classes
vulnerability to attack by lower class, 178–83
urine, 280, 345 (a)
Urshu, 431
Valteurio, Roberto (military writer, fl. +1472), 150
Vegetius, Flavius Renatus (military historian, fl.
+385), 16, 172, 354 (b)
Venus, planet, 93
Verdun, siege of (+984), 173
vehicles, military. See carts; tanks; towers, mobile;
trebuchets
vessels
bronze pictorial, of Warring States period (item)
120 (a), 193 (d), 275, 277; Chêng-Tu, 446,
447–8, 460; Liu-Li-Ko, 375, 376; Shan-Piao-
Chên, 278, 447–8, 460; Werner Jannings hu,
447–8, 460
for siege defence, 274–5, 277, 280, 317, 344–5
Vetere, Lower Germany
Roman military hospitals, 273
Vienna
siege (+1683), 108
Vietnam
commandery under Han, 99 (a)
importance in 20th cent. of classical art of war, 68
militarism, 100
secrecy about military arts, 88 (c)
See also Champa
villages
thun, 394 (b)
Han, 392; fortified, 394
Villard de Honnecourt (master-mason and
craftsman, fl. +1225/+1240), 233
villiage
antidote to gas, 469
extinguisher for oil fires, 345 (a)
vinegar
violence. See force
Viollet-le-Duc, E. E. (archaeologist, +1814/+1879),
357, 360
virtues
civil, of popular military heroes, 85, 87–8
of commander, 50
role in military matters, 61–6
violence justified if used to maintain, 85–6
Viselon, C. de (1), 230
Visigoths, 357, 359–60
wagons. See carts
Wakan Senyi-sha (Collected Studies on the Ships used
by the Japanese and Chinese), by Kanaizawa
Kanemitsu, 226 (f)
wall-climbers (ching chêng chêh), 418
walls, 290–43
angular projecting, at gate (jin or wu), 332–3,
379, 382–3
bastions (wen chêng), 337, 339, 333, 370
battering, 292 (a)
 breached by mining, 465, 472, 474
Chou: Eastern, 244, 245, 247–53; Western, 241,
244
crenellations, 25, 339
devices mounted on, 307, 398–413, 440
dimensions, 301–7, 375, 440
embrasures, 307
enceinte inside inner city (ya chêng), 339
extra-mural settlements, 337–8
field, 399
first noted, 242–3
flood defences, 241 (c), 337, 459
gates protected by turn in, 266, 339, 353, 354, 355
inner (tsu chêng), 338–9, 340
Lung-Shan era, 299, 431
'moon' (yueh chêng), 333
'movable balconies' and 'movable towers', 41–12
parapets, 307–8, 336, 380, 383, 481; 'wooden', mu
mu hoa, 371, 373
pomarium, 317, 317, 328–22
'rampart' (lei chêng), 336
secondary, 459
Shang era, 292–3, 295, 431
'sheep-horse' (yang ma chêng), 264 (d), 336–7, 398,
339, 384
INDEX

walls (cont.)
small outer, 329-30, 336
Spring and Autumn, 244, 431
stones hammered into top of, 264, 444-5, 480-1
stamped earth construction (Hung thu), 292-3, 295, 431
stone construction, 295
temporary replacements for parts destroyed, 371, 373, 411-12, 443
'terrace' (thai chang), 443
'together' (ngu chung), 307-8, 336, 339
Walter de Milamete (fl. +1316), 422
Wan
siege of, (+23), 434-5, 451
Wan-Chheng-Tzu, 434-5, 451
Wan-Chheng-Kang, 292, 293
Wang An-Shih (reformer, +1021/+1066), 44
Wang Cheng (writer, fl. +367), 44-5
Wang Chhiu (Tang official, fl. +566), 442
Wang Chhung (sceptical philosopher, +27/+97), See L"Hu
Wang Chia (d. +390), 112
Wang Chien (Chhin Shih Huang Ti's general, +2nd/+3rd cem.), 206
Wang Chien (king of independent State of Shu in Szechuan, d. +918), 177
Wang Ching-Wei (statesman, +1883/+1944), 70 (b)
Wang Chi (+8th cent.). See Chhao Shé Ching
Wang Ho (Han archery commander), 144
Wang Hsiung (defender of Hua-Chou, late +5th cent.), 455
Wang Hui (crossbow trigger maker), 129 (a)
Wang Hung-Hsi (official and author, d. +1723), 230
Wang I (fl. +1325)
I Pin Chi, 231
Wang Kuang, tomb of
Lolang, Korea, 126, 127, 144
Wang Kuo-Wei, 457
Wang Ling, 205 (e), 231
Wang Wang (founder of Hsin dynasty), 434-5
Wang Ming-Hao (writer, fl. +1599), 28
Wang Pên of Chhin (fl. +925), 456
Wang Ping (The King's Soldiers), 22 (b)
Wang Shih-Chhung (+7th cent.), 211
Wang Su-Chêng (soldier, fl. +548-9), 446, 456
Wang Tshan (writer, +177/+217), 463
Wang-tzu Chhêng-Fu of Chhi (military writer, -7th cent.), 12
Wang Wei (General of Crossbowmen, Han era), 144
Wang Wei (writer, Ming era). See Chu Lu Chi
Wang Yin
Chhin Shu, 435-6
Wang Ying-Lin. See Yü Hai
Wang Yuan Lien Nu Shé Fa Chhü (Manual of Shooting with the Arcuballis and its Sighne), 191-2
wards, city, 317, 322-3, 324-7, 329
warlords, 439, 455
Warring States period arcuballistae, 198
armour, 8, 180
crossbow-caputulls, 8
crossbows, 146
duration, 248, 254, 455
infantry, 7
military writings, 5, 17, 24
offensive warfare, concept of, 44-5
separation of army and civilian State, 76
naval warfare, 226, 227-8, 459-60
pellet-bow, 116
poliorcetics, 253-5
relative technological military level of upper and lower classes, 180
tethered arrows, 120
towns, 245, 253-5
trebuchets, 207-10
See also individual states, and under vessels
Warwick, Earl of (Richard Neville, +1428/+1471), 239
watchtower cart (Wang Lou chhê), 422, 423, 439 (a)
watchtowers
Han, 376-81, 393, 394, 395-900, 463-4
pai liu wu (on city walls), 339-40, 342
water
attacks with, 5, 11, 67, 484; see also flooding
direction of current, and likelihood of victory, 38
drinking; supply in siege, 258, 269-70
waterbags, sheepskin, 475, 476
water-chestnut, iron (caltryp), 287, 288, 289
water gates, 301 (a), 303-5
water level device
wu, 332
waterways
and agriculture, 332
caltryp, 287, 288
See also moats
wax incendiary devices, 404-5, 425, 426, 471
weakness
weak fighting against strong, 43, 44
weakening enemy as principle of action, 33
weapons
animal effigies, 10
Chhao Tsho on use of, 123, 124
magical properties, 60
metal; legend or introduction, 11
miners', 469-70
preparation for siege, 275-90
See also individual types
Weber, C. D. (1, 2), 460
Wei, commandants or guards, 374
Wei, unit of measurement, 209 (c)
Wei, Duke; Shou Chhêng (Art of War), 464 (a)
Wei, Eastern, 446, 456
Wei, Western, 455, 456
Wei, State of (Warring States)
attack with Han and Chhin clans on Chhin-Yang, 455-6
battle of Ma Ling, 139-40
cities, 329; An-I, 250-1, 253, 456; Chiang, 251-2, 255
'encirclement of Wei to save Chiao', 36 (d), 71
Wu Chhi commander in, 20
Wei chi (popular game), 92
Wei Hsiao-Khuan (fl. +346), 436, 443–4
Wei Liao Tao (Book of Master Wei Liao), 20–1
on commander, 52
on evils of war, 96
on harmony, 48
rationalism, 55
on ‘Righteous Army’, 64 (i)
on siege warfare, 271, 405, 442
on victory without fighting, 38
on virtues and material factors in warfare, 65 (b)
Wei Lüeh (Compendium of Non-Classical Matters), 140 (a)
Wei Sheng (general, d. +1164), 215 (f)
Wei Shu (officer in army of Chin, –340), 7
wei Wei chiu Chao (encirclement of Wei to save Chao), 36 (d), 71
weights
testing of crossbows, 154–5
well-field system (ching-hen), 75, 244, 245 (a)
well-railings (ching-fen, siege towers), 451
wells
beside city walls, inside city, 315
boring up by besieging force, 269
as defence against flooding attack, 456–7, 458–9
poisoning, 269–70
use in countermining, 464
wells, heavenly (thien ching, holes dug into enemy mines), 471
well-sweep (chah hao)
on city walls, 398, 402, 404, 405, 426, 477, 483
use against enemy mines, 464, 465, 471
weh (civil values), 98
identified with Tang, 92
in Kuan Yu cult, 85
relationship with wu, 76, 78–9
weh (pulley or winch?), 471
Wén, king of Chou, 438
Wen Hsien Tung K hao (Comprehensive Study of Civilisation), by Ma Tuan-Lin, 199 (c)
Wén-Jên Chün (i), 101
Wén-Lang-Kuo people, 136 (c)
Wen Ti (Yi Heng, Han emperor, r. –179/–157), 143
Wén-Ti (Yi I-Lung, Liu Sung emperor, +407/ +453), 447
Wên-Wang (king of Chou, –11th cent.), 431
Werner, E. T. C., 3
wheelbarrow, 8
whip-tube (thang pien), 168
Whitley Castle, 330, 331
Wieger, L. (7), 140
Wilbur, C. M. (a), 176–7
winch-arming of arculballistae, 150, 159, 193, 441
Windisch
Roman gate, 361
windlass
10 lower caltrops, 433
for tethered arrows, 441
for thundersticks, 285–6, 287
windlass cart (chiao chhél), 426, 427, 428, 432, 433
window, revolving (protective device for archers), 309, 372, 384, 413
winds, 56–7, 58, 59
wine
offered to sick, 274
witchcraft, 31
Wittmauer Horn
Roman gate, 359
Woe Chi Ching (Grasping Opportunities Manual), 11–12, 33 (g), 39, 56 (b)
wolf’s tooth striking board, 475, 485
women
countermining, 464
and releasable bridge, 365, 367
Sun Tzu in charge of detachments of court women, 52 (a)
wood slips, Han inscribed. See slips
world order, Chinese
place of military element, 92–100
wounded, treatment of, 272, 273, 274
wu (fortified village), 394 (b)
wu (military), 71, 76
Confucianism renounces recognition, 98–9
place in Chinese world order, 92–100
relationship with weh (civil), 76, 78–9, 85
social attitudes to military men, 77, 79, 85 (g), 98
Tso Chuan, 72
Wu, Lesser City of (Wu Hsiao-Chhêng), 30
Wu, Prince, ruler of Wei (Hsiao Wu Ti), 64
Wu, State of
early navy, 438
Sun Wu as officer of, 13
war against Chhu, 5, 13, 43
war against Yueh, 13, 43 (a)
Wu Chhêng (refugee from Chhu in Chin, –6th cent.), 5
Wu Chhi (general and military author, d. –381).
See Wu Tzu (Ping Fa)
Wu Chhêng Chi Shu (Seven Ancient Military Classics), 19 (d), 20–1
Wu Chhêng I, 302 (a)
Wu Chhêng Yung Tao (Collection of the Most Important Military Techniques), ed. Tseng
Kung-Liang and Yang Wei-Tê, 26–7, 157
on arculballistae, 150, 193, 194
on crossbows, 121–2, 146–7, 157
hooks, 415–18
on mining, 466, 472–4, 476, 478–80
on siege defence weapons, 287, 288–9, 290, 291, 404, 405
on siege machines, 422, 423, 424, 425, 453, 454, 484
on spies, 343 (c)
on trebuchets, 207, 212–3, 214, 215–18, 223, 227 (b), 228
Wu Chin-Ting (archaeologist, fl. +1928), 292 (a)
Wu Chîn Fu (Rhapsody on a Martial Army), by
Chên Lin, 415–16, 484
Wu-chung people, 7
Wu Hou. See Chhôu Liang
Wu Hou Hsin Miao (Eight Formations Plan), 58 (g)
INDEX

Wu-Hsi
- city walls, 301
- Wu Hsiao-Chhêng (Lesser City of Wu), 301
- Wu-Hsing (Five Phase theories), 284
- Wu-Huan nomads, 391
- Wu Liang offering shrines, 280
- Wu Lin Chih Shih (Customs and Institutions of the Old Capital), by Chou Mi, 117 (a)
- Wu Ling (prince of Chao, r. 425-10-298), 7
- Wu P'ei Ch'ih (Treatise on Armament Technology), by Mao Yuan-1, 28-9
 - on archery, 108
 - on arcuballistae, 188, 189, 193
 - banned by Manchus, 89 (a)
 - on crossbows, 128, 129, 131 (b), 132, 134, 147, 148, 157, 158-60, 161, 163, 177 (1)
 - Duke Lu's Overlook and Assault Cart, 429, 440
 - on 'flying hooks', 414
 - on tanks, 423
 - trebuchets, 214, 215-7
- Wu Pei Pi Shu (Confidential Treatise on Armament Technology), by Shih Yung-Thu, 29
- wu shu (military arts), 28 (a), 87 (b)
- Wu-Su-Chhih (Chang Jung, r. 1599-1930), 222 (d)
- Wu San T'ing Fa (Wu State Sun's Art of War). See Sun T'ung Fa
- Wu Tai period, 29, 198, 215
- Wu Ti (Han Emperor, r. 141/87), 22, 30, 76 (b), 94 (a), 113, 144
- Wu Ting river, 293
- Wu Tzu T'ing Fa (Master Wu's Art of War), by Wu Chhi, 19, 20
 - on avoiding violence, 38, 96
 - on commander, 49, 50, 78
 - on harmony, 181
 - on natural forces and magic, 38, 57 (a, e) and natural philosophy, 55
 - on numerical superiority, 43, 66
 - Pai Kuei on, 90
 - persistence of importance in 20th cent., 67
 - on psychological warfare, 23, 39-40
 - on moral, spiritual and human factors in war, 62, 64, 65 (b), 77-8, 181
- Wu Tzu-Hsü (minister of state of Wu, fl. 541/530), 17, 43
- Wu Wang (first sovereign of Chou, r. 1169-1116), 82, 958 (c)
- Wu Wang Fa Chou Ping Hwa (Story of King Wu's Expedition against Chou), 82
- wu yu thai (Rain Dance Platform), Chhi-Fu Hsien, 300
- Wu T'ien Chhsun Chhsu (Spring and Autumn Annals of the States of Wu and Yueh), by Chiao Yeh, 115-16, 137, 138, 153, 169 (g)
- Wurtzstein, Christian (d. 1588), 229 (e)
- Ya chhêng (enceinte inner city), 339
- Yadin, Y. (1), 429
- Ya-Ku (Ya'qûb, artillery general, fl. +1329), 221 (d)
 - Yakut crossbow, 135
- Yang (natural force). See Tin and Yang
- Yang, C. K. (1), 84
- Yang-Chhêng, 292 (c)
- Yang Hsiao (physicist and wu-writer, fl. 53+18), 444
- Yang Hung (6), 459-60
- Yang Khan (defender of Chien-Khang, fl. 548), 347, 424-5, 426
- Yang Kuan (Su emperor, +580+618), 277 (e)
- yang ling (sheep's bank, ramp), 437-8, 442, 443-4
- Yang Pao (archer), 117 (a)
- Yang Phu (general and admiral, fl. 111), 22, 30
- Yang-Shao era, 241-42, 252 (b), 292 (b)
- Yang Wei-Tê. See Wu Ch'ing Tsang T'ao
- Yang Yu-Chi (minister of Chhu, archer), 4-5
- Yao, Lord of Chih (fl. 455-453), 455-6
- YaoSsu (archer), 117 (a)
- Ya'qûb (Ya-Ku, artillery general, fl. +1329), 221 (c)
- Yarkhoto, siege of (+7th cent.), 214
- Yates, R. D. S. (3), 207-10
- Yeh, siege of (+204), 463
- Yeh-lu Hsi-ch'êng (general, fl. +468), 215 (d)
- Yeh-lu Hsiu-Ko (general, fl. +468), 215 (d)
- Yeh Shao-ong. See Shao On Tsun Chih Lin
- Yellow Emperor. See Huang Ti
- Yellow River, 67 (g)
- Yellow Turbans (huang chin), 446
- Yen (Hsien-pi) dynasty, 198
- Yen, State of, 41, 266, 248
- Yen-Chhêng, 251, 254
- Yen Chih Lin (Collected Records of Salt City), by Fan Wei-Chhêng, 228 (a)
- Yen Jo (soldier of Chhi, fl. 566), 442
- Yen Kao (archer of Lu, fl. 501), 155
- Yen Kung Yiian-Shuai (military deity), 85 (f)
- Yen-Shih, 296, 351
- Yen Shih Hsien
 - Hsin or Shang city of Hsi-Po, 295, 296
 - Yen Shih-Ku (scholar, +581/+465), 191 (d)
 - Yen Tsin Tsz (Life of Prince Tan of Yen), 567, 370
- Yenan
 - military colonies, +1072, 25 (e)
 - Yi (legendary archer), 197
- jin (angular projecting wall), 352-3, 379, 382-3
- jin (ramp), 413, 438 (n), 441-6
- Yin and Yang, (natural forces)
 - and battle formations, 57, 58, 59
 - Chu-ko Liang on use of, 23
 - and divisions of space, 57
 - and interpretation of signs of enemy activity, 42
 - Kun Ku Tsz on, 31
 - military importance, 24, 38, 44
 - and morale, 50
 - and numbers, 23
 - and secrecy, 88
 - and seasons, 93
 - in strategic planning, 74
 - and territory, 48
- wu and wên identified with, 92, 98
- Yin-Yang theory, 258
INDEX

Yiín-Chhiëh-Shan (Silver Sparrows Moulnntain), 18, 60
Yin Fu Ching (The Harmony of the Seen and Unseen), by Li Chhtian, attr. to Huang Ti, 11, 39, 88 (e)
Yiín-Hsiü stage of Shang period, 293
Yin Thung-Chhêng (Han author on archery), 118
Yiín Yang Chia (Naturalists), 19, 31, 44
Yin Yang Wu Hsing, 22 (b)
Yin Yen (defender of Shou-Yang, +466), 428-9
Ying-Chhùan, siege of (+ 548-9), 436
Ying-Chhou, siege of (+ 548), 446
Ying Hsüng Chi, by Wang Tshian, 463
Yin river
Liu I poisons, 270
Ying Shao (official, d. c. +195), 144
Yo Fei (military deity, +1109/+1141), 84
Yu the Great (Hsia Hou Shih, founder of Hsia dynasty), 292 (c), 416 (a)
Tü Hai (Ocean of Jade, encyclopaedia of quotations), 21 (f), 25 (e)
Yu hisia ('knights-errant'), 88 (a)
Yi̍t Hsiu-Lieh (fl. +730), 73
Yü I Kuo (Country of the Malodorous Barbarians), 112
Yü I-Chih (engineer, officer of Yin Yen, fl. +450/+466), 210, 428-9
Yü Ma-Hsien (archer), 117 (a)
Yü-Pi, siege of (+ 546), 436, 443-4, 445, 470
Yü Shih (crossbow maker), 134
Yu Wang (d. -228)
tomb at Shou-Chhou, 143
Yü-Wang Chhêng (formerly city of An-I of State of Wei, at Hsia Hsien), 250-1, 253
Yu-wên Yün (Northern Chou emperor, r. +578/ +580), 210-11
Yüan Chung Shih Ta Tiên Hsi Lu (+ 1264), 169
Yüan dynasty
gunpowder-projectiles, 9
military literature, 27, 29
See also Mongols; San Kuo Chih Ten I
Yüan Khang. See Tüeh Chüeh Shu
Yüan Shang (general, fl. +204), 463
Yüan Shao (general, d. +202), 210, 415-16, 435
Yüan Shih (History of the Yüan Dynasty), by Sung Lien, 225
Yüeh, Marquis of Tsêng, 482
Yüeh, State of
navy, 458
war against Wu, 13, 43 (a)
Tüeh Chüeh Shu (Lost Records of the State of Yüeh), by Yüan Khang, 458
Yüeh-Yang (capital of Chhin), 301, 310-12, 352
Yule, Sir Henry (1), 231
Yün-Chhou
crossbow trigger-mechanism from, 133-4
Yün-Mêng county
Han tomb model, 395, 395-5
Yung (capital of Chhin), 303, 306, 308
Yunnan
crossbow, 135, 136
Yünnan Chi Wu Chiao Huang (A Study of the Taxation of Industrial Operations in Yunnan Province), by Chang Tan, 229 (d)
Yverdon
Roman gate, 356, 362
Zen Buddhism, 111 (d)
Zopyros of Tarentum, 171, 188 (a)